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ABSTRACT

A general random fixed point theorem for random up-
per semicontinuous multivalued operators with a stochastic
domain in Frechet spaces is proved. Using this theorem it is
possible to obtain special random fixed point theorems for
mappings of condensing type. The results generalize theorems
by Engl [4), itoh [10])] and Schleinkofer [16].

1. INTRODUCTION

Recently many results from fixed point theory for
random operators have been proved (cf. for instance (4], ([10],
[16] and their references). If F is a random continuous multi-
valued operator, then F has a random fixed point, if the cor-
responding deterministic fixed point problem is solvable (s.
Engl. [4, Theorem 6].
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Many special random fixed point theorems are contained in
this excellent result. However this theorem is unknown for
the important case of random upper semicontinuous multivalued
operators.

Therefore special random fixed point theorems for such opera-
tors have been given only (cfl [4), [8), [10}, [16)). In

this paper the main theorem assures the existance of a random
fixed point of a random upper semicontinuous multivalued ope-
rator provided that the corresponding deterministic fixed
point problem is solvable "in the strong sense" (cf. Defini-
tion 6). This theorem includes as special cases a number of
known, as well as some new, random fixed pojint theorems.
Throughout this paper let E be a real separable Fréchet space
and let (Q,Y}u) be a g-finite complete measure space. We shall
denote by L(E), v ® L(E) the o-algebra of Borel sets of E and
the smallest o-algebra containing {SxB:S€y, BEL(E)}. Let
KcE. We shall denote by conv K, K, int K, 3K the closed
convex hull, the closed hull, the interior and the boundary
of K, respectively.

We define N(K) :={MgK:M#F}, C1l(K):={MEN(K):M is closed in K}
and k(K):={MEN(K):M is convex and compact in K}. Let X be a
set and F:X -+ N(E) a mapping. We define for such "multivalued"
(on X in E) mappings Gr F:={(x,y)€XxE:y€F(x)} (the graph of
F), F 1 (B):={X€X:F(x)NB##} (B E), F(A):=U{F(x):x€A} (AcX).

2. QUASICOMPACT MAPPINGS

Let McE and F:M-»N(E). x€M is called a fixed point
of F, iff xX€F(x). F 1is called upper semicontinuous (usc) iff
for all X€EM and for all open GgE with F('x) < G, there
exists a neighbourhood U of x with F(UNM) ¢ G.

F:M-N(R) is usc iff F_I(B) is a closed subset of M for all
‘closed ‘BcE. If F is usc and assume that F(x) is compact
for all x€M, then F(K) is compact for all compact KcM. If
F:M-2Cl(E) is usc, then Gr F is a closed subset of MxE.
F:M-+N(E) will be called compact, iff F is usc and F(M) is
compact.
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DEFINITION 1. If C ©8 a cone in a vector space,
whieh defines the partial ordering <, then a mapping w:ZE-oC
18 called a measure of noncompactness of E provided that the
following conditions hold for any M, N in 2E,

(1) v(conv M) = ¢ (M)

(2) [tlw (M) = p(tM)

(3) Y (MUN) = max{¢y M),y (N)}
(4) Y(M) =0 iff M is compact.

This known notation is a generalization of the "set-measure"
and the "ball-measure" of noncompactness {(Kuratowski- and
Hausdorff measure of noncompactness).It follows that if McN,
then ¢ (M) < ¢ (N) and ¢ (MU{a}) = ¢ (M) for any a€E.

DEFINITION 2. Let ¢ be a measure of noncompactness
of E and McE. A usc mapping F:M-2k(E) s called condensing,
provided that if NgM and Y(F(N)) 2y (N), then F(N) is relati-
vely compaet. F:Ma+k(E) i8 called l-condensing, <i1ff Y (F(N)) <
y(N) (NgM).

We introduced in [5] the following notion.

DEFINITION 3. Let McE with M#@. A usc mapping
F:M-+k(E) will be called quasicompact, tff there exists a
closed, convex subset S<E such that the following conditions
hold:

(1) Mis. # 9,
(2) F(Mns) c s,
(3) F(MNS) is relatively compact .
REMARK 1. Let McE with M#¢ and let F:M-k(E) be

a usc mapping. Then F is quasicompact, if any of the follow-
ing conditions is satisfied:

(1) F is compact
(2) F is condensing.
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(3) F(M) €M, M is convex and closed and F is generaliz-
ed condensing [2], i.e. if AcM, F(A) cA and
A=conv F(A) or ANF(A) c {a} ‘for some a€E then F(A)
is compact.

