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ABSTRACT

Two common fixed point theorems for two commuting
mappings of a complete metric space into itself are given.
These theorems generalize some earlier of Cirié¢ and the first
author.

The first author [3], generalizing a result of Ci-
rié [1]}, defines a mapping T of a metric space (X,d) into it-

self to be a quasi-contraction if

(1) d(TPx,Ty) < cemax{d(T x,T°y),d(T x,TF x),d(T°y,T° y):

”

0 <r,r " <sp; 0 <s,5” 5 q}

for all x,y in X, where 0 £ ¢ < 1 and p, g are some fixed po-

sitive integers.
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The following result holds, see [3].

Theorem 1, Let T be a continuous quasi-contracti-
on of a complete metric space (X,d) into itself. Then T has a

unique fized point in X.

An interesting generalization of this theorem was
proved by Park and Rhoades [7] using a generalized version of
a contractive condition of Hegedils and Szildgyi [s].

Theorem 1 was also extended in [5] for a pair of
continuous and commuting mappings S and T of a bounded, com-
plete metric space into itself.

Here we give a further generalization of Theorem 1
for a pair of commuting mappings without requiring necessarily
the simultaneocus continuity of both S and T and by replacing
the condition that X is bounded by the following condition

(2) sup{d(sT*mIx,sTrd x),a(Tr Istx, st x): r 2 0,

0<i,i“$p,0s j,57<q} =1L <o,

for some particular x in X, p and q being fixed positive in-
tegers. .

It is well known in the literature that the common
fixed point of two mappings S and T is deduced as a limit of
the sequence

(3) {X,TXsSTXs+ 05 (STI %, T(ST)x,...}.

Usually one first of all shows that the sequence (3) is boun-
ded. As pointed out in [4], inequality (2) is certainly satisfi-
ed if X is bounded,but generally (2) does not imply that (3) is
bounded if X is unbounded. To see this, consider X = [0,*) with
the euclidean metric and Sx = x + 1, Tx = x + 2 for all x in X.
Then inequality (2), is satisfied, since L = p + 2q - 3, but
the sequence (3) is unbounded.

Given a mapping T of (X,d) into itself, we now defi-~
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ne the function DT(x) by
DT(x) = d(x,Tx)

for all x in X. Motivated by a paper of Cirié [2], we say that
T has the property (a) in X if for any xp in X and for any seq-

uence {xn} converging to xy, we have

Lim Au.pDI.(xn) > DT(Xo)-
n-wo :
Of course, any continuous mapping T has the proper-
ty (a).

Theorem 2. Let S and T be commuting mappings of a
complete metric space (X,d) into itself, with S or T having
property (o), satisfying the tnequality

(1) da(sPx,™My) < cemax{d(s*x,st x),a(Ty,T? y),d(s*x,TIy):

0< i,i“< p; 02 3,37 < q}
for all x, vy in X, where 0 S ¢ < 1 and P, Q are fized positive
integers. Suppose further that (2) holds for some particular X
in X. Then S and T have a unique common fixed point Z. Further,
z 18 the unique fized point of S and T.

Proof. Using inequality (4) we have for r 2 p and
0gi<g

. P e A
asTrIx,T%%) < cemax a(sTr1Ix,sT7t x),d(T? %x,T° x),

r-i

ast Ix, I x) 0 i,i“<p;0=<3°,5°° < q}

1A

comax{L,L,d¢T " TIx, sTTIx)+d(8TTIx,TIx) +d(TI%,TI x):

OSiSp;OSj’SQ_}

IA

cl2L + asTrix, %))
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-

on using (2). Thus
atsTrix, 19%) s 2Le/(1 - o
for r 2 p and 0 < j < q. It follows that the set
(sTrdx : r20;0 <3 <q}
is bounded. We can prove similarly that the set
{rs*x : r20;0<1i<p)
is also bounded and it follows that
(s) sup{d(sTTx,s7md 5y, a7 %, ™51 %)t run 2 05
0 £1i,i“<p;0<i,j7<ql =K<=,
let us now suppose that the set
A= 8" P"x :n20; 0< rs n}

is unbounded. Then there exist integers r and n, with n-r 2 p,
such that

(8) A%, 9%) > max{Ke/(1-c),K}
and
7) as" %, %) > max{d(s™ 1, %) ,ds" Pk, TX)

