ZBORNIK RADOVA Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 15,1 (1985) REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 15.1 (1985)

ON THE PERMUTABILITY OF WEAK FUZZY CONGRUENCE RELATIONS

Branimir Šešelja, Gradimir Vojvodić Prirodno-matematički fakultet, Institut za matematiku 21000 Novi Sad, ul. dr Ilije Djuričića br.4,Jugostavija

ABSTRACT

We consider the composition "o" of fuzzy binary relations on the set $\overline{C_W(A)}$ of weak fuzzy congruence relations on the given algebra A, using the complete lattice L. (Weak fuzzy congruence relations are defined for groupoids in [1], and it was proved in [2] that $\overline{(C_W(A), <)}$ is a complete lattice, having as a homomorphic image the lattice of all fuzzy subalgebras of A).

We prove that, provided that L is infinitely distributive, $(C_w(A), o)$ is a semilattice iff all weak fuzzy congruence relations on A are permutable. Permutability, on the other hand, does not imply the equality $\rho o \bar{\theta} = \rho V \bar{\theta}$ in the lattice $(\bar{C}_w(A), <)$. Here we give the necessary and sufficent conditions for that equality, and we describe the connection between the operations o and V in all other cases.

- 1. Let A = (A,F) be an algebra, $K\subseteq A$ the set of its constants, and $L = (L,\Lambda,V,0,1)$ a complete lattice.
 - a) Every mapping $\bar{\rho}: A^2 + L$ is a fuzzy relation on A.
- b) A fuzzy relation $\bar{\rho}$ on A is a weak fuzzy congruence relation on A, if the following is satisfied:

AMS Mathematics Subject Classification (1980):Primary 03E72 Secondary 08A30.

Key words and phrases : Fuzzy sets, universal algebras.

If $c \in K$, then $\rho(c,c) = 1$ (weak reflexivity);

For $x,y \in A$, $\rho(x,y) = \rho(y,x)$ (symmetry);

For $x,y \in A$, $\bar{\rho}(x,y) > v (\bar{\rho}(x,z) \wedge \bar{\rho}(z,y))$ (transitivity);

For $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$, $f \in F_n \subseteq F$,

$$\bar{\rho}(f(x_1,\ldots,x_n), f(y_1,\ldots,y_n)) > \int_{i=1}^{n} \bar{\rho}(x_i,y_i)$$
 (substitution).

If $\overline{C_w(A)}$ is a set of all weak fuzzy congruence relations on A, then:

- 1.1. $(C_{\overline{W}}(A), <)$ is a complete lattice (where $\overline{\rho} < \overline{\theta}$ iff for every $x, y \in A$, $\overline{\rho}(x, y) < \overline{\theta}(x, y)$). ([2]).
- c) If $\bar{\rho}$ and $\bar{\theta}$ are two arbitrary fuzzy relations on A, then $\bar{\rho} \circ \bar{\theta} : A^2 + L$, and for $x,y \in A$,

$$\bar{\rho} \circ \bar{\theta} (\mathbf{x}, \mathbf{y}) = \bigvee_{\mathbf{z}} (\bar{\rho}(\mathbf{x}, \mathbf{z}) \wedge \bar{\theta}(\mathbf{z}, \mathbf{y}))$$
.

1.2. [3] If l is complete and infinitely distributive, then o is an associative operation in the set of all fuzzy relations on A.

In the following, l is a complete lattice, and it is distributive if explicitly stated.

2. Here we consider the conditions for o to be an operation on $\overline{C_{***}(A)}$.

PROPOSITION 2.1. Let \underline{L} be an infinitely distributive lattice. Then for $\rho, \overline{\theta} \in \overline{C_{\mathbf{w}}(A)} : \overline{\rho} \circ \overline{\theta} \in \overline{C_{\mathbf{w}}(A)}$ iff $\overline{\rho} \circ \overline{\theta} = \overline{\theta} \circ \overline{\rho}$.

