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ABSTRACT

In this paper we prove a generalization of Theorem 2
from [ 3] on the existence of the common fixed point for three
mappings A, S and T in convex metric spaces. A theorem on con-
tinuous dependence of the common fixed points on parameter is
obtained. As an application a generalization of the Krasnosel -
ski fixed theorem is given.

1. PRELIMINARIES

First, we shall recall some definitions and results ‘
which we use in the paper. '

A metric space (M,d) is convex if for each x,y € M
such that x # y there exists z € M, x #* zZ %y such that:

d(x,z) + d(z,y) = d(x,y).

The following result is well known [11]:
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Proposition 1. Let K be a closed subset of the com-
plete and convex metric space (M,d). If x € Mand y £ M then
there exists g point z € 3K 8such that:

d(x,z) + d(z,y) = d(x,y).

Some fixed point theorems in convex metric spaces
are proved in [1}, (31, [4], [s), (6], [10], [11], [13], [14].

W. Takahashi introduced in [13] the notion of a con-
vex structure W on a metric space (M,d).

Definition 1. Let (M,d) be a metriec 8space. 4 map-
ping Wt M x M x [0,1] - M 8 called a convex structure on M
if for all points (x,y) € M x M and t € [0,1]:

dlu,Wix,y,t)) € td(u,x) + (1-t)d(u,y)

for all u € M.
In [14] it is proved that:

dlx,W(x,y,t)) = (1-t)d(x,y)

ted(x,y)

dly,W(x,y,t))

for every x,y € Mand t € [0,1). From this it follows that a
metric space with a convex structure is a convex metric space.
Every normed space (M,lll) is a metric space with a convex
structure where W(X,y,t) = tex + (1-t)y, (X,y,t) € M x M x
x [0,1]. An another example of a non normed metric space with
a convex structure is given in [13].
Some fixed point theorems in metric spaces with a
convex structure are proved in (3], [u4], (103, (111, [13]1, [1u].
In [14]) L. Talman introduced a class of metric spa-
ces with a convex structure for which.é fixed point theorem of
Schauder”s type holds.

Definitlion 2. Let (M,d) be a metric space and
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P = {(t1,ta,ta) € [0,1)3, t4 + t2 + t3 = 1}, 4 strong convex
structure (5C5) on M i8 a continuous function K : M x M x M x
x P » M with the property that for each (Xi,Xa,Xa,t1,ta,ts) €
€M XMXMXP, K(X1,Xa,Xs,t1,ta,ta) 78 the unique point of
M which satisfies:
3
d(y,K(x1,Xa,X3,t1,tz,ts)) < J 1, d(y,x )
k=1
for every y € M.
A metric space (M,d) with a strong convex structure
is called strongly convex. A strongly convex metric space is a

metric space with the convex structure WK, defined by:
WK(X1 sXast) = K(x1,%X2,x3,t,1-t,0)

(x1,x2,t) € M x M x [0,1].

If H< M and (M,d) is a metric space with a convex
structure W, H is said to be W convex if and only if W(x,y,t) e
€ H, for every (x,y,t) € H x H x [0,1]).

If s oM, (M,d) is a metric space with a conveii
structure and r > 0 then S = {x € M,d(x,S) < r}. A convex
subset S of M is stable if the set Sr is convex for every r > 0,

Definition 3. 4 strongly convex metric space (M,d)
is stable If the set {W(x,y,t), t € [0,1]} s stable for every
patr (x,y) € M.

In [). it is proved that in a stable strongly convex
metric space the convex hull of any precompact subset of M is
precompact.

From Theorem 4.2 [14] we have the following result.

Proposition 2. Let (M,d) be a complete, gtable
strongly convex metric Space and F : M » M g compact mapping
mapping. Then F has a fixed point. S
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2. COMMON FIXED POINT THEOREMS

The following theorem is a generalization of Theorem
2 from [3] and of the well known result of Assad and Kirk [1]
for the single-valued mapping.

Definition 4.[12) Let (Myd) be a metric space, K a
nonempty 8subset of Mand £, S : K » M. The paitr (£,S) 78 weakly

eommutative 1f for every x € K the implication:

£X,5% € K = d(£5x,S£x) S dA(£x,5x)

*
holds.
There are examples of weakly commutative pairs (f,S)

which are not commutative {71].

