Z B O R N I K R A D O V A Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 16,2(1986)

REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 16,2(1986)

A PAIR OF COMMUTING MAPPINGS WITH A COMMON FIXED POINT

Brian Fisher* and Salvatore Sessa**

*Department of Mathematics, The University Leicester, LEI 7RH, England

"*Università di Napoli Facoltà di Architettura, Istituto Matematico, Via Monteoliveto 3, 80134, Napoli, Italy

ABSTRACT

Two common fixed point theorems for two commuting mappings of a complete metric space into itself are given. These theorems generalize some earlier of Cirić and the first author.

The first author [3], generalizing a result of Cirić [1], defines a mapping T of a metric space (X,d) into itself to be a quasi-contraction if

(1)
$$d(T^{p}x, T^{q}y) \leq c \cdot max\{d(T^{r}x, T^{s}y), d(T^{r}x, T^{r}x), d(T^{s}y, T^{s}y):$$

$$0 \le r,r' \le p$$
; $0 \le s,s' \le q$

for all x,y in X, where $0 \le c < 1$ and p, q are some fixed positive integers.

AMS Mathematics Subject Classification (1980): Primary 47H10, Secondary 54H25.

Key words and phrases: Common fixed point, complete metric space, quasi-contraction.

The following result holds, see [3].

Theorem 1. Let T be a continuous quasi-contraction of a complete metric space (X,d) into itself. Then T has a unique fixed point in X.

An interesting generalization of this theorem was proved by Park and Rhoades [7] using a generalized version of a contractive condition of Hegedüs and Szilágyi [6].

Theorem 1 was also extended in [5] for a pair of continuous and commuting mappings S and T of a bounded, complete metric space into itself.

Here we give a further generalization of Theorem 1 for a pair of commuting mappings without requiring necessarily the simultaneous continuity of both S and T and by replacing the condition that X is bounded by the following condition

for some particular x in X, p and q being fixed positive integers.

It is well known in the literature that the common fixed point of two mappings S and T is deduced as a limit of the sequence

$$\{x,Tx,STx,...,(ST)^nx,T(ST)^nx,...\}.$$

Usually one first of all shows that the sequence (3) is bounded. As pointed out in [4], inequality (2) is certainly satisfied if X is bounded, but generally (2) does not imply that (3) is bounded if X is unbounded. To see this, consider $X = [0, \infty)$ with the euclidean metric and Sx = x + 1, Tx = x + 2 for all x in X. Then inequality (2), is satisfied, since L = p + 2q - 3, but the sequence (3) is unbounded.

Given a mapping T of (X,d) into itself, we now defi-

ne the function $D_{T}(x)$ by

$$D_{\mathbf{T}}(\mathbf{x}) = d(\mathbf{x}, \mathbf{T}\mathbf{x})$$

for all x in X. Motivated by a paper of Cirić [2], we say that T has the property (α) in X if for any x_0 in X and for any sequence $\{x_n\}$ converging to x_0 , we have

$$\lim_{n\to\infty}\sup D_{T}(x_{n}) \geq D_{T}(x_{0}).$$

Of course, any continuous mapping T has the property (α).

Theorem 2. Let S and T be commuting mappings of a complete metric space (X,d) into itself, with S or T having property (a), satisfying the inequality

(4)
$$d(S^{p}x,T^{q}y) \leq c \cdot max\{d(S^{i}x,S^{i}x),d(T^{j}y,T^{j}y),d(S^{i}x,T^{j}y):$$

 $0 \leq i,i' \leq p; 0 \leq j,j' \leq q\}$

for all x, y in X, where $0 \le c < 1$ and P, Q are fixed positive integers. Suppose further that (2) holds for some particular x in X. Then S and T have a unique common fixed point Z. Further, z is the unique fixed point of S and T.

Proof. Using inequality (4) we have for $\mathtt{r} \geq \mathtt{p}$ and $0 \leq \mathtt{j} < \mathtt{q}$

$$d(S^{r}T^{j}x,T^{q}x) \leq c \cdot max \ d(S^{r-i}T^{j}x,S^{r-i}T^{j}x),d(T^{j}x,T^{j}x),$$