Proof. Let
$$\bar{\rho} \circ \bar{\theta} = \bar{\theta} \circ \bar{\rho}$$
. Then, for cek
$$\bar{\rho} \circ \bar{\theta} (c,c) = \bigvee_{z \in A} (\bar{\rho}(c,z) \wedge \bar{\theta}(z,c)) = \bar{\rho}(c,c) \wedge \bar{\theta}(c,c) = 1$$
 (reflexivity)
$$\bar{\rho} \circ \bar{\theta} (x,y) = \bigvee_{z} (\bar{\rho}(x,z) \wedge \bar{\theta}(z,y)) = \bigvee_{z} (\bar{\theta}(y,z) \wedge \bar{\rho}(z,x)) =$$

$$= \bar{\theta} \circ \bar{\rho}(y,x) = \bar{\rho} \circ \bar{\theta}(y,x)$$
 (symmetry).

Composition o is associative, since l is infinitely distributive, and thus $(\bar{\rho} \circ \bar{\theta}) \circ (\bar{\rho} \circ \bar{\theta}) = (\bar{\rho} \circ \bar{\rho}) \circ (\bar{\theta} \circ \bar{\theta}) < \bar{\rho} \circ \bar{\theta}$. We use here the fact that $\bar{\rho}_1 \subseteq \bar{\rho}$ and $\bar{\theta}_1 \subseteq \bar{\theta}$ imply $\bar{\rho}_1 \circ \bar{\theta}_1 \subseteq \bar{\rho} \circ \bar{\theta}$ (by the definition of o). (transitivity).

Let $f \in F$ be a binary operation denoted by ".". Then, by the distributivity of l,

$$\bar{\rho} \circ \bar{\theta}(\mathbf{x}, \mathbf{y}) \wedge \bar{\rho} \circ \bar{\theta}(\mathbf{u}, \mathbf{v}) = (\bigvee_{\mathbf{z}} (\bar{\rho}(\mathbf{x}, \mathbf{z}) \wedge \bar{\theta}(\mathbf{z}, \mathbf{y})) \wedge (\bigvee_{\mathbf{z}} (\bar{\rho}(\mathbf{u}, \mathbf{t}) \wedge \bar{\theta}(\mathbf{t}, \mathbf{v}))$$

$$= \bigvee_{z} \bigvee_{t} (\overline{\rho}(x,z) \wedge \overline{\theta}(z,y) \wedge \overline{\rho}(u,t) \wedge \overline{\theta}(t,v)) <$$

$$<\bigvee_{z,t}(\overline{\rho}(x\cdot u,z\cdot t) \wedge \overline{\theta}(z\cdot t,y\cdot v)) <\bigvee_{p}(\overline{\rho}(x\cdot u,p) \wedge \overline{\theta}(p,y\cdot v) =$$

$$= \bar{\rho} \circ \bar{\theta} (x \cdot u, y \cdot v) .$$

Hence, $\overline{\rho} \circ \overline{\theta} \in \overline{C_w(A)}$. Let now $\overline{\rho} \circ \overline{\theta} \in \overline{C_w(A)}$. Then

$$\bar{\rho} \circ \bar{\theta} (\mathbf{x}, \mathbf{y}) = \bar{\rho} \circ \bar{\theta} (\mathbf{y}, \mathbf{x}) = \bigvee_{\mathbf{z}} (\bar{\rho} (\mathbf{y}, \mathbf{z}) \wedge \bar{\theta} (\mathbf{z}, \mathbf{x})) =$$

$$=\bigvee_{\mathbf{z}}(\overline{\theta}(\mathbf{x},\mathbf{z}) \wedge \overline{\rho}(\mathbf{z},\mathbf{y})) = \overline{\theta} \circ \overline{\rho}(\mathbf{x},\mathbf{y}), \text{ i.e. } \overline{\rho} \circ \overline{\theta} = \overline{\theta} \circ \overline{\rho}. \square$$

PROPOSITION 2.2. Let $\overline{\rho}, \overline{\theta}$ as well as $\overline{\rho} \circ \overline{\theta} \in \overline{C_W(A)}$. Then $\overline{\rho} \bigvee \overline{\theta} = \overline{\rho} \circ \overline{\theta}$ iff for all $x \in A, \overline{\rho}(x,x) = \overline{\theta}(x,x)$.

Proof. Let for
$$x \in A \ \overline{\rho}(x,x) = \overline{\theta}(x,x)$$
. Then
$$\overline{\rho} \cup \overline{\theta} \subseteq \overline{\rho} \circ \overline{\theta} \subseteq \overline{\rho} \vee \overline{\theta}$$
.