Theorem 1. Let'(M,d) be a complete, convex metrte
space, K q nonempty, closed subset of My, £,5,T : K » M continu-
ou8 mappings 8o that 3K € SK N TK, £f(K) N K< SK N TK and:

Tx € 9K = fx € K, S5x € 3K = fx € K.

If (£,8). and (£,T) are weakly commutative and there exists a
nondecreasing function q : [0,=2) = [0,1) such that:

d(fx,fy) £ q(d(Sx,Ty))d(Sx,Ty)
then there ezisté z € K 80 that:

z = fz € {Tz,Sz}.

If 8§,T ¢t M o M then there exists one and only one z € K such
that z = fz = Tz = Sz.

Proof. As in [3] it can be proved that there exist
= f(pn), for every

-

two sequences {pn} and {p; } such that Prs1

n € N and:

*If S:M-M the implication is: Sx€K=d(fSx,Sfx)Sd(fx,Sx).
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(i) For every n € N:

p2n £ K= Tp2n € 9K
and
d(Sp2n-1’Tp2n) + d(szn,fp2n_1) = d(SPZn-l’fPZn-l)'
(ii) TFor every n € N:
P;n+1 € K= Ponsz SPon+1
Pins1 € K= SPyp,q € 3K
and

d(TPy, SPypnyq) + 8(SPy 45TPy ) = AlTpy 5 5Py ).

For the completeness we shall give the probf'of (i) and (ii).’
Let x € 3K. From 3K € T(K) it follows that there exists po €
€ K such that ¥ = Tpo € 9K. Since Tpo € 3K = fpo € K we
have that fpo €f(K) A K € S(K). Hence there exists ps € K so
that Sp1 = fpo = pi. Let pz = fp, . If fp, € K then fp,
€ £(K) 0 K € T(K) and so there exists psz € K such that Tp,
= fp4. If fpy € K then there exists q € 3K so that:

m

(1) d(Sp1,q) + d(q,fp1) = 4A(Sp1,fp1).

From 3K & T(K) it follows that there exists p; € K so that q =
= Tpa and hence (1) gives:

d(Sp1,Tpa) + A(Tpa,fp1) = d(8p1,fp1).

If we continue in this way we can prove (i) and (ii).
Let:

Po = {Pzi‘i € Nap’2i = szi}
Py, = {Pzili € N’pki # szi}s

Qo = {Pps4qli € HoPhy4q = SPps4q}-
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Qr = {Pyyuqli € MoPhypq # SPpsuqte
Let us prove that for every n € N:

(PysPynsq) € P1 % Qq and (P, _4,P,.) € Q1% Pa.
Suprose that p, € P+ which means that Py, * TP, . Then (i)

implies that Tp, € 3K and so fp, € K. Then pj ., = Spy .4 *
= fp,, and 80 P, ., € Qo. Similarly we can prove that

(Pgn-12Pap? € Q1 x Pa.
We shall prove that for every n 2 2,

a(aSp,, _4,Tp, ))d(SP, _1>TP, )
A(TPys5Ppp4q) S or
\@(a(TP,y,_59SPyn1 14Ty _55SPy o)

[q(d(szn_z,szn_i))d(Tp2n_2,SP2n_1)
d(SP2n-1’TP2n) < < or ,

~q(d(Tp2n_2,Sp2n_3))d(Tp2n_2,Sp2n_3).
Let:
1. (PypsPoynsq) € Po % Qo.
fhen:
d(TP2n’SP2n+1) = d(fp2n_1;fp2n) <
< q[d(SPZn-l’TPZn)]d(szn-l’szn_)'

Let:

2. (p2n,p2n+1) € Po x Qq.

We have that:
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d(Tp2n’SPZn+1) s d(TPZn?fP2n) = d(fPZn-l’fPZn)

< q[d(szn_lng2n)]d(Sp2n_1,Tp2n).

Let:
3. (p2n,p2n+1) € Py X Qo.

