ZBORNIK RADOVA Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 15,2 (1985) REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 15, 2 (1985)

REGULAR PERMUTATIONS OF PARASTROPHY INVARIANT n-QUASIGROUPS

Zoran Stojaković

Institute of Mathematics, University of Novi Sad, Dr Ilije Djuričića 4, 21000 Novi Sad, Yugoslavia

ABSTRACT

An n-quasigroup (Q,f) is called a G-n-quasigroup iff $f=f^\sigma$ for all $\sigma\in G$, where G is a subgroup of the symmetric group of degree n+1 and f^σ is defined by

$$f^{\sigma}(x_{\sigma 1}, \dots, x_{\sigma n}) = x_{\sigma(n+1)} \leftrightarrow f(x_1, \dots, x_n) = x_{n+1}.$$

In the paper regular permutations (Definitions 1, 2 and 3) of several classes of such n-quasigroups are considered and some of their properties described.

1. INTRODUCTION

In the theory of binary quasigroups there exists a well known close relation between nuclei and groups of regular permutations. In the case of n-ary quasigroups the situation is similar, although there exist several different generalizations of the notions of nuclei and regular permutations (see [1], [3], [4]). In this paper we shall consider some classes of

AMS Mathematics Subject Classification (1980): 20N15.

Key words and phrases: n-quasigroup, n-loop, isotopy, autotopy, regular permutation.

regular permutations which were defined and considered in [2], [4], [5], [6], [8]. In [2], [5] and [8] regular permutations of totally symmetric (TS) n-quasigroups were studied. But TS-n-quasigroups, as well as cyclic n-quasigroups ([9]) and alternating symmetric (AS) n-quasigroups ([10]), are only special cases of a class of parastrophy invariant n-quasigroups they are all G-n-quasigroups, where G is a transitive permutation group ([7]). In the paper we shall consider regular permutations of some classes of parastrophy invariant n-quasigroups, in particular G-n-quasigroups, where G is transitive. Since TS, cyclic and AS n-quasigroups are special cases of G-n-quasigroups, where G is transitive, some of the obtained results generalize the corresponding theorems from [5], [8], [9] and [10].

2. NOTATIONS AND DEFINITIONS

We shall give some basic definitions and notations. Other notions from the theory of n-quasigroups can be found in [2].

The sequence $x_m, x_{m+1}, \ldots, x_n$ we shall denote by $\{x_i\}_{i=m}^n$ or by x_m^n . If m > n, then x_m^n will be considered empty. The sequence x, x, \ldots, x (n times) will be denoted by x. If $n \le 0$, then x will be considered empty.

An n-ary groupoid (n-groupoid) (Q,f) is called an n-quasigroup iff the equation $f(a_1^{i-1},x,a_{i+1}^n)=b$ has a unique solution x for every $a_1^n,b\in Q$ and every $i\in N_n=\{1,\ldots,n\}$. An n-quasigroup (Q,f) is an n-loop iff there exists $e\in Q$ such that $f(\stackrel{i-1}{e},x,\stackrel{n-i}{e})=x$ for all $x\in Q$ and all $i\in N_n$, and e is called a unit of that n-loop.

An n-quasigroup (Q,f) is called idempotent iff f(x) = x for all $x \in Q$.

An n-quasigroup (Q,f) is isotopic to an n-quasigroup (Q,g) iff there exists a sequence $T=(\alpha_1^{n+1})$ of permutations of Q such that the following identity

$$g(x_1^n) = \alpha_{n+1}^{-1} f(\{\alpha_i x_i\}_{i=1}^n)$$

holds. T is called an isotopism, g is an isotope of f, and by $f^T = g$ we denote that f is isotopic to g by T. T^{-1} is defined by $T^{-1} = (\{\alpha_i^{-1}\}_{i=1}^{n+1})$. If T is an isotopism of (Q,f) to itself, that is $f^T = f$, then T is called an autotopism of f. The set of all autotopisms of an n-quasigroup (Q,f) under the compositions of autotopisms is a group which we denote by A(f). The automorphism group of (Q,f) we denote by Aut(f).