0£i<moO0<m<n; 0s3j<nrk
Now choose an integer k such that

(8) as® T, %) > Kemax{dsitIx,sttd x)

6 £ 1,i%,3,37 < nl.
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Using inequality (4) we have

s oD n-r-i.r n-r-i’Tr

ATy, T4 < cemax{a(s™ T 1 x,s x),

Nn~p-ir

a(T¥x,T? x),d(s x, T2 x)

-

0 <i,i“<p; 0< 3,7 s ql
s crmax{a(s® T Ty sP T ), K, d(s T A%, T9%) +

+ d(r9%,™x) : 0si,i"<p; 0=<j <ql

< comax{a(s" T Ay, s 1Py,

A PTx, %) + K : 0 £ i,i” < p}

because of (5) and (7).

Now
s %, %) s cld(s™ T %, T¥%) + Kl

implies:

as™ %, %) € Ke/(1 - @),

contradicting inequality (6). We must therefore have
(9) A TTCx, T4%) < comax{d(sT T, s T %)
05 i,i” < pl,

where r > q, otherwise inequality (6) would again be contradic-
ted. We .can also omit all terms on the right-hand side of ine-
quality (9) where n-r-i < p and n-r-i” < p because of (5) and
inequality (6). Inequality (4) can therefore be applied to the
remaining terms on the right-hand side of inequality (9) to gi-
ve terms of the form
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atstmx,st 1 x)

where 0 < i,i” S n-r and 0 < 3,3’ € r. Inequality (4) can be
applied to these resulting terms either indefinitely or until
terms of the form '

(10) {d(Sizj,Si‘Tj’x) : 0 € 4i,i” < n-r; 0 £ j,3” < q}
or

(11 {d(Sizj,Si’Tj’x) : 0<i,i”<p; 0<13,j° s r}
or

(12) {d(Sizj,Si’Tj’x) : 0SisSsn-r;0<1i”<p ;

o
IA
[
A

r; 0<3”<aql
are obtained. Terms obtained after k applications of inequali-
ty (4) can be omitted because of inequality (8) and terms of
the form (10) or (11) can be omitted because of (5). We must
therefore have
d(s™ T %, %) < cemax{d(s'TtIx,s* T x)
0 £isnor;0<i”<p; 0<3j<r;d <3’ <aql
< comax{d(Slzj,qu) + d(qu,Sl ™ x) : 0 Si<n-r;
0 £i“<p;0<3jJ<r;0<3i”<al
< c[d(s™ T %, T%%) + K]
because of (5).and (7), again leading to a contradiction of ine-

quality (6).
The set A therefore must be bounded and so
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»

Aup{d(SnTrx,Sn ™ %) : n,n”,r,r” = 0,1,2,...} = M<e,

Without loss of generality, we will now suppose that
P 2 g and claim that

acsT™Pu,(sT™Pv) < Memax{ds v, ™ w),
(13) ds*tu,s* 1 v),dstv,st 0w
0<i,i*,i,5° < np}

forn = 0,1,2,... and all u, v in X. This is certainly true
when n = 0. Assume true for some n. Then

aCsT) MRy sy (ntpy o
= dC(sTY™P(sT)Pu, (sTI)*P(ST)IPV)

omax {a(stTI(sT)Pu,st 1! (sT)Pw),

< ¢
asttdsTrPu,si 3 (sTIPvy,acs it (sT)Py,s1 T T(sT)PY)
0<1i,i”,5,5° < np}
< Mhomax{aesitiy,si’td "y asitiu,siTti Ty,
acstriv,si’ti ) 10 £ 4,i%,3,57 < (ne1dpl,
on usipg inequality (4). Igequality (13) follows by unduction. .