We have:‘

d(Tp, 5P, ,4) S (TP, >fp, o) + d(fp, _1,fp, )
since Pon+1 € Qo and hence Sp2n+1 = fpén. Further:

A(TPyy>SPyn4q?) S d(T§2n’fp2n—1) *

+ q[d(Sp2n_1,szh)]d(Sp2n_1,szn)
< d(szn-i’TP2n) + d(szn’fp2n-1) = d(szn-iffP2n-1)'

From Pon € Py it follows that Pon-1 € Qo and so Sp2n—1 = fp2n-2'
This implies that: ‘ :

d(TPyn>SPon+s?) < ¢(Pgp_93fPonq) =
< q [d(szn-2 ,Sp2n-1) ]d(TP2n_2,SP2n_1).

We can prove in‘'a similar way that the following im-
plications hold:

(Pypo13Pyn) € Qo X Po = A(Sp, _15Tp, ) S
< q[d(szn_2,Sp2n_1)]d(szn_2,SP2n_1)
(Pon-12Pon) € Q1 * Po = d(Spy,_4,Tpy) <

< qld(Tp, _,s8p, _3)1d(Tp, _,25p, _3)
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(Pyn-12P2n) € Qo x Pa = d(Sp,,_4,Tpy,) <
< q[d(szn_z,szn_l)]d(szn_z,szn_l).
Let 6§ = max{d(Tpa,Sps),d(Tpa2,Sp1)}. We shall prove that:
(2) d(szn,s§2n+1) < [q(6)1" s
(3) d(8Py,1sTPyn4p) S [a(8)178
for every n € N. For n = 1 we have that d(Tpa,Spa) < § and:
d(Spa,Tpy) S q[d(Tpa,Sp;)]d(Tpa,SPa) < q(6)8
or: '

d(Spa;Tpa) < qld(Tpa,Sp+)]d(Tpa,Sp4) < q(8)8.

Suppose that (2) and (3) are satisfied for n = k and prove
that:

() ACTPyy ,235Ppsy) S [2(8)158
(5) ATy 1 »SPypss) S [a(8)1FY s
We have that:
TPy 4925Pgic43) S AlACSPyy 45 TPyy,5)1d(SPYy L 15TPyy )
< ql(q(6))%s11q(8)1%6 s [qe8)1¢* s
or:
G(TPgy 4235Pg43? S al(TPy 58Py 4471d(TPy, s5Py 4 q)

< qlq8)% 1811qe8)1% s < [q(8)1%s,

which proves (4). Inequality (5) can be proved similarly. Hence
(2) and (3) are satisfied for every n € N. From (2) and (3) it
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is obvious that {Tp2n} and {Sp2n+1} are Cauchy sequences in K.
Since M is complete we obtain that there exists z € K so that

z = Lim Tp2 = ZLm Sp2n+1 There exists at least one subsequen-
¢ n-+w

ce ‘TDQ } or {SP2n 41} such that for every k € X, Pong € Po

cr P2ﬁk+1 € Qo. We shall suppose that P2nk Po (k € N). Then

fp2nk_1§ K and Tp,nk = fpy, _q for every k € ¥.
' The pair (f,S) is weakly commutative which implies
that Sz = fz, which can be easily proved [3].
Further for every k € N:

(6) d£p,, >8Py, ) < q[d(Tp2nk,S(Sp2nk_1)]

. d(Tp2nk,S(Sp2nk_1))
and

(7) d(fp2nk,fp2nk_1) < q[dngznk,Sp2nk_1)]'
) d(Tp2nk,Sp2nk_1) < d(TP2nk’Sp2nk-1)'

Since £4im TPan = &im fp, . = z from (7) we obtain that
ng-1 = Lim fp2nk' On the other side
‘d(Tp2nk’S(SP2n )) £ M (k € X) since £4im d(Tp2n ’S(Sp2nk-1)) =

k =00

= d(z,Sz). Hence (6) implies that:

(8) d(fp2n]< fSp2n ) < q(M)d(Tp2n ,S(Sp2nk 1))

and since ﬁ:: fSp2 ny-1 z ﬁf:'sfpznk_l we obtain from (6) that:
d(z,Sz) < q(M)d(z,S;).

Suppose that T : M -+ M and prer that Tz = fz. Then from:

d(fp2nk,fp2nk_1) = d(fp2nk,Tp2nk) <

< T '
qld( P2nk,5p2nk_1)]d(Tp2nk,Sp2nk_1) <
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< A(Tp SPy, 1)
2nk’ 2nk 1

it follows that £4m fp, = z and so:

koo

Tz = &4im T(f Y = Lim £(Tp Y = fz.
. K+ Pznk k+o 2nk
The following theorem is a theorem on continuous
dependence of the common fixed points on the parameter.