$$d(S^{r-i}T^{j}x,T^{j}x) : 0 \le i,i' \le p; 0 \le j',j'' \le q$$

$$\leq c \cdot max\{L,L,d(S^{r-i}T^jx,S^rT^jx)+d(S^rT^jx,T^qx)+d(T^qx,T^jx):$$

$$0 \le i \le p; 0 \le j' \le q$$

$$\leq c[2L + d(S^rT^jx,T^qx)]$$

on using (2). Thus

$$d(S^{r}T^{j}x,T^{q}x) \leq 2Lc/(1-c)$$

for $r \ge p$ and $0 \le j < q$. It follows that the set

$$\{S^{r}T^{j}x : r \ge 0; 0 \le j < q\}$$

is bounded. We can prove similarly that the set

$$\{T^r S^i x : r \ge 0; 0 \le i < p\}$$

is also bounded and it follows that

(5)
$$\delta up\{d(S^TT^jx,S^nT^jx),d(T^TS^ix,T^nS^ix):r,n\geq 0;$$

$$0 \le i,i' < p; 0 \le j,j' < q$$
 = $K < \infty$.

Let us now suppose that the set

$$A = \{S^{n-r}T^rx : n \ge 0; 0 \le r \le n\}$$

is unbounded. Then there exist integers r and n, with $n-r \ge p$, such that

(6)
$$d(S^{n-r}T^rx, T^qx) > \max\{Ke/(1-e), K\}$$

and

(7)
$$d(S^{n-r}T^rx,T^qx) > \max\{d(S^{m-i}T^ix,T^qx),d(S^{n-j}T^jx,T^qx):$$

$$0 \le i \le m$$
; $0 \le m < n$; $0 \le j < r$.

Now choose an integer k such that

(8)
$$d(S^{n-r}T^{r}x,T^{q}x) > e^{k \cdot max\{d(S^{i}T^{j}x,S^{i}T^{j}x): \}}$$

$$0 \le i,i',j,j' < n\}.$$

Using inequality (4) we have

$$\begin{split} d(S^{n-r}T^{r}x,T^{q}) &\leq c \cdot max \{ d(S^{n-r-i}T^{r}x,S^{n-r-i}T^{r}x), \\ d(T^{j}x,T^{j}x), d(S^{n-r-i}T^{r}x,T^{j}x) : \\ 0 &\leq i,i' \leq p; \quad 0 \leq j,j' \leq q \} \\ &\leq c \cdot max \{ d(S^{n-r-i}T^{r}x,S^{n-r-i}T^{r}x),K,d(S^{n-r-i}T^{r}x,T^{q}x) + \\ &+ d(T^{q}x,T^{j}x) : 0 \leq i,i' \leq p; \quad 0 \leq j \leq q \} \\ &\leq c \cdot max \{ d(S^{n-r-i}T^{r}x,S^{n-r-i}T^{r}x), \\ &d(S^{n-r}T^{r}x,T^{q}x) + K : 0 \leq i,i' \leq p \} \end{split}$$

because of (5) and (7).

Now

$$d(S^{n-r}T^rx,T^qx) \leq c[d(S^{n-r}T^rx,T^qx) + K]$$

implies

$$d(S^{n-r}T^rx,T^qx) \leq Kc/(1-c),$$

contradicting inequality (6). We must therefore have

(9)
$$d(S^{n-r}T^{r}x,T^{q}x) \leq c \cdot max \{d(S^{n-r-i}T^{r}x,S^{n-r-i}T^{r}x):$$

$$0 \leq i,i' \leq p\},$$

where $r \ge q$, otherwise inequality (6) would again be contradicted. We can also omit all terms on the right-hand side of inequality (9) where n-r-i < p and n-r-i' < p because of (5) and inequality (6). Inequality (4) can therefore be applied to the remaining terms on the right-hand side of inequality (9) to give terms of the form

$$d(S^{i}T^{j}x,S^{i}T^{j}x)$$

where $0 \le i,i' \le n-r$ and $0 \le j,j' \le r$. Inequality (4) can be applied to these resulting terms either indefinitely or until terms of the form

(10)
$$\{d(S^{i}T^{j}x,S^{i'}T^{j'}x): 0 \le i,i' \le n-r; 0 \le j,j' < q\}$$

or

(11)
$$\{d(S^{i}T^{j}x,S^{i'}T^{j'}x): 0 \le i,i' < p; 0 \le j,j' \le r \}$$

or

(12)
$$\{d(S^{i}T^{j}x,S^{i}T^{j}x): 0 \le i \le n-r; 0 \le i' < p; 0 \le j \le r; 0 \le j' < q\}$$

are obtained. Terms obtained after k applications of inequality (4) can be omitted because of inequality (8) and terms of the form (10) or (11) can be omitted because of (5). We must therefore have

