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ABSTRACT

ln this paper we shall introduce the notion of a
random paranormed space. The admissibility of a class of sub-
sets in random paranormed spaces is proved and fixed point '
theorems are obtained.

1. INTRODUCTION

K. Menger introduced in [26] the notion of a proba-
bilistic metric space. Some fixed point theorems in probabilis-
tic metric spaces are proved in [4 1, [ 5}, (103, [22], (28},
(291, [301, [32].

The notion of a random normed space was introduced
by &erstnev in [31] and some fixed point theorems in such spa-
ces are proved in [ 2}, [8], [11]. .

Every random normed space is a probabilistic metric
space and under some additional conditions it is also a topo-

logical vector space. There are some very important non-locally
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convex tbpological vector spaces like-the space S(D,lf (all
the equivalence classes of real Lebesgues measurable flunctions
defined on the interval (0,1)) in_which the topology can be
introduced by a paranorm. Hence, it will be of interest to
introduce the notion of a random paranormed space and to ob-
tain some fixed point theorems in such spazes. Some fixed
roint theorems in paranormed spaces are obtained in [14], [i3],
- [17}, [33]. '

2. PRELIMINARIES

First, we shall give some definitions. Let R = (-=,®)
D be the set of distribution functions (F € D if F : R =
-+ [0,1] is left continuous, 4n§F = 0, 4supF =1, F is monoto-
ne nondecreasing) and
1, t>¢C

s = {
0, tsCcC.

Definition 1, [26]) A Menger space is a triple

(E,F,t) where E 8 a nonempty set, t t8 ¢ T-norm and F : E x
x E + D go that the following conditions are satisfied:

1 Fx y(u) = H(u), for every u > 0 if and only i7
3
X =Y.
2, F (0) = 0, for every (x,y) € E x E.
X,y .
3. Fx,y = Fy,x’ for every (x,y) € E x E.

4. Fx,y(u7 + uz) 2 t(Fx’i(u1),Fz,y(u=))_for every

X,¥,2 € E and every us,u, = 0.
The (e,A)-topology is introduced by the family of

neighbourhoods V = {Vu(e,k)[(u;e,k) €E x 87 x (0,1)}, where
Vi (e,n) = {VIFu’V(e) > 1-1} . '
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This topology is metrizable if g% t(a,a) = 1. A well known
example of a Menger space (E,F,tp) (tpm(a,b) = max{a+b-1,0}) is
the following. Let (M,d) be a separable metric space and
(2,A,P) a probability measure space. By E we shall denote the
space of all the equivalence classes of measurable mappings
from § into M. For every X,Y € E and-e > 0 let:

¢(e) = Plujw € 2,d(X(w),¥(w)) < e},

It is known that the trlple (E,F t ) is a Menger space. The
convergences in the (eg,1) topology and in the probability are
identical. A further example of a Menger space is the follo-
wing [32). Let D¥ = {F|F € D,F(0) = 0}.

Let E be a real or complex vector space, t is a T~
-norm stronger then t (t 2z tm) and the mapping F : E » o7
satisfies the following conditions:

1. F_=Hep=8 (8 is the neutral element of E).

2. For every p € E, every u > 0 and every § € x\{o}
(K is the scalar field):

F = F_(u/|d]).
sptu) pCu/ 181

3. TFor every p,q € E and every u,v > 0:
F (u+ t(F F .
p-q u+v) 2 t( p(u), q(v))

Then (E,F,t ) is a random normed space (Fx .y = F 'y)’

If t is continuous then E is, in the (e,A) topology,
a topological vector space.

Every normed space (E,ll [[) is a random normed space,

where
L 1, Ixlh < e
F(e) = {
0, Wxlh 2 €.

Let E be a vector space and'p : E + [0,%) so that
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the following conditions are satisfied:

(1) p(x) 0 « x =0,
(ii) p(x)
(iii) p(x+y) S p(x) + ply), for every x,y € E,

(iv) If An + A (An,k are from the scalar field)

and p(xn-x) + 0, (xn,x € E) then p(Anxn - Ax)=+0.

p(-x), for every x € E.