By S we denote the symmetric group of degree n. If (Q,f) is an n-quasigroup and $\sigma\in S_{n+1},$ then the n-quasigroup f^σ defined by

$$f^{\sigma}(\{x_{\sigma i}\}_{i=1}^{n}) = x_{\sigma(n+1)} + f(x_{1}^{n}) = x_{n+1}$$

is called a σ -parastrophe (or simply parastrophe) of f. If $\sigma, \tau \in S_{n+1}$, then $(f^{\sigma})^{\tau} = f^{\sigma \tau}$. If $T = (\alpha_1^{n+1})$ is an isotopism of f, then $(f^T)^{\sigma} = (f^{\sigma})^{T^{\sigma}}$, where $T^{\sigma} = (\{\alpha_{\sigma i}\}_{i=1}^{n+1})$.

If (Q,f) is an n-quasigroup and $\sigma \in S_{n+1}$ such that $f = f^{\sigma}$, then σ is called an autoparastrophism of f. The set of all autoparastrophisms of f is a subgroup of S_{n+1} . If (Q,f) is an n-quasigroup and G is a subgroup of S_{n+1} such that $f = f^{\sigma}$ for every $\sigma \in G$, then (Q,f) is called a G-n-quasigroup ([7]). We also say that (Q,f) is a G-permutable n-quasigroup. G-n-quasigroup are called parastrophy invariant n-quasigroups. Of course, if H is a subgroup of G, then every G-permutable n-quasigroup is also H-permutable.

Let (Q,f) be a G-n-quasigroup. If $G=S_{n+1}$, then (Q,f) is called totally symmetric, if G is alternating subgroup of S_{n+1} , then (Q,f) is called alternating symmetric and if G is generated by the cycle $(1\ 2\ ...\ n+1)$, then (Q,f) is called cyclic.

If Q is a nonempty set, by ϵ we denote the identity mapping of Q.

3. REGULAR PERMUTATIONS

As we have noted before regular permutations of binary quasigroups can be generalized to n-ary case in several

ways. Here we shall consider regular permutations of n-quasigroups as defined in [8], [2], [4], [5].

Definition 1. ([2], [8]) Let (Q,f) be an n-quasigroup, $i \in N_n$. A permutation α of Q is said to be i-inverse regular for f iff $(i\bar{\epsilon}^1,\alpha,^{n}\bar{\epsilon}^i,\alpha^{-1}) \in A(f)$. A permutation of Q which is i-inverse regular for f for all $i \in N_n$ is called inverse regular for f. The set of all inverse regular permutations for f will be denoted by V.

Definition 2. ([4], [5]) Let (Q,f) be an n-quasigroup, i $\in \mathbb{N}_n$. A permutation α of Q is i-outer regular for fiff $(\tilde{j}\tilde{\epsilon}^1,\alpha,\tilde{n}\tilde{\epsilon}^j,\alpha)\in A(f)$ for all $j\in \mathbb{N}_n\setminus \{i\}$. The set of all i-outer regular permutations for f will be denoted by Λ_i .

Definition 3. ([4], [5]) Let (Q, \bar{z}) be an n-quasigroup, i \in N_n. A permutation α of Q is i-inner regular for fiff there exist permutations β_j^* , j \in N_n \ {i}, such that $(^i\bar{\epsilon}^1,\alpha,~^j\bar{\epsilon}^{-1},\beta_j^*\bar{\epsilon}^{-1},^{n-j+1})\in A(f)$ for all j \in N_n \ {i}. The permutation β_j^* is said to be j-conjugate to α . The set of all i-inner regular permutations for f will be denoted by Φ_i , the set of all j-conjugate permutations to all i-inner regular permutations by Φ_i^* .

Each of the sets V, $\Lambda_{\hat{1}},~\Phi_{\hat{1}},~\Phi_{\hat{1}}^{*},$ under the composition of mappings is a group.

Proposition 1. Let (Q,f) be an n-quasigroup. Then every inverse regular permutation for f is i-inner regular permutation for f for all i \in N_n, i.e. $V \subseteq \Phi_j$.

Proof. If $\alpha \in V$, then for all $i \in N_n$, $T_i = (i \in 1, \alpha, n^{-i}, \alpha^{-1}) \in A(f)$ and $T^{-1} \in A(f)$. Thus, for a fixed $i \in N_n$ and every $j \in N_n \setminus \{i\}$ $T_i T_j^{-1} = (j \in 1, \alpha^{-1}, i = j = 1, \alpha, n^{-i}) \in A(f)$, hence $\alpha \in \Phi_i$.