Indeed

$$\overline{\rho} \ U \ \overline{\theta} (x,y) = \overline{\rho}(x,y) \ V \ \overline{\theta}(x,y) = (\overline{\rho}(x,y) \ \Lambda \ \overline{\rho}(y,y)) \ V$$

$$V (\overline{\theta}(x,x) \ \Lambda \ \overline{\theta}(x,y)) = (\overline{\rho}(x,y) \ \Lambda \ \overline{\theta}(y,y)) \ V (\overline{\rho}(x,x) \ \Lambda \ \overline{\theta}(x,y)) < V(\overline{\rho}(x,z) \ \Lambda \ \overline{\theta}(z,y)) = \overline{\rho} \ O \ \overline{\theta}(x,y), \text{ since for t,ue} \ \Lambda$$

$$\overline{\rho}(t,t) = \overline{\theta}(t,t) > \overline{\theta}(t,u).$$

Hence $\overline{\rho} \cup \overline{\theta} \subseteq \overline{\rho} \circ \overline{\theta}$. We have also

 $\overline{\rho}(x,z) < \overline{\rho} \cup \overline{\theta}(x,z) < \overline{\tau}(x,z)$, for every $\overline{\tau} \in \overline{C_W}(A)$, satisfying $\overline{\rho} \cup \overline{\theta} \subseteq \overline{\tau}$. Similarly, $\overline{\theta}(z,y) < \overline{\rho} \cup \overline{\theta}(z,y) < \overline{\tau}(z,y)$, for the same $\overline{\tau}$. Thus,

 $\vec{\rho} \circ \vec{\theta}(\mathbf{x}, \mathbf{y}) = \mathbf{V}(\vec{\rho}(\mathbf{x}, \mathbf{z}) \wedge \vec{\theta}(\mathbf{z}, \mathbf{y})) \leq \mathbf{V}(\vec{\tau}(\mathbf{x}, \mathbf{z}) \wedge \vec{\tau}(\mathbf{z}, \mathbf{y})) \leq \vec{\tau}(\mathbf{x}, \mathbf{y}),$

since T is transitive. Hence

 $\bar{\rho} \circ \bar{\theta} \subseteq \Lambda(\bar{\tau}; \bar{\rho} \cup \bar{\theta} \subseteq \bar{\tau}) = \bar{\rho} \vee \bar{\theta}.$

Since $\overline{\rho} \circ \overline{\theta} \in \overline{C_W}(A)$, $\overline{\rho} \circ \overline{\theta} = \overline{\rho} \vee \overline{\theta}$ is impossible, and thus $\overline{\rho} \circ \overline{\theta} = \overline{\rho} \vee \overline{\theta}$.

Let now $\bar{\rho} \vee \bar{\theta} = \bar{\rho} \circ \bar{\theta}$, which means that

$$\bar{\rho} \circ \bar{\theta} > \bar{\rho}$$
 and $\bar{\rho} \circ \bar{\theta} > \bar{\theta}$.

It is also true that

$$\overline{\rho} \circ \overline{\theta}(\mathbf{x}, \mathbf{x}) = \frac{V}{\sigma}(\overline{\rho}(\mathbf{x}, \mathbf{z}) \wedge \overline{\theta}(\mathbf{z}, \mathbf{x})) = \overline{\rho}(\mathbf{x}, \mathbf{x}) \wedge \overline{\theta}(\mathbf{x}, \mathbf{x})$$

(since $\bar{\rho}(t,t) > \bar{\rho}(t,u)$). Thereby

$$\overline{\rho} \circ \overline{\theta}(\mathbf{x}, \mathbf{x}) = \overline{\rho}(\mathbf{x}, \mathbf{x}) = \overline{\theta}(\mathbf{x}, \mathbf{x}) . \square$$

3. In this part we define for every subset T of $\overline{C_w(A)}$ a special mapping $f_w: T + \overline{C_w(A)}$, such that

$$V(\bar{\rho}; \bar{\rho} \in T) = V(f_m(\bar{\rho}); \bar{\rho} \in T).$$

We use f_T to describe the connection between o and V in $\overline{(C_w(\lambda)}$, <).

