ZBORNIK RADOVA Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 15,1 (1985) REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 15,1 (1985)

ON G-PERMUTABLE n-GROUPOIDS

Wies Law A. Dudek and Zoran Stojaković*

Institute of Mathematics, Pedagogical University Al. Zawadskiego 13/15, 42-200 Częstochowa, Poland * Prirodno-matematički fakultet, Institut sa matematiku, 21000 Novi Sad, dr Ilije Djuričića 4, Jugoslavija.

ABSTRACT

In this paper σ -permutable n-groupoids are defined and considered. An n-groupoid (G,f) is called σ -permutable, where σ is a permutation of the set $\{1,\ldots,n+1\}$, iff $f(x_{\sigma 1},\ldots,x_{\sigma n})=x_{\sigma(n+1)} \iff f(x_{1},\ldots,x_{n})=x_{n+1}$ for all x_{1},\ldots,x_{n+1} e.G. σ -permutable n-groupoids are a generalization of several classes of n-groupoids. Examples of σ -permutable n-groupoids are given and some of their properties described. Several conditions under which σ -permutable n-groupoids are n-groups are determined.

1. NOTATION AND DEFINITIONS

We shall use the following abreviated notation:

$$f(x_1,...,x_k,x_{k+1},...,x_{k+s},x_{k+s+1},...,x_n) = f(x_1^k, x_1^k, x_{k+s+1}^n),$$

AMS Mathematics Subject Classification (1980): 20N15..

Key words and phrases: n-groupoid, n-quasigroup, n-semigroup, n-group, permutation, commutativity, associativity.

whenever $x_{k+1} = x_{k+2} = \dots = x_{k+s} = x$ (x_i^j is the empty symbol for i > j and for i > n, also x_i^j is the empty symbol).

To avoid repetitions we assume throughout the whole text that $n \ge 2$.

We say that an n-groupoid (G,f) is k-solvable, where k $e\{1,...,n\}$ = N_n is fixed, iff the equation

$$f(a_1^{k-1}, x, a_{k+1}^n) = b$$

has a solution $x \in G$ for all elements a_1^n , $b \in G$. If the solution is unique, then (G,f) is called an uniquely k-solvable n-groupoid. If this equation has an unique solution for every $k \in N_n$, then (G,f) is called an n-quasigroup.

An n-groupoid (G,f) is (i,j)-commutative iff

$$f(x_1^{i-1}, x_i, x_{i+1}^{j-1}, x_j, x_{j+1}) = f(x_1^{i+1}, x_j, x_{i+1}^{j-1}, x_i, x_{j+1}^n)$$

for all $x_1^n \in G$ and some fixed $1 \le i \le j \le n$. If (G,f) is (i,j)-commutative for every pair (i,j), $i,j \in N_n$, then it is commutative.

An n-groupoid (G,f) is (i,j)-associative, where $1 \le i \le n$, iff

$$f(x_1^{i-1}, f(x_1^{n+i-1}), x_{n+i}^{2n-1}) = f(x_1^{j-1}, f(x_j^{n+j-1}), x_{n+j}^{2n-1})$$

for all x_1^{2n-1} 6 G.

An n-groupoid (G,f) is associative (i.e. it is an n-semigroup) iff it is (i,j)-associative for every pair (i,j), i,j $\in N_n$. Note that for the associativity of (G,f) it is sufficient to postulate the (1,j)-associativity for all $j \in \{2,3.....n\}$ = $N_{2,n}$. An associative n-quasigroup is an n-group. An n-semigroup is an n-group iff it is k-solvable for k = 1 and k = n or for some k other than 1 and n (see [10], p. 213). In [11] it is proved (but this proof is not complete, cf. [4]) that an n-quasigroup is an n-group iff it is (i, i+1)-associati-

ve for some i 6 N_{n-1} .

By S, we denote the symmetric group of degree n.

If σ e S_n , then $x_{\sigma i}$, $x_{\sigma (i+1)}$, ..., $x_{\sigma j}$ we denote by $x_{\sigma i}^{\sigma j}$. If i > j, then $x_{\sigma i}^{\sigma j}$ is considered empty.