Proposition 2. Let (Q,f) be an n-quasigroup. If α is an i-inner regular permutation for f, then every j-conjugate permutation to α is j-inner regular permutation for f, i. e.

$$\Phi_{ij}^* \subseteq \Phi_{j}$$
.

Proof. Let $\alpha \in \Phi_i$, and β_j^* be j-conjugate to α , $j \in \mathbb{N}_n \setminus \{i\}$. Then for all $j \in \mathbb{N}_n \setminus \{i\}$, $T_{ij} = (\overset{i-1}{\epsilon}, \alpha, \overset{j-i-1}{\epsilon}, \beta_j^{*-1}, \overset{n-j+1}{\epsilon}) \in A(f)$ and $T_{ij}^{-1} \in A(f)$. Hence for a fixed $j \in \mathbb{N}_n \setminus \{i\}$ and all $k \in \mathbb{N}_n \setminus \{i,j\}$.

$$\mathbf{T}_{\mathbf{i}\mathbf{j}}^{-1}\;\mathbf{T}_{\mathbf{i}\mathbf{k}}=(^{\mathbf{j}}\bar{\epsilon}^{1},\beta_{\mathbf{j}}^{*},^{\mathbf{k}-\mathbf{j}-1},\beta_{\mathbf{j}}^{*-1},^{\mathbf{n}-\mathbf{k}+1})\;\in\;\mathsf{A}(\mathbf{f}),$$

and since $T_{ij}^{-1} \in A(f)$, it follows that $\beta_j^* \in \Phi_j$.

Proposition 3. If $T=(\alpha_1^{n+1})$ is an autotopism of a G-n-quasigroup (Q,f) and $\sigma\in G$, then $T^{\sigma}=(\alpha_{\sigma 1}^{\sigma(n+1)})$ is also an autotopsm of f.

Proof. Since $f^T = f$ and $f^{\sigma} = f$, it follows that $f = (f^T)^{\sigma} = (f^{\sigma})^{T^{\sigma}} = f^{T^{\sigma}}$, i.e. T is an autotopism of f.

Proposition 4. If for some $i,j \in N_n$, i * j, $(\stackrel{i-1}{\epsilon},\alpha,\stackrel{j-i-1}{\epsilon},\beta,\stackrel{n-j+1}{\epsilon})$ is an autotopism of a G-n-quasigroup (Q,f), where G is transitive, then $\beta = \alpha^{-1}$.

Proof. Since $(i_{\epsilon}^{-1}, \alpha, j_{-\epsilon}^{-1}, \beta, n_{\epsilon}^{-1}) \in A(f)$, the following identity

(1)
$$f(x_1^{i-1}, \alpha x_i, x_{i+1}^n) = f(x_1^{j-1}, \beta^{-1} x_j, x_{j+1}^n)$$

holds. Putting in (1) $x_1 = ... = x_n = x$, by the transitivity of G we get

$$f(i_x^{-1}, \alpha_x, i_x^{-1}) = f(j_x^{-1}, \beta^{-1}_x, i_x^{-1}) = f(i_x^{-1}, \beta^{-1}_x, i_x^{-1}),$$

which implies $\alpha x = \beta^{-1}x$, i.e. $\beta = \alpha^{-1}$.

Corollary 1. Let (Q,f) be a G-n-quasigroup, where G is transitive.

- (i) If $\alpha \in \Lambda_i$, then $\alpha^2 = \varepsilon$, i.e. Λ_i is a boolean group.
- (ii) If $\alpha \in \Phi_{\underline{i}}$ and $\beta_{\underline{j}}^*$ is \underline{j} -conjugate to α , $\underline{j} \in N_{\underline{n}} \setminus \{\underline{i}\}$, then $\alpha = \beta_{\underline{j}}^*$.

Proposition 5. Let (Q,f) be an n-quasigroup. If at least one of the following conditions holds

- (i) Q is finite,
- (ii) (Q,f) is G-permutable, where G is transitive,

then for all i,j $\in N_n$

$$\Phi_{i} = \Phi_{ij}^{*} = \Phi_{j}$$

Proof. (i) Let Q be finite. Since the group Φ_{ij}^* is antiisomorphic to Φ_i , these groups are isomorphic. Hence by Proposition 2 $\Phi_i \simeq \Phi_{ij} \subseteq \Phi_j$. Since also $\Phi_j \simeq \Phi_{ji}^* \subseteq \Phi_i$, it follows that $\Phi_i = \Phi_j$, which implies $\Phi_i = \Phi_{ij}^* = \Phi_j$ for all $i, j \in \mathbb{N}_n$.