Let $T = {\rho_i; i \in I} \subseteq \overline{C_w(A)}, I \neq \emptyset$. For $\overline{\rho} \in \overline{C_w(A)}, let$

$$\overline{\delta}_{\underline{\rho}}: A^2 + L$$
, $\overline{\delta}_{\underline{\rho}}(x,y) = \begin{cases} \overline{\rho}(x,y) , & \text{if } x = y \\ 0 , & \text{otherwise.} \end{cases}$

Let also $\bar{\Delta}_{\underline{T}} \stackrel{\text{def}}{=} v \bar{\delta}_{\underline{I}}$, and for $\bar{\rho} \in \underline{T}$

(*)
$$f_{\mathbf{T}}(\bar{\rho}) \stackrel{\text{def}}{=} f(\bar{\tau}; \bar{\tau} \in \bar{C}_{\mathbf{W}}(\bar{A}), \bar{\Delta}_{\mathbf{T}} \cup \bar{\rho} \subseteq \bar{\tau}).$$

LEMMA 3.1. If $\bar{\rho} \in T$, then $\bar{\rho} < f_m(\bar{\rho})$.

Proof. $\rho \subseteq \overline{\Lambda}_T \cup \overline{\rho} \subseteq \overline{\tau}$, for all $\overline{\tau}$ constituting the intersection in (*). \square

LEMMA 3.2. If $\rho \in T$, then $f_T(\rho) < V(\rho_i; \rho_i \in T)$.

Proof. $\bar{\Delta}_T \cup \bar{\rho} < v \bar{\rho}_1$, and this supremum is one of the relations constituting the above intersection. Thus

$$f_{\mathbf{T}}(\bar{\rho}) < v_{\bar{\rho}i}$$
.

LEMMA 3.3. a) If
$$\bar{\rho} \in T$$
, then $\bar{\delta}_{f_{\underline{T}}(\bar{\rho})} = \bar{\Delta}_{\underline{T}}$
b) If $\bar{\rho}, \bar{\theta} \in T$, then $\bar{\delta}_{f_{\underline{T}}(\bar{\rho})} = \bar{\delta}_{f_{\underline{T}}(\bar{\theta})}$.

Proof. a) Let $\overline{A}_{\overline{\Delta}_{\mathbf{T}}}^2: A^2 \to L$, such that $\overline{A}_{\overline{\Delta}_{\mathbf{T}}}^2(\mathbf{x},\mathbf{y}) = \overline{\Delta}_{\mathbf{T}}(\mathbf{x},\mathbf{x}) \wedge \overline{\Delta}_{\mathbf{T}}(\mathbf{y},\mathbf{y}) .$

Then $\overline{A}_{\overline{\Delta}_{\mathbf{T}}}^{2} \in \overline{C_{\mathbf{W}}(A)}$ ([2]), and $\overline{A}_{\overline{\Delta}_{\mathbf{T}}}^{2}(\mathbf{x},\mathbf{x}) > \overline{\delta}_{\underline{\rho}}(\mathbf{x},\mathbf{y})$.

Thus, $\bar{A}_{\Delta_T}^2$ is one of the relations constituting the intersection in (*), and hence $f_T(\bar{\rho}) < \bar{A}_{\Delta_T}^2$. That implies

$$\bar{\delta}_{\mathbf{f}_{\mathbf{T}}(\bar{\rho})}(\mathbf{x}, \mathbf{x}) = \mathbf{f}_{\mathbf{T}}(\bar{\rho})(\mathbf{x}, \mathbf{x}) < \bar{\mathbf{A}}_{\bar{\Delta}_{\mathbf{T}}}^{2}(\mathbf{x}, \mathbf{x}) = \bar{\Delta}_{\mathbf{T}}(\mathbf{x}, \mathbf{x}), \text{ i.e.}$$

$$(1) \qquad \bar{\delta}_{\mathbf{f}_{\mathbf{m}}(\bar{\rho})} < \bar{\Delta}_{\mathbf{T}}.$$

Conversely, (*) implies $\bar{\Lambda}_T < \bar{\tau}$, for every $\bar{\tau}$ from the family constituting the intersection, and

$$\bar{\Delta}_{\mathbf{T}} = \mathbf{f}_{\mathbf{T}}(\bar{\rho})$$
.