Putting u = (ST)*x and v = T(ST)*x in inequality (13),
we have

AP %, 7(sTH)PHy) < ™ max{as tIx,s* T3 x)

0 <1i,i%,3,37 s (n+1)p}

IA
0
=
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fori=1,2,...,p and n = 0,1,2,... . We can prove similarly
A(T(STIPPH "1y [ (sT)"P*x) < ™M
for i = 1,2,...,p and n = 0,1,2,... . It follows that the seqg-

uence (3) is a Cauchy sequence in the complete metric space X
and so has a limit z in X.
Now suppose that T has the property (a). Then we ha-

ve

Lim sup DR((STY"x) = Zim supd((STI"x,T(ST)"x)

n+o T+

d(z,z) = 0

v

DT(z) = d(z,Tz)
and hence Tz = z.
Putting u = S*x and v = x in ineguality (13), it fol-
lows that
dCsT™Pstx, (sTH™x) < ™
for 1 = 0,1,...,p and so the sequence

(14) {(sTY™s*x : n= 1,2,...}

also converges to z for i = 0,1,...,p.

Further,

d((sT"PsPx,52) = d(sP(sT)™Px,5T%2) = d(sP(sT)"Px,T7%2)

1A

cemax {d((ST)™Pstx,(sT)"Ps? x),d(1s52,T7 S2),
asT™Pstx,T9s2) : 0 s i,i” < p; 0 5 5,5 < q)

= comax{d((sT)"Pstx,(sT)"Pst x),d(sz,52),

a((sTH™s'%,52) : 0 < i,i” = p},
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since T commutes with S. Letting n tend to infinity, it follows

that

d(z,8z) £ ecd(z,5z)
/
and so z iz also a fixed point of S. A similavr proof'can of
course be given if one assumes that S has the property (a) in-
stead of T. The uniqueness of z follows easily. This completes

the proof of the theorem.

Remark 1. The example given [4] shows that the com-

matativity of S and T is neceSsary in Theorem 2.

Remark 2. Note that Theorem 2 is false if neither S
nor T have the property f(a). Indeed, let X = [0,1) with the
euclidean metric, let SO = 1/2, Sx = x/4 if x # C and let TO = 1,
Tx = x/? if x # 0. Then £ and T commute and inequality (2) holds
since X is bounded. Further, an easy calculation shows that ine-
quality (4) is satisfied with ¢ = 1/4, p = 2 and 9 = 4. Neither
S nor T has the property (o) because for any seguence {xn},with

X, # 0 for any integer n, converging to 0

ST

. 0 c 3 -
£Lim Auptg(xn) Lim supi x = g <

N> N+

DS(O)

and

. _ ; 1 _
Lim AupDT(xn) = Lim sdupy X = 0 < 1 DT(O).

n-+w n-+w

In the particular case that either p= 1 or g = 1,

the condition that S or T has the property (o) is not necessary

in Theorem 2. Indeed the following result holds.

Theorem 3. Let S and T be commuting mappings of a
complete metric space (X,d) into itself satisfying the inequa-

lity
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asPx,Ty) s comax{d(s*x,s%x),d(y,Ty),d(s x,¥),

(15) .
astx,Ty) : 0 s i,y < pl

for all x, y 2n X, where 0 S ¢ < 1 and p t8 a fized positive
integer. Suppose further that for some particular x in X,

sup{a(sT™x,sTx),d(TF s x, TSI x)
(16)

r20; 0<i1i,j<p}<e

Then S and T have a unique common fizxed point Z. Further, z is

the unique fixed point of S and T.

Proof. it follows as in the proof of Theorem 2 that
the sequence (14) converges to a point z in X for i = 0,1,...,P.
Then using inequality (15)‘we have

d((STYPsPx,Tz) s ermax{a((sT)"Psix, (sT)"Pstx),a(z,T2),

at(sT™Ps?x,2),4((sT)"Pslx,T2):
0 <i,j < p}
and letting n tend to infinity it follows that
d(z,Tz) < cd(z,Tz).
Thus Tz = z and we then have Sz = z as in the proof of Theorem 2.
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PAR KOMUTIRAJUCIH PRESLIKAVANJA SA ZAJEDNITKOM
NEPOKRETNOM TATKOM

Dve teoreme o zajedniZkoj nepokretnoj tatki su doka-

zane za komutirajuca preslikavanja kompletnog metriékog prosto-

ra u sebe.
vog autora.

Ove teoreme uop3Stavaju ranije rezultate €iriéa i pr-
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