An n-quasigroup (Q,f) is called totally symmetric (TS) iff $f(x_{\sigma 1}^{\sigma n}) = x_{\sigma(n+1)} \iff f(x_1^n) = x_{n+1} \text{ for all } x_1^{n+1} \in \mathbb{Q}$ and all $\sigma \in S_{n+1}$.

2. g-PERMUTABLE n-GROUPOIDS

DEFINITION 1. Let σ e S_{n+1} . An n-groupoid (G,f) is called σ -permutable iff for all x_1^{n+1} e G

$$f(x_1^n) = x_{n+1} \iff f(x_{\sigma 1}^{\sigma n}) = x_{\sigma(n+1)}.$$

It is easy to see that this definition can be given in another equivalent form.

DEFINITION 2. Let $\sigma \in S_{n+1}$. If σi = n+1 for some $i \in N_n$, then an n-groupoid (G,f) is σ -permutable iff for all $x_1^{n+1} \in G$

$$f(x_{\sigma 1}^{\sigma(i-1)}, f(x_1^n), x_{\sigma(i+1)}^{\sigma n}) = x_{\sigma(n+1)}.$$

If $\sigma(n+1) = n+1$, then (G,f) is σ -permutable iff for all x_1^{n+1} e G

$$f(x_{\sigma 1}^{\sigma n}) = f(x_1^n).$$

 σ -permutable n-groupoids represent a generalization of various classes of n-groupoids. Among them are i-permutable n-groupoids from [14] and cyclic n-quasigroups from [12]. Indeed, if $\sigma(n+1)=1$ and $\sigma k=k+1$, for all $k\in N_n$, then a σ -permutable n-groupoid is a cyclic n-quasigroup from [12]. On the other hand, if $\tau k=k$ for $k=1,\ldots,$ i-1, $\tau i=n+1,$ $\tau j=j-1$

for j = i+1,..., n+1, then a τ -permutable n-groupoid is an i-permutable n-groupoid from [14]. If a permutation σ e S_{n+1} is a cycle (k,n+1), then a σ -permutable n-groupoid is k-invertible in the sense of [3]. Some other classes of n-groupoids which are special cases of σ -permutable n-groupoids will be given later.

As a simple consequence of Definition 1 we obtain:

LEMMA 1. Let σ e S_{n+1} and H be a subgroup of S_{n+1} generated by σ . An n-groupoid (G,f) is σ -permutable iff it is τ -permutable for every τ e H.

LEMMA 2. Let (G,f) be an n-groupoid. The set H of all permutations σ e S_{n+1} such that

$$f(x_{\sigma 1}^{\sigma n}) = x_{\sigma(n+1)} \iff f(x_{1}^{n}) = x_{n+1}$$

for all $x_1^{n+1} \in G$, is a subgroup of S_{n+1} .

The set H of all such permutations we shall denote by $\Pi(\mathbf{f})$.

The notion of σ -permutable n-groupoids is an extension of the notion of autoparastrophies of n-quasigroups to arbitrary n-groupoids. Namely, if (Q,f) is an n-quasigroup, then a new quasigroup (Q,f^{σ}) can be defined in the following way:

$$f^{\sigma}(x_{\sigma 1}^{\sigma n}) = x_{\sigma(n+1)} \iff f(x_{1}^{n}) = x_{n+1}.$$

 (Q,f^{σ}) is said to be a parastrophe (or conjugate) of the n-quasigroup (Q,f). If $f^{\sigma}=f$, then σ is called an autoparastrophy of (Q,f). Although it is not possible to define a new operation f^{σ} for an arbitrary n-groupoid as it is done for n-quasigroups, we see that σ -permutable n-groupoids generalize the notion of autoparastrophy to arbitrary n-groupoids.

DEFINITION 3. Let H be a subgroup of S_{n+1} . If an n-groupoid (G,f) is g-permutable for every σ e H, then (G,f) is called a H-permutable n-groupoid.