Then the pair (E,p) is a paranormed space which is also a to-
pological vector space with the fundamental system of neigh-
bourhoods of zeroc given by: V = {Ve}s>0; where:

v, = {x|x € E, p(x) < g}.

The space S5(0,1) is a paranormed space with the function p gi-
ven by: '

1 | xCt) |

P(R) = [ = dt ({x(t)} € R).
g 1+ [x(t)}

Now we shall introduce the following definition.

Definition 2. A random paranormed space ie a triple
(E,F,t) where E ie¢ a real or complex vector space, F : E ~ o*
and t i8 a T-norrm such that t 2 th and the following conditii-

ong are satisfied:

1, F_=Hwep=0.

2. F-x = Fx’ for every x € E.

3. Fx+y(U.1 + uz) 2 't(Fx('U.1),Fy(u;)) for every
X,y € E and every us,ua 2 0

4, If An + A and Fx _x(e) + i(n + m), for every

€ >0 then FA
E > 0.

X

-Ax(E) + 1 (n + =), for every
n"n :

Every paranormed space (E,p) is also a random para-

normed space where:



Fixed point theorems in random paranormed ... 19

1, p(x) < €
F (e) = {,
X 0, p(x)2e¢.

The topology is introduced by the (e,A)-topology as
in the Menger spaces. It is obvious that a random paranormed
space (E,F,t) is'also a Menger space which is a topological
vector space if t is continuous. Let (X,p) be a separable pa-
ranormed space and (Q,A,P) a probability measure space. By S,
we shall denote all the equivalence classes of measurable map-
pings x : 2 + X, Let F : S » ?* be defined by:

Fx(e) = Plu|w € 9,p(x(w)) < €}. » .
Then (S,F,tm) is a random paranormed space.

Remark. Let An > A and x_ -+ X in the (e,A)-topology.
Then X, o+ X in the probability. Hence there exists a subsequen-
ce {xnk} which converges to x almost everywhere. Then
, p(Ankxnk(m) - Ax(w)) + 0, k » » for w € Qo, P(Ro) = 1 which
inmplies that Ankxnk + Ax in the probability, i.e. %n the (e, )\)-
~-topology. Hence every subsequence of the sequence {Anxn} has a
convergent subsequence with the same limit Ax. This implies
that Anxn + Ax in the (e,))-topology.

Let (E,p) be a paranormed space and X € E. In [33]
"K. Zima introduced a very useful inequality for elements of K
which enable us to prove many fixed point results in general

topological vector spaces [13), [17], [18].

Definition 3. Let (E,p) be a paranormed space and
K a nonempty subset of E. The set K satiefies the Zima condi-
tion if there existe C(X) > 0 such that for every 0 s XA < 1:

P(A(x~y)) < C(K)Xx p(x~y), for every x,y € K.

In (5] we gave the following example. Let E = S(0,1)
and for every ; € E:
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o xet) ]
(1 p(%) = [ ———at , {x(t)} € & .
o 1+ |xC(t)]

If s > 0 let:

K {X|X € 8(0,1), |x(t)] s s, t € I}.

s

In [16) it is proved that C(K) =1 + 2s since:
PACR=§)) S (1 + 28)Ap(X-§)

for every R,9 € K, and 0 < A<,
Now, we shall introduce the probabilistic Zima con=-

dition.

Definition &, Let (E,F,t) be a random paranormed
epace and K a nonempty eubset of E. The set K satisfies the
probabilietic Zima condition if there exists C(K) > 0 so that:

Fr(xey)(AE) 2 Fy_ (£/CCKD)

for every £ > 0 and every x,y € K.