Theorem 2. Let (M,d) be a complete, convex metric
space, K a nonempty alosed subset of M, U a topological space,
f : Kx U= M such that for every u € U, f(-,u) Za continuous
on K and for every x € K f(x,*) te eontinuous on U, S and T
ocontinuous mappinge from M into M so that 3K = SK n TK,
f(K,U) n K € SK N TK and for every u € U:

Tx € 3K o f(x,u) € K, Sx € 3K = f(x,u) € X

where x € K.
If there exiasts q nondecreasing function q ;: (0,») -

= [0,1) such that for every (x,y,u) € K x K x U:
d(f(x,u),fly,u)) < q(d(sx,Ty))d(Sx,Ty),

the set f(K,U) N X is bounded and for every u € U.the pairs
(f(+,u),8) and (£C-3u),T) are weakly commutative then there
extets the unique continuous mapping z : u « z(u) (u € U),
from U into X suoch that:

z(u) = f(z(u),u) = Sz(u) = Tz(u), u € U.

Proof. It is obvious that for every u € U there
exists one and only one element z(u) € X such that z(u) =
- = f(z(u),u) = 8z(u) = Tz(u). We shall prove that the mapping
u » z(u) is continuous at every point‘uo €U. Let e > 0. We
have to prove that there exists a neighbourhood V(ug) < U of
Uo 80 that the following implication holds: '
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(9) u € V(ue) = d(z(u),z(uo)) < e..

Since z(u) € £(K;U) N K and the set £(K,U) n K is
bounded, there exists P > 0 such that:

d(z(u),z(ue)) £ P, for every u € U,
Then we have:
d(z(u),z(ue)) < d(z(w),f(z(uo),u)) +
+ d(f(z(uo),u),z(uo))

d(f(z(u),w),f(z(uo),u)) + d(f(z(uol,u),z(ue)) s

IA

qld(sz(u),Tz(ue))1d(Sz(u),Tz(uo)) +

+ d(f(z(uo),u),z(00)) =

qld(z(u),z(ue))¥-d(z(u),z(uo)) +*
+ d(f(z(up),u),z(uo)) <
< qQ(P)d(2(u),z(ue)) + d(£(2z(ug),u),£(z(ug),up)).

This implies that:
d(f(zuo) ,u),£(z(ug) ,up))

d(z(u),z(ue)) =
1 - 'q(P)

and since for every z € K, the mapping u » f(z,u) is continuous
it is obvious that thera exists V(ue) so that (9) holds.

Using Theorem 2 we shall prove a generalization of the
Krasnogelski fixed point theorem and the Melvin fixed point)the-

orem in convex metric spaces.

Theorem 3.,  Let (M,d) be a complete strongly convex
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~metric space whose SCS ias stable,K a nonempty, closed convex
subset of M,Q : K = M a eompaet mapping, G : X x QUK = M,

S,T : M » M go that all the conditions of Theorem 2 are satis-
' fied For U = QUKY and f(x,u) = G(x,u) (x € K,u € Q(K)). Then
there exists at least one element x € K such that x = G(x,Q(x))

= Sx = Tx,

Proof. From Theorem 2 it follows that there exists
one and only one continuous mapping R : QUKJ -» K so that:

Ru = G(Ru,u) = SRu = TRu.

Define the mapping ﬁ : K.» K in the following way:
ﬁx = RQx for every x € K, Then ﬁ is a compact mapping and from
Proposition 2 it follows that there exists x € K such that
Rx = x = RQx = G(RQx,Qx) = G(x,Qx) = Sx = Tx.
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NEKE TEOREME O NEPOKRETNOJ TACK! U KONVEKSNIM
METRITKIM PROSTORIMA

U ovom radu se dokazuje jedno uop3tenje teoreme 2

iz [3]) o postojanju zajedniZke nepokretne ta¥ke za tri preslika-
vanja. Dobijena je teorema o neprekidnoj zavisnosti zajedni&klh
nepokretnih tafaka od parametra. Kao primena dato je jedno uop~-
3tenje teoreme Krasnosel jskog.
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