(4) F is a C,-mapping ([151), i.e. if S=conv ({alU
UF(MNS)) (a€E, S&E), then F(MAS) is compact.
(5) F is ultimately compact ([14]1) and for the limit

set F_of F it holds that Fw#ﬂ.

PROOF. Cf. [5, 1.3] or the proof of Theorem 2 of
[6].
We shall apply sozhe deterministic fixed point theorems to ob-
tain random fixed point theorems.

PROPOSITION 1 ([6, Theorem 1]). Let K be a nonvoid,
closed, convex subset of E. Suppose F:K-k(K) 7is quasicompact.

Then F has a fixed point.

PROPOSITION 2. Let UcE be open, KcE be closed
and convex such that UNK i8 nonvoid and convex. Suppose
F:UNK » k (K) 8 quasicompact. If F(X)NU# @ for each XEIUNK
then F has a fizxed point.

PROOF. This result is known for compact mappings
([1, Theorem 1.2.45])). There exists a closed, convex subset
ScE with Onkns # #, F(ONKNS) c KNS and F°:=F|ﬁnxns is a com-
pact mapping. We define R:=KNnS. If 3UNR=@, then we can apply
Proposition 1, and Fo has a fixed point. If 3UNR# @, then
UNR# @, because F(x)NUNR# P, for each x€ UNR. Now, we shall
use the result [1] for the compact mapping FozﬁnR-»'k(R) .

PREPOSITION 3. Let UCE be an open symmetric neigh-
bourhood of the origin, KCE be a closed, absolute econvex sub-
set and F:UMK -k (K) be a mapping with x4F(x) (x€UNK) and
F{~x) = =F(x) (x€3UNK) . Suppose that F eatisfies any of the fol-

lowing two conditions:
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(1) F is condensing.

(2) F i8 l-condensing, F(UNK) is bounded and
P 18 demicompact in 0 (i.e. if for bounded sequen-
ces (xn), (zn) with anUnK, znGF(xn) (n€EN) we have
xn-zn-»O, then there exists X€EE and a subsequence

(x_ ) with x. —+x).
n, ny

Then, in either case, F has a fizxed point in UNK.

PROOF., This result is a simple consequence of
theorems 4.2.3 and 4.2.4 in [5].

3. RANDOM OPERATORS

The mapping A:Q -+ N(E) is called measurable (weakly
measurable in [9]), iff we have a™! (G)€y for each open GcE.

REMARK 2 ([9, Theorem 3.5.]) Let A:Q-+Cl(E). Then
the following statements are equivalent:

(1) A is measurable.

(2) A"l (B)ey for each BEL(E).

(3) A"l (M ey for each closed McE.
(4) Gr AEYQL(E).

DEFINITION 4. Let A:Q-+CLl(E) be a measurable map-
ping and F:Gr A+ N(E) a mapping. F will be called a random
use (multivalued) operator iff )

(1) {weQ:x€A (W), F(w,X)NG # @€y for each X€E and each
open G E and
(2) F{w,*) <8 usc for each we€Q.

This notion ([3]) considers the general case, that the domain
of F is stochastic. For A(w) =A°€C1(E) (W€Q), we obtain the
special case of the "deterministic domain" QXAO as in [10].
Then F is a random usc mapping, iff F(-:,x), is measurable for
each X€R and F(W,-) 1s usc for all weQ.
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DEFINITION 5. Let A:Q=+Cl(E) be a measurable map-—
ping and F:Gr A -+ N(E) a random usc operator. The function
X:Q+E will be called a random fized boint of F 1ff

(1) X(W)EF(w,x(w)) for each weQ and

(2) X 18 a measurable function.

The following result is a fundamental lemma for the proof of
random fixed point theorems.

REMARK 3 ([121). If P:Q-+Cl(E) is measurable, then
there exists a measurable function x:Q-+E with x(w)€P(w) for
each we€f.

DEFINITION 6, Let A:Q -+ Cl(E) be a measurable map-
ping. A 18 called separable, 1ff there exists a countable set
2cE with A(w) =ZNA(wW) for all we€Q.

If A(w) =Ao€Cl (E) for each w€fl, then A is separable (we sup-
posed that E 1s separable). If A:Q+Cl(E) is measurable and
A(w) =int A(w) (w€R), then A is separable ([4, p.70l, the
proof for Banach spaces holds for