It is obvious that every subset K of a paranormed
space E, which satisfies the Zima condition in the sense of
Definition 3 satisfies the probabilistic Zima condition as
well., Namely, if Fx_y(e/C(K)) =1 (x,y € K, € > 0) then p(x-y)
< €/C(K). This implies that for A € [0,1]:

p(A(x=y)) < C(K)Ap(x-y) < Ae

which means that Fk(x-y)(ke) =1

Let (R,A,P) be a probability measure space and X be
the space of all the equivalence classes of measurable mappings
x : =+ 8(0,1)., Further, let s > 0 and

ks = {£]% € X, %(w) € K , for every u € Q.
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Then Rs satisfies the probabilistic Zima condition with F
defined by:

Fﬁ(e) = P{w|p(R(w)) < e} (e > 0, & € X),

and p is defined by (1).
Then for every w € Q:

P(A(R(w) - $(0))) S (1+28)Ap(R(w) = P(w))

If w € 9 is such that p(R(w) - 9(m)) < €/(142s)
then p(A(x(m) -~ $(w))) < Ae and so:

P{i|p(R(w) - §(w)) < e/(1+258))} <
S Plu|p(A(R(w) - 9(w))) < eXx}
which means that:

Fx(g_y)(sk) 2 Fﬁ_y(e/(1+23)).

It is known [16] that a subset K of a paranormed spa-
ce which satisfies the Zima condition is an admissible subset
in the sense of V. Klee [25] (Definition 5 given below). The
notion of an admissible subset is very important in the fixed
point theory in topological vector spazes [22].

Definition 5. Let E be‘a Eauedorff topological
vector space and M a nonempty subset of E. The set M <8 udmis-
gtble 1f and only iIf for zvery compact ecubset X of M and every
neighbourhood of zero V in E there exists a continuous mapping
h : K + M suchk that:

(a) dim £in(h(K)) < » (Lin(h(K)) is the linear
hull of h(K))

(b) x-hx € V, for every x € K.
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Zvery nonempty, convex subset of a locally convex
space is an admissible set [27]. In DPu] it is proved that eve-
ry compact mapping f defined on an admissible subset M of a
Hausdorff topological vectcr space so that f(M) € M has a fix-

ed point.
2. A FIXED POINT THEOREM IN RANDOM PARANORMED SPACES

In this section we shall use the following notation

where t is a T-norm:

t () = t(tC.. . t(t(x,%),..0,%), n € N, x € [0,1].
n-times
First, we shall prove the following Lemma.

Lemma, LrLet (E,F,t) be a random paranormed space
with continuous T-norm t and K a nonempty convex subset of E
which satisjies the probabilistic Zima condition. I the fa-
mily {tn(X)} n €N 18 equicontinuous at the point x = 1 then
K 23 admissible.

Proof. Let A be a compact subset of K, € > 0 and
A € (C,2). We have to prove that there exists a continuous
mapping he 2l A + K such that for every x € A:

2

(2) F (x)(e) > 1 = A, dim I.Ln(hE l(A)) < e,

x+-h

£ ?

Let 6(1) € (0,1) be such that:
u> 1 -8 =t (uW>1-2,

for every n € N.
Since the set A is compact there exists a finite
set {u,,u,,...,um} & A such that:
pal ' '
As UV (argysa).
r=1 r
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Further, let n_ : A+ 8% (r € {1,2,...,m)) be such a family of

functions that:

np(x) # 0 = Fy, (£/CCK0) > 1 - §C1)

and
m

I n.(x) =1, x €A,

r=1 ,
Since E is metrizable such a family exists. Then he,k : A+ K
is defined in the following way:

m
he 2% = Lm0y, x € A
i=1
Since K is convex and h (A) eo{uq, uz,...,um, c Lin {u,,