It is obvious that an n-groupoid (G,f) is H-permutable iff it is σ -permutable for all σ & Γ , where Γ is a set of generators of the group H. From Lemma 1 we see that every σ -permutable n-groupoid is H-permutable, where H is the subgroup of S_{n+1} generated by σ . If (G,f) is H-permutable n-groupoid then it is, of course, K-permutable for every subgroup K of the group H.

A special case of H-permutable n-groupoids are H-n-quasigroups investigated in [9].

Some other examples of H-permutable n-groupoids are the following.

- 1. Totally symmetric n-quasigroups are H permutable with H = $\mathbf{S}_{\text{n+1}}$.
- 2. (i,j)-commutative n-groupoids are H-permutable, where H ={(1),(i,j)}. Commutative n-groupoids are H-permutable, where H \simeq S_n and σ (n+1) = n+1 for all σ 6 H.
- 3. If H is a cyclic subgroup of S_{n+1} generated by the cycle $(1,2,\ldots,n)$, then H-permutable n-groupoid is a cyclic n-quasigroup described in [12].
- 4. Medial n-groups are H-permutable for a subgroup H of S_{n+1} generated by the cycle (1,n) (see [1]).
- 5. If a subgroup H of S_{n+1} is generated by the cycle (i,i+1, ..., n+1), then a H-permutable n-groupoid is i-permutable.
- 6. If H is the alternating subgroup of S_{n+1} , then a H-permutable n-groupoid is an alternating symmetric n-quasigroup from [13].
- 7. In [8] D.G. Hoffman has given a construction of a H-permutable n-quasigroup (G,f) of order mp, for every m > n, $p \ge 2$, and every subgroup H of S_{n+1} , such that $\Pi(f) = H$.

PROPOSITION 1. If (G,f) is a H-permutable n-groupoid, where H is a subgroup of S_{n+1} , then for every σ ε H such that $\sigma(n+1) \neq n+1$ the n-groupoid (G,f) is uniquely solvable at the place $\sigma^{-1}(n+1)$.

PROOF. Let σ e H and let σ i = n+1. Then by Definition 2 the equation $f(x_{\sigma 1}^{\sigma(i-1)}, y, x_{\sigma(i+1)}^{\sigma n}) = x_{\sigma(n+1)}$ has an uniquely determined solution $y = f(x_1^n)$ for every $x_{\sigma 1}^{\sigma(i-1)}, x_{\sigma(i+1)}^{\sigma(n+1)}$ e G. Hence the H-permutable n-groupoid (G,f) has an unique solution at the place $\sigma^{-1}(n+1)$, which completes the proof.

If σ is a permutation from a subgroup $H \subseteq S_{n+1}$, then σ^{-1} e H and σ^k e H for every $k=1,2,\ldots$, hence we have the following corollary.

COROLLARY 1. Every σ -permutable n-groupoid (G,f), where $\sigma(n+1) \neq n+1$, is uniquely solvable at the places $\sigma^k(n+1)$, $k=1,2,\ldots$, provided that $\sigma^k(n+1) \neq n+1$.

COROLLARY 2. If H is a subgroup of S_{n+1} such that for every $j \in N_n$ there exists σ e H such that $\sigma j = n+1$, then every H-permutable n-groupoid is an n-quasigroup. In particular, if H is a transitive permutation group, then every H-permutable n-groupoid is an n-quasigroup.

COROLLARY 3. If $\sigma(n+1) \neq n+1$, then every σ -permutable commutative n-groupoid is a totally symmetric n-quasigroup.

From our Proposition 1 and Proposition 1 from [4] we get the following.

PROPOSITION 2. A H-permutable n-groupoid (G,f) is an n-group if one of the following conditions holds:

- (i) (G,f) is (i,i+1)-associative for some $2 \le i \le n-2$ and there exist $\sigma, \tau \in H$ such that $\sigma^{-1}(n+1) = i < \tau^{-1}(n+1) \le n$,
- (ii) (G,f) is (1,2) or (n-1,n)-associative and there exist σ, τ e H such that $\sigma(n+1) = 1$ and $\tau(n+1) = n$.