$$d(S^{n-r}T^{r}x, T^{q}x) \leq c \cdot max \{d(S^{i}T^{j}x, S^{i}T^{j}x) :$$

$$0 \leq i \leq n-r; \ 0 \leq i' < p; \ 0 \leq j \leq r; \ 0 \leq j' < q\}$$

$$\leq c \cdot max \{d(S^{i}T^{j}x, T^{q}x) + d(T^{q}x, S^{i}T^{j}x) : 0 \leq i \leq n-r;$$

$$0 \leq i' < p; \ 0 \leq j \leq r; \ 0 \leq j' < q\}$$

$$\leq c[d(S^{n-r}T^{r}x, T^{q}x) + K]$$

because of (5) and (7), again leading to a contradiction of inequality (6).

The set A therefore must be bounded and so

$$\sup\{d(S^{n}T^{r}x,S^{n}T^{r}x):n,n',r,r'=0,1,2,...\}=M<\infty.$$

Without loss of generality, we will now suppose that $p \ge q$ and claim that

$$d((ST)^{np}u,(ST)^{np}v) \leq c^{n} \cdot max \{d(S^{i}T^{j}u,S^{i}T^{j}u),$$

$$d(S^{i}T^{j}u,S^{i}T^{j}v),d(S^{i}T^{j}v,S^{i}T^{j}v):$$

$$0 \leq i,i',j,j' \leq np \}$$

for n = 0,1,2,... and all u, v in X. This is certainly true when n = 0. Assume true for some n. Then

$$d((ST)^{(n+1)p}u,(ST)^{(n+1)p}v) =$$

$$= d((ST)^{np}(ST)^{p}u,(ST)^{np}(ST)^{p}v)$$

$$\leq e^{n \cdot \max \{d(S^{i}T^{j}(ST)^{p}u,S^{i}T^{j}(ST)^{p}u),d(S^{i}T^{j}(ST)^{p}v,S^{i}T^{j}(ST)^{p}v)\}$$

$$d(S^{i}T^{j}(ST)^{p}u,S^{i}T^{j}(ST)^{p}v),d(S^{i}T^{j}(ST)^{p}v,S^{i}T^{j}(ST)^{p}v)$$

$$0 \leq i,i',j,j' \leq np\}$$

$$\leq e^{n+1 \cdot \max \{d(S^{i}T^{j}u,S^{i}T^{j}u),d(S^{i}T^{j}u,S^{i}T^{j}v).}$$

 $d(S^{i}T^{j}v,S^{i}T^{j}v):0\leq i,i',j,j'\leq (n+1)p\},$ on using inequality (4). Inequality (13) follows by unduction. Putting $u=(ST)^{i}x$ and $v=T(ST)^{i}x$ in inequality (13).

we have

$$d((ST)^{np+i}x,T(ST)^{np+i}x) \le c^n \max\{d(S^iT^jx,S^i^T^jx):$$

$$0 \le i,i',j,j' \le (n+1)p\}$$

for i = 1, 2, ..., p and n = 0, 1, 2, ... We can prove similarly

$$d(T(ST)^{np+i-1}x,(ST)^{np+i}x) \le c^nM$$

for i = 1, 2, ..., p and n = 0, 1, 2, ... It follows that the sequence (3) is a Cauchy sequence in the complete metric space X and so has a limit z in X.

Now suppose that T has the property (α). Then we have

$$\lim_{n\to\infty} \sup_{T} ((ST)^n x) = \lim_{n\to\infty} \sup_{t\to\infty} d((ST)^n x, T(ST)^n x)$$

$$= d(z,z) = 0$$

$$\geq D_T(z) = d(z,Tz)$$

and hence Tz = z.

Putting $u = S^{i}x$ and v = x in inequality (13), it follows that

$$d((ST)^{np}S^{i}x,(ST)^{np}x) \leq c^{n}M$$

 $d((ST)^{np}S^{i}x.Sz): 0 \leq i,i' \leq p),$

for i = 0,1,...,p and so the sequence

(14)
$$\{(ST)^{np}S^{i}x : n = 1,2,...\}$$

also converges to z for i = 0,1,...,p.
Further,

$$\begin{split} d((ST)^{np}S^{p}x,Sz) &= d(S^{p}(ST)^{np}x,ST^{q}z) = d(S^{p}(ST)^{np}x,T^{q}Sz) \\ &\leq c \cdot max\{d((ST)^{np}S^{i}x,(ST)^{np}S^{i}x),d(T^{j}Sz,T^{j}Sz), \\ d((ST)^{np}S^{i}x,T^{j}Sz) &: 0 \leq i,i' \leq p; 0 \leq j,j' \leq q\} \\ &= c \cdot max\{d((ST)^{np}S^{i}x,(ST)^{np}S^{i}x),d(Sz,Sz), \end{split}$$

since T commutes with S. Letting n tend to infinity, it follows that

$$d(z,Sz) \leq cd(z,Sz)$$

and so z is also a fixed point of S. A similar proof can of course be given if one assumes that S has the property (α) instead of T. The uniqueness of z follows easily. This completes the proof of the theorem.