Ua,eo.nUy } it fcllows tha; dLm(LLH(1 A(A)) < ». Suppose that

X € A and that nlr(x) * 0 for r € {1 2,...,5} and ni(x) =0
for i € {1,2,...,m}\ {i1,i3,...,is}. Then we have that:
s
(X)(E) = F '( X nir(x)E)

s s
€5 £ Ns (K)ex = § one OOu; -
r=1 ‘r r=i ‘r p T 1

t(t ... F .
2t TR g o (1, 0080
s-times

Pn. (x)x - n, (x)u."“iz(X)E) ""’Fni (x)x - n; (x)ui

1z 12 12 g s 5

(nis(x)e)) ] tsl(:vfsns{}‘x_u: (e/C(X2}) > 1 - A

hal

since

F .. (e/CK)) > 1 - 68, for p € {1,2,...,s}.
1

Hence (2) is satisfied.
V. Radu introduced in [28] the followzng deflnltlon.
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Definition 6, A T-norm t i8 h - T norm ©f the fa-

mily {tn(x)}nEN ig equ:conttnuous'at.the point x = 1,

It is proved in [26] that a T-norm t is h - T norm
if and only if for every a € (0,1) there exists b £ a such
that t(b,b) = b < 1. A nontrivial example of a 'k - T norm is
givern in [ 9] . It is obvious that t = mi{n is 2 h - T norm.
In his Ph.D. Thesis V.M. Sehgal introduceé the notion of
a contraction mapping on a probabilistic metric space.

If (S,F) 'is a probabilistic metric space and f : S =+
+ S then £ is a probabilistic g-contraction on S if [30]:

)(e) 2 Fx xz(E/q), for every € > O,

Fe(xe), f(xa

19

for all x4,x2 € S, where q € (0,1).

It is known [29] that in a Menger space (3S,F,t) a
necessary and sufficient condition that every probabilistic
q-contraction has the fixed point is that T-norm t is h-T norm.

Using the Lemma we shall prove the following fixed

point theorem.

Theorem 1. ILet (E,F,t) be a complete random paranor-
med space with continuous T-norm t, M a closed and convex sub-
set of E whieh éatisfies the probabilistie Zima condition,

Pt M+ E a probabilistie q-contraction, 5 + M + E a zompact
apping such that Px + Sy € M For every x,y € M. If T-norm t
t8 h-T-norm then there exiats x € M sé that Px + Sx = x.

Proof. Since for every y € %H, the mapping x = Px + y
(x € M) is a probabilistic g-contraction and T-norm t is h-T
norm it follows that there exists Ry € M so that Ry = PRy + y.
We shall prove that the mapping y ~ Ry((y € SM)) is continuous.
Denote by $(3TH),M) the set of all continuous mappings frem S(M,
into M and by $(S(M),E) the space of all continuous mappings

from S(M) into E. Let X € $(S(M),E) and ¢ > 0., Then by the de-
finition:
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F.(e) = 4up Lné Fopoy(e).
x’ &<c V€ %(y) .

Ther. the triple ($(S(M),E)F,t) is a complet= Menger space.

(Flx,y) = Fx—y)' Let H : $(STH),M) + 8(STF),M) be defined by:

(HR)(y) = PR(y) +y, y € SCH), % € $(STH),M).

Then for every e > 0 and x4,x2 € $(Z(M),M) :

Tk, -ixa (€0 7 340 Lafos Fou, ) (v)-(Hxad () 2

v

2 Aup 4in
6<e YE€S

2 sup 4n F. _~ (8/9) -
S by Traty)-Ray)

= F. - ).
FX1_x2(€/q

5 PR (y)-PXa(y) ()

Hence, there exists one and only one element
x € 8(S(M),M) such that HX = x and so:

(Hx)(y) = %x(y), for every y € 3(MJ.

This mzans that %(y) = Ry, ¥ € S(M) and since % is continuous
we obtain that R is continucus. Then the mapping RS : M + M
satisfies all the conditions of Hahn”s and Pdtter”s fixed
point theorem. This implies that there exists z € M such that
RSz = z which means that z = Pz + Sz,

For the next fixed point theorem in a random paranor-
med space (S,F,min) we shall need some notions introduced in
[32). First, let us remark that in a random paranormed space
(S,F,min) the (e, r)-topology can be introduced by the family
of functions {PA}AE(Ogl) with the following properties:

1. 'px(x) = 0, VA € (0,1) # x = 0.