PROPOSITION 3. A H-permutable n-semigroup (G,f) is an n-group if one of the following conditions holds:

- (i) there exists $\sigma \in H$ such that $1 < \sigma(n+1) < n$,
- (ii) there exists $\sigma, \tau \in H$ such that $\sigma(n+1) = 1$ and $\tau(n+1) = n$.
- (iii) there exists σ \in H such that $\sigma(n+1) = 1$ and $\sigma(1) \neq n+1$,
- (iv) there exists $\sigma \in H$ such that $\sigma(n+1) = n$ and $\sigma(n) \neq n+1$.

From our Proposition 1, Corollary 1 and Proposition 1 from [4] we obtain:

PROPOSITION 4. A σ -permutable n-groupoid (G,f), where $\sigma(n+1) \neq n+1$, is an n-group if one of the following conditions holds:

- (i) the (i,i+1)-associative law holds for i = $\sigma(n+1)$ or i = $\sigma^{-1}(n+1)$, where 2 \leq i \leq n-1, and (G,f) is solvable at some place k > i,
- (ii) the (i,i+1)-associative law holds for i = $\min\{\sigma(n+1), \sigma^{-1}(n+1)\}$, where $2 \le i \le n-1$ and $\sigma(n+1) \ne \sigma^{-1}(n+1)$,
- (iii) $\sigma(n+1) = 1$ and $\sigma(n) = n+1$ (or $\sigma(n+1) = n$ and $\sigma(1) = n+1$) and $\sigma(3, f)$ is $\sigma(3, f)$ is $\sigma(3, f)$ or $\sigma(3, f)$ associative.

PROPOSITION 5. A σ -permutable n-semigroup, where $\sigma(n+1) \neq n+1$, is an n-group if one of the following conditions holds:

- (i) $\sigma(n+1) = 1$ and $\sigma(n) = n+1$,
- (ii) $\sigma(n+1) = n \text{ and } \sigma(1) = n+1$,

(iii) $1 < \sigma^{k}(n+1) < n \text{ or } 1 < \sigma^{-k}(n+1) < n \text{ for some } k \in \{1,2,3\},$

(iv) $\sigma(n+1) = 1$ (or $\sigma(n+1) = n$) and $\sigma^2(n+1) \neq n+1$.

PROPOSITION 6. Let (G,f) be a σ -permutable n-groupoid and let $\sigma(n+1) = 1 = \sigma^{-1}(n+1)$. (G,f) is an n-group iff it is (1,2)-associative and for every $x \in G$ there exists $\hat{x} \in G$ such that $f(\hat{x}^{-1}, \hat{x}, \hat{x}^{-1}, \hat{x}^{-2})$, y) = y for all $y \in G$ and some fixed $i \in N_{2,n}$.

PROOF. By a simple generalization of the proof of Theorem 2 from [4] and Corollary 1 from [1], we can prove that a (1,2)-associative n-groupoid (G,f) is an n-group iff for all $x \in G$ there exist $\hat{x}, \tilde{x} \in G$ such that

(1)
$$f((x^{-1}), \hat{x}, (x^{-2}), y) = y = f(y, (x^{-2}), \hat{x}, (x^{-1}))$$

for all y & G and some i,j & N2.n.

Now we have to prove that for a given n-groupoid the first equation from (1) implies the second. Since $\sigma(n+1)=1$ and $\sigma(1)=n+1$, then by σ -permutability of (G,f) we obtain that the equation $f(y, \frac{(n-1)}{x}) = z$ implies $f(z, \frac{(n-1)}{x}) = y$. Hence $y = f(f(y, \frac{(n-1)}{x}), \frac{(n-1)}{x}) = f(y, f(\frac{(n)}{x}), \frac{(n-2)}{x})$ by the (1,2)-associativity. This means that $f(y, \tilde{x}, \frac{(n-2)}{x}) = y$ for all $x, y \in G$ and $\tilde{x} = f(\frac{(n)}{x})$, which completes the proof.