Thus, $\bar{\Delta}_{\mathbf{T}}(\mathbf{x},\mathbf{x}) < f_{\mathbf{T}}(\bar{\rho})(\mathbf{x},\mathbf{x}) = \bar{\delta}_{f_{\mathbf{T}}(\bar{\rho})}(\mathbf{x},\mathbf{x})$, i.e.

(2)
$$\bar{\Delta}_{\mathbf{T}} \leq \bar{\delta}_{\mathbf{f}_{\mathbf{m}}(\bar{\rho})}$$
.

By (1) and (2)

$$\bar{\delta}_{\mathbf{f}_{\mathbf{T}}(\bar{\rho})} = \bar{\Delta}_{\mathbf{T}}$$
.

b) Directly follows by a).

PROPOSITION 3.4. If
$$T = \{ \overline{\rho_i}; i \in I \} \subseteq \overline{C_w(A)}$$
, then
$$V \overline{\rho_i} = V f \overline{\rho_i}.$$
if $I \in I$

Proof. By Lemma 3.2., for every $\bar{\rho} \subseteq T$, $f_T(\bar{\rho}) < \sqrt{\bar{\rho}_1}$, and iei

$$v_{i\in I}f_{T}(\bar{\rho}_{i}) < v_{\bar{\rho}_{i}}$$
.

By Lemma 3.1., for every $i \in I$, $\bar{\rho}_i < f_T(\bar{\rho}_i)$, and

$$v_{i\in I}^{\overline{\rho}_{i}} < v_{i\in I}^{f_{\overline{\Gamma}}(\overline{\rho}_{i})}$$
.

Thus, $\nabla_{\rho_{i}} = \nabla_{f_{T}}(\bar{\rho}_{i})$.

PROPOSITION 3.5. If L is an infinitely distributive lattice, and the set $T=\{\overline{\rho},\overline{\theta}\}\subseteq\overline{C_W(A)}$ satisfies the equality

$$f_{\mathbf{T}}(\overline{\rho}) \circ f_{\mathbf{T}}(\overline{\theta}) = f_{\mathbf{T}}(\overline{\theta}) \circ f_{\mathbf{T}}(\overline{\rho})$$
,

then

$$\bullet \ \overline{\rho} \lor \overline{\theta} = f_{m}(\overline{\rho}) \circ f_{m}(\overline{\theta})$$
.

Proof. By Proposition 2.1., $f_{\mathbf{T}}(\bar{\rho}) \circ f_{\mathbf{T}}(\bar{\theta}) \in C_{\mathbf{W}}(A)$, by Lemma 3.3. b) $\bar{\delta}_{\mathbf{f}_{\mathbf{T}}}(\bar{\rho}) = \bar{\delta}_{\mathbf{f}_{\mathbf{T}}}(\bar{\theta})$, by Proposition 2.2.

$$f_{\mathbf{T}}(\overline{\rho}) \vee f_{\mathbf{T}}(\overline{\theta}) = f_{\mathbf{T}}(\overline{\rho}) \circ f_{\mathbf{T}}(\overline{\theta})$$
, and by Proposi-

tion 3.4. (a) is satisfied, proving the proposition.

REFERENCES

- [1] Šešelja, B., Vojvodić, G., Fuzzy congruence relations and Groupoids, Univ. u Novom Sadu, Zb. rad. Prir. -mat. fak., Ser. mat. 15, 1(1985), 209-215.
- [2] Vojvodić, G., Šešelja, B., On the lattice of weak fuzzy congruence relations on algebras, Univ. u Novom

 Sadu, Zb. rad. Prir. mat. fak., Ser.mat., 15,1(1985), 199-207.
- [3] Seminaire: Mathematique floue, Lion, 1977-78.

Received by the editors June 19,1985.

REZIME

O PERMUTABILNOSTI SLABIH RELACIJA

KONGRUENCI JE

U radu se ispituje kompozicija rasplinutih relacija na mreži slabih rasplinutih kongruencija date algebre. Daju se potrebni i dovoljni uslovi da to bude asocijativna operacija, kao i potrebni i dovoljni uslovi da kompozicija dve slabe rasplinute kongruencije bude supremum u odgovarajućoj mreži.