(ii) Let (Q,f) be G-permutable, where G is transitive. If $\alpha \in \Phi_i$, i.e. there exist β_m^* , $m \in \mathbb{N}_n \setminus \{i\}$, such that $(\stackrel{i}{\epsilon}^1, \stackrel{m-i}{\epsilon}^{-1}, \beta_m^{*-1}, \stackrel{n-m+1}{\epsilon}^{-1}) \in A(f)$, then for any $k \in \mathbb{N}_n$ by the transitivity of G we obtain that $(\stackrel{k}{\epsilon}^1, \alpha, \stackrel{j-k-1}{\epsilon}, \beta_m^{*-1}, \stackrel{n-j+1}{\epsilon}) \in A(f)$ for all $j \in \mathbb{N}_n \setminus \{k\}$. Hence $\Phi_i \subseteq \Phi_j$ for all $i, j \in \mathbb{N}_n$, which gives $\Phi_i = \Phi_j$, for all $i, j \in \mathbb{N}_n$.

If $\alpha \in \Phi_i$ and β_j^* is j-conjugate to α , $j \in N_n \setminus \{i\}$, then by Corollary 1 $\alpha = \beta_j^*$, $j \in N_n \setminus \{i\}$, that is, $\alpha \in \Phi_{ij}^*$ for all $j \in N_n \setminus \{i\}$. We have obtained that $\Phi_i \subseteq \Phi_{ij}^*$ for all $i,j \in N_n$. By Proposition 2 it follows $\Phi_i = \Phi_{ij}^* = \Phi_j$ for all $i,j \in N_n$.

Theorem 1. Let (Q,f) be a G-n-quasigroup, where G is transitive. Then

$$\Lambda_{i} = \Lambda_{j} \subseteq V = \Phi_{i} = \Phi_{ij}^{*}$$

for all i, j $\in N_n$.

Proof. If $\alpha \in \Lambda_i$, then by Proposition 4 $(j\bar{\epsilon}^1,\alpha,^{n}\bar{\epsilon}^j,\alpha^{-1}) \in A(f)$ for all $j \in N$ {i}. The transitivity of G implies that $(i\bar{\epsilon}^1,\alpha,^{k-i-1},\alpha^{-1},^{n}\bar{k}^{k+1}) \in A(f)$ for some $k \in N_n \setminus \{i\}$. But $(k\bar{\epsilon}^1,\alpha,^{n}\bar{\epsilon}^k,\alpha^{-1})(i\bar{\epsilon}^1,\alpha,^{k-i-1},\alpha^{-1},^{n-k+1}) = (i\bar{\epsilon}^1,\alpha,^{n}\bar{\epsilon}^i,\alpha^{-1}) \in A(f)$, hence $\alpha \in \Lambda_j$, for all $j \in N_n$. Consequently, $\Lambda_i = \Lambda_j$ for all $i,j \in N_n$, and $\Lambda_i \subseteq V$.

Propositions 1 and 5 imply that $V \subseteq \Phi_i = \Phi_{ij}^*$ for all $i,j \in N_n$. If $\alpha \in \Phi_i$, then $T_j = (\stackrel{i}{\epsilon}^1,\alpha,\stackrel{j-i-1}{\epsilon}^{-1},\stackrel{g_j^*-1}{\epsilon}^{-1},\stackrel{n-j+1}{\epsilon}^{+1}) \in A(f)$ for all $j \in N_n \setminus \{i\}$, but by Corollary 1 $p_j^* = \alpha$, for all $j \in N_n \setminus \{i\}$. Also, since G is transitive there is $\sigma \in G$, $\sigma(n+1) = i$, such that $(T_j^{\sigma})^{-1} = (\stackrel{j}{\epsilon}^1,\alpha,\stackrel{n}{\epsilon}^j,\alpha^{-1}) \in A(f)$, for all $j \in N_n$, i.e. $\alpha \in V$, which completes the proof.

Since in G-n-quasigroups, where G is transitive, $\Lambda_i = \Lambda_j$, $\Phi_i = \Phi_i^*$, for all i,j $\in N_n$, when dealing with such n-quasigroups we shall omit indexes and write Λ instead of Λ_i and Φ instead of Φ_i and Φ_i^* .