In the same manner we can prove:

PROPOSITION 7. A σ -permutable n-groupoid (G,f), where $\sigma(n+1) = n = \sigma^{-1}(n+1)$, is an n-group iff it is (n-1,n)-associative and for every $x \in G$ there exists $\hat{x} \in G$ such that $f(y, (j\bar{x}^2), \hat{x}, (n\bar{y})) = y$ for all $y \in G$ and some $j \in N_{2,n}$.

REFERENCES

[1] W.A. Dudek, Remarks on n-groups, Demonstratio Math. 13(1980), 165 - 181.

- [2] W.A. Dudek, On medial n-groups, (to appear).
- [3] W.A. Dudek, On invertible n-groupoids, (to appear).
- [4] W.A. Dudek, K. Gyazek, B. Gleichgewicht, A note on the axioms of n-groups, Coll. Math. Soc. J. Bolyai, 29. Universal Algebra (Esztergom) 1977, 195 - 202.
- [5] W.A. Dudek, J. Michalski, On a generalization of Hosszu theorem, Demonstratio Math., 15(1982), 783 805.
- [6] W.A. Dudek, J. Michalski, On retracts of polyadic groups, Demonstratio Math., 17(1984), 281 301.
- [7] W.A. Dudek, Z. Stojaković, On permutable n-groups, (to appear).
- [8] D.G. Hoffman, On the spectrum of n-quasigroups with given conjugate invariant subgroup, J. Comb. Theory, Ser. A, 35(1983), 98 99.
- [9] Dj. Paunić, Z. Stojaković, Parastrophy invariant n-quasigroups, Univ.u Novom Sadu, Zbornik radova Prir.-mat. fak., ser. mat., 13(1983), 251 257.
- [10] E. Post, Polyadic groups, Trans. Amer. Math. Soc., 48(1940). 208 350.
- [11] E.I. Sokolov, On the theorem of Gluskin-Hosszu on Dörnte n-groups (Russian), Mat. Issled., 39(1976), 187 189.
- [12] Z. Stojaković, Cyclic n-quasigroups, Univ. u Novom Sadu, Zbornik radova Prir.-mat. fak., ser. mat., 12(1982), 407 415.
- [13] Z. Stojaković, Alternating symmetric n-quasigroups, Univ. u Novom Sadu, Zbornik radova Prir.-mat. fak., ser. mat., 13(1983), 259 - 272.
- [14] Z. Stojaković, W.A. Dudek, Permutable n-groupoids
 Univ. u Novom Sadu. Zbornik radova Prir.-mat. fak.,
 ser. mat., 14,2(1984).155-166.
- [15] Z. Stojaković, Dj. Paunić, On a class of n-groups, Univ. u Novom Sadu, Zbornik radova Prir.-mat. fak., ser. mat., 14,2(1984),147-154.

[16] J. Timm, Zur gruppentheoretischen Beschreibung n-stelliger structuren, Publ. Math. Debrecen 17(1970), 183 - 192.

Received by the editors May 16,1985. REZIME

O σ-PERMUTABILNIM n-GRUPOIDIMA

U radu su definisani i razmatrani σ -permutabilni n-grupoidi. n-grupoid (G,f) se naziva σ -permutabilan, gde je σ premutacija skupa {1,...,n+1}, ako i samo ako je $f(x_{\sigma 1}, \dots, x_{\sigma n}) = x_{\sigma (n+1)} \iff f(x_{1}, \dots, x_{n}) = x_{n+1}$ za svako x_{1}, \dots, x_{n+1} 6 G. σ -permutabilni n-grupoidi predstavljaju uopštenje više raznih klasa n-grupoida. Navedeni su primeri σ -permutabilnih n-grupoida i opisane neke njihove osobine. Odredjeno je nekoliko uslova pod kojim je σ -permutabilni n-grupoid n-grupa.