2. pk(—x) = px(x), for every x € S.
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3. px(x+y_) < p)‘(x) + p)‘(y)., for every x,y € S,

L. If &+ 8(3,,6 € R)’and x + x(x,x € §) in
the (e,A)-topnlogy then for every A € (0,1) :
Py (8. x. = 6x) + 0.

As in the case of a random normed spaces we have that px(x) =
= éup{ulFx(u) $ 1-A}, x € S, X € (0,1). We shall prove only
property %. Suppose that Sn + § and X% X, in the (g,A)-topo-
logy. Then from the definition of a random. paranormed space it
follows that for every u > 0 &nd every A € (0,1) there exists
no(u,A) € X so that: .

F5nxn-6x(u) >1 - A, for every n 2 no(u,)

which means that p\(énxn - 3x) < u. Hence PA(') has property 4.
For every two probabilistic hounded subsets A and B let

h,n(u) = sup inf§ sup F___(s) (321 (u € R).

AB s<u x€A y€B XY
The probabilistiec inner measure of noncompactness of A, bA(°)
is defined >y [32]: ‘

bA(u) = sup{p|p > 0, there is a finite set A, € A

such that hAAf(u) > pl.

The function bA(°) is strict if u < v = bA(u) < bA(v).
(u,v € [0,2)),

Theorem 2. Let (S,F,min) be a complete random para-
normed epace,G a probabiligtic bounded, closed and convex sub-
et of S,T : G » R(G) (the family cf all nonempty, closed and
sonvex subeets of G) an upper semicontinuous mapring, bA be
strict for every A g G and there extste q € (0,1) such that

“for avery u > 0 and every A g G:

bT(A)(u) 2 bA(u/q).
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If G satiafies the probabilistic Zima conditions and qC(G) < 1
there exists x € G so that x € Tx.

Proof. Let for evéry X € (0,2), ¢ >0 and x € &:

Bx(x,e) = {yfy € S, px(x-y) < g},
For every A € S which is probabilistic bounded and e&ery A€
€ (0,1) the Hausdorff measure of noncompactness 2(A) is de-
ined by:

%,(A) = inf {e|e> 0, there exists a finite set

n -
{x1,xz,.-.,xn) & A so that Ag U Bl(xi’E)}'
o oi=t '

Ag in [19] it car be shown that:

a)  %,(A) = 0, Y X € (0,1) = A is comrpact.

b) %, (TOA) < C(G)%A(A) for every A € (0,1) anc

every A g G.

Since bA is strict it follows that iA(A) =’B}(A) {3z} (A e
where: ' :

B,(A) = sup{ulb,(u) = 1-2} (A € (0,1)).
Furthermore,
{uIBT<A)(u) = 1=} & {u|by(u/q) =5 1-2} =
= qlu|bylu) s 1-1}
and so: |

%,(T(A)) = B,(T(A)) = gup{ufby ,y(w) £ 1 - A} s

T(A

< unp{ule(u) €1 -2} = qﬁ\(A) = qﬁ)(A).
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From this it is easy to prove tha: there exicts a nonempty,
convex and compact subset K of G such that T(K) ¢ K. Using
tte probabilistic Zima condition for the set G we cbtain that
for every x,y € G,every § € [J,1],and every X € (0,1):

(3) px(ﬁ(x-y)) < 8C(GB) pk(x-y).

From (3) it follows that K is o-admissible ([16], [22];
Then [22) there exists x € K such that x € Tx.
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TEQREME O NEPOKRETNOJ TATKI U SLUTAJUNIM
PARANORMIRANIM PROSTORIMA

U -ovom radu uveden je pojam sluiajnog paranormiranog
Dokazana je dopustivost jedne klase sluajnih para-

normiranih prostora i dobijene su teoreme o nepokretnoj tacki.
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