Theorem 2. Let (Q,f) be an idempotent G-n-quasigroup, where G is transitive. Then

- (i) If $\alpha \in \Phi$, then $\alpha^{n+1} = \varepsilon$.
- (ii) If n is even, Λ consists of the identity mapping only.
- (iii) Φ is a normal subgroup of the automorphism group $\operatorname{Aut}(f)$.

Proof. (i) If $\alpha \in \Phi$, then by Proposition 4 and Theorem 1 ($i \in \mathbb{I}^1, \alpha, j = 1, \alpha^{-1}, \alpha^{-1}, n = 1, \alpha^{-1}$) $\in A(f)$ for all $i, j \in N_n$.

Hence

$$\prod_{\substack{j=2\\j=2}}^{n+1} (\alpha, j\bar{\epsilon}^2, \alpha^{-1}, n-j+1) = (\alpha^n, \alpha^{-1}, \dots, \alpha^{-1}) \in A(f),$$

that is, $f(\alpha^n x_1, {\alpha^{-1} x_1}_{1=2}^n) = \alpha^{-1} f(x_1^n)$. Putting in the preceding equality $x_1 = \ldots = x_n = x$, it follows $f(\alpha^n x, \alpha^{-1} x, \ldots, \alpha^{-1} x) = \alpha^{-1} x$, i.e. $f(\alpha^{n+1} x, x^n x^n) = x$, which implies $\alpha^{n+1} = \varepsilon$.

(11) Since $\Lambda \subseteq \Phi$, from $\alpha \in \Lambda$ it follows that $\alpha^{n+1} = \varepsilon$, and by Corollary 1 $\alpha^2 = \varepsilon$. Hence if n is even $\alpha = \varepsilon$.

(iii) First we prove that $\Phi \subseteq \operatorname{Aut}(f)$. If $\alpha \in \Phi$, we have proved that $(\alpha^n, \alpha^{-1}, \dots, \alpha^{-1}) \in \operatorname{A}(f)$ and $\alpha^n = \alpha^{-1}$, hence $\alpha \in \operatorname{Aut}(f)$. Also, if $\Phi \in \operatorname{Aut}(f)$, i.e. $T = \binom{n+1}{\Phi} \in \operatorname{A}(f)$, and $\Phi \in \Phi$, then $T^{-1}(\stackrel{i}{\epsilon}^{-1}, \alpha, \stackrel{j}{-i}^{-1}, \alpha^{-1}, \stackrel{n-j+1}{\epsilon})$ $T = (\stackrel{i}{\epsilon}^{-1}, \Phi^{-1}\alpha \Phi, \stackrel{j}{-i}^{-1}, \Phi^{-1}\alpha \Phi, \stackrel{i}{\epsilon}^{-1}, \Phi, \stackrel{i$

Proposition 6. Let (Q,f) be a G-n-loop, where G is transitive. If $\alpha \in \Phi$, then $\alpha^2 = \epsilon$.

Proof. If $\alpha \in \Phi$, then $(\stackrel{i}{\epsilon}^{-1}, \alpha, \stackrel{j-i-1}{\epsilon}^{-1}, \alpha^{-1}, \stackrel{n-j+1}{\epsilon}) \in A(f)$ for all $i,j \in \mathbb{N}_p$. Hence for all $x_1^n \in \mathbb{Q}$

$$f(x_1^{i-1},\alpha x_i^{},x_{i+1}^n) = f(x_1^{j-1},\alpha x_j^{},x_{j+1}^n).$$

Putting in the preceding equality $x_k = e, k \neq i$, where e is a unit of f, we get

$$\alpha x_i = f(ie^1, x_i, je^{-i-1}, \alpha e, e^j).$$

Since G is transitive, there is $\sigma \in G$ such that $\sigma(n+1) = i$. Applying σ to the last equality, we obtain

$$x_i = f(P_e^{-1}, \alpha x_i, P_e^{-1}, \alpha e, P_e^{-1}),$$

where $\sigma p = n+1$, $\sigma q = j$. But $(p_{\varepsilon}^{-1}, \alpha, p_{\varepsilon}^{-q-1}, \alpha^{-1}, n_{\varepsilon}^{-q+1}) \in A(f)$, hence

$$x_{i} = f(\bar{p}e^{1}, \alpha^{2}x_{i}, \bar{p}e^{p}) = \alpha^{2}x_{i},$$

i.e. $\alpha^2 = \epsilon$.