Remark 1. The example given [4] shows that the commutativity of S and T is necessary in Theorem 2.

Remark 2. Note that Theorem 2 is false if neither S nor T have the property (α). Indeed, let X = [0,1] with the euclidean metric, let S0 = 1/2, Sx = x/4 if x * 0 and let T0 = 1, Tx = x/2 if x * 0. Then S and T commute and inequality (2) holds since X is bounded. Further, an easy calculation shows that inequality (4) is satisfied with c = 1/4, p = 2 and q = 4. Neither S nor T has the property (α) because for any sequence $\{x_n\}$, with x_n * 0 for any integer n, converging to 0

$$\lim_{n\to\infty} \sup D_S(x_n) = \lim_{n\to\infty} \sup \frac{3}{4} x_n = 0 < \frac{1}{2} = D_S(0)$$

and

$$\lim_{n\to\infty}\sup D_T(x_n) = \lim_{n\to\infty}\sup \frac{1}{2}x_n = 0 < 1 = D_T(0).$$

In the particular case that either p=1 or q=1, the condition that S or T has the property (α) is not necessary in Theorem 2. Indeed the following result holds.

Theorem 3. Let S and T be commuting mappings of a complete metric space (X,d) into itself satisfying the inequality

$$d(S^{p}x,Ty) \leq c \cdot max\{d(S^{i}x,S^{j}x),d(y,Ty),d(S^{i}x,y),$$
(15)
$$d(S^{i}x,Ty) : 0 \leq i,i \leq p\}$$

for all x, y in X, where $0 \le c < 1$ and p is a fixed positive integer. Suppose further that for some particular x in X,

$$\Delta up\{d(S^{r+i}x,S^rx),d(T^rS^ix,T^rS^jx):$$
(16)

 $r \ge 0$; $0 \le i,j < p$ } $< \infty$.

Then S and T have a unique common fixed point z. Further, z is the unique fixed point of S and T.

Proof. It follows as in the proof of Theorem 2 that the sequence (14) converges to a point z in X for i = 0, 1, ..., p. Then using inequality (15) we have

$$d((ST)^{np}S^{p}x,Tz) \leq c \cdot max\{d((ST)^{np}S^{i}x,(ST)^{np}S^{i}x),d(z,Tz),$$

$$0 \le i,j \le p$$

and letting n tend to infinity it follows that

$$d(z,Tz) \leq cd(z,Tz)$$
.

Thus Tz = z and we then have Sz = z as in the proof of Theorem 2.

REFERENCES

- [1] L. Cirić, A generalization of Banach contraction principle, Proc. Amer. Math. Soc., 45(1974), 267 273.
- [2] L. Cirić, On mappings with a contractive iterate, Publ. Inst. Math., 26 (40) (1979), 79 - 82.

- [3] B. Fisher, Quasi-contractions on metric spaces, Proc. Amer. Math. Soc., 75 (1979), 321 325.
- [4] B. Fisher, Results on common fixed points on bounded metric spaces, Math. Sem. Notes, Kobe Univ., 7 (1979), 73 - 80.
- [5] B. Fisher, Theorems on common fixed points, Fund. Math., 113 (1981), 37 43.
- [6] M. Hegedüs and T. Szilagyi, Equivalent conditions and a new fixed point theorem in the theory of contractive type mappings, Math. Japon., 25 (1980), 147 157.
- [7] S. Park and B.E. Rhoades, Extensions of some fixed point theorems of Fisher and Janos, Bull. Acad. Polon. Sci. Ser Sci. Math., 30 (1982), 167 169.

REZIME

PAR KOMUTIRAJUĆIH PRESLIKAVANJA SA ZAJEDNIČKOM NEPOKRETNOM TAČKOM

Dve teoreme o zajedničkoj nepokretnoj tački su dokazane za komutirajuća preslikavanja kompletnog metričkog prostora u sebe. Ove teoreme uopštavaju ranije rezultate čirića i prvog autora.

Received by the editors May 15, 1986.