Corollary 2. If n is even, the group Φ of all inner regular permutations of an idempotent G-n-loop, where G is transitive, consists of the identity mapping only.

Theorem 3. Let (Q,f) be a G-n-quasigroup, where G is transitive and let $\alpha\in\Lambda,\ \alpha+\epsilon.$ Then

- (i) a is an automorphism of (Q,f) iff n is odd.
- (ii) If n is even and (Q,g) is isotopic to (Q,f), $f^T = g, \text{ where } T = (\stackrel{n}{\epsilon},\alpha), \text{ then } g \text{ is isomorphic}$ to f.

Proof. Since $\alpha \in \Lambda$, by Proposition 4 and Theorem 1 $(i\epsilon^1,\alpha,j\epsilon^{-1},\alpha,n\epsilon^{-j+1}) \in A(f)$ for all $i,j \in N_n$.

(i) Hence

$$\begin{bmatrix} \frac{n-1}{2} \\ \Pi \\ i=1 \end{bmatrix} {\binom{2i}{\varepsilon}, \binom{2}{\alpha}, n-2i-1} = {\binom{n}{\alpha}, \varepsilon} \in A(f) \text{ if n is even,} \\ {\binom{n+1}{\alpha} \in A(f), \text{ if n is odd.}}$$

Since two autotopisms differing in only one component must be equal, it follows that if α is an automorphism of f and n is even, then $\alpha = \epsilon$, which is a contradiction.

(ii) If n is even, we have proved that $S = (\stackrel{n}{\alpha}, \varepsilon) \in A(f)$. Therefore $g = (f^S)^T = f^{ST}$, where $ST = (\stackrel{n+1}{\alpha})$.

REFERENCES

- [1] B.P. Alimoić: On nuclei of n-ary quasigroups, Publ. Inst. Math., 26 (40), 1979, 27 30.
- [2] В.Д. Белоусов: *п*-арные нвазигруппы, "Штиинца", Нишинев, 1972.

- [3] H.H. Buchsteiner: Zentren und Nuclei von n-Loops, Beiträge zur Algebra und Geometrie, 1, 1971, 85 -- 105.
- [4] С. Муратхуджаев: Группы регулярных подстановон и ядра и-арных нвазигрупп, Мат. исследования, Вып. 39 (Сети и нвазигруппы), 1976, 128 - 144.
- [5] С. Муратхуджаев: Группы регулярных подстановон в ТС--и-нвазигруппе, Изв. АН МССР, Сер. физ.-техн. и мат. наун, 2 (1976), 27 - 32.
- [6] С. Муратхуджаев: Тип и-арных нвазигрупп, Мат. исследования, Вып. 43 (Нвазигруппы и номбинаторина), 1976, 129 137.
- [7] Dj. Paunić, Z. Stojaković: Parastrophy invariant n-quasigroups, Univ. u Novom Sadu, Zb. rad. Prir.-mat. fak., ser. mat., 13 (1983), 251 257.
- [8] М.Д. Сандин, Е.И. Сонолов: Тотально-симметричные n--нвазигруппы, Мат. исследования, Т. III, в. 2, 1968, 170 - 182.
- [9] Z. Stojaković: Cyclic n-quasigroups, Univ. u Novom Sadu, Zb. rad. Prir.-mat. fak., ser. mat., 12 (1982), 407 - 415.
- [10] Z. Stojaković: Alternating symmetric n-quasigroups, Univ. u Novom Sadu, Zb. rad. Prir.-mat. fak., ser. mat., 13 (1983), 259 - 272.

REZIME

REGULARNE PERMUTACIJE PARASTROFNO INVARIJANTNIH n-KVAZIGRUPA

n-Kvazigrupa (Q,f) se naziva G-n-kvazigrupa ako i samo ako je f = f σ za svako σ \in G, gde je G podgrupa simetrične grupe stepena n+1 a f σ je definisano sa

$$f^{\sigma}(x_{\sigma 1}, \dots, x_{\sigma n}) = x_{\sigma(n+1)} \leftrightarrow f(x_1, \dots, x_n) = x_{n+1}.$$

U ovom radu su posmatrane regularne permutacije (definicije 1, 2 i 3) nekih klasa G-n-kvazigrupa i ispitane neke njihove osobine.

Received by the editors February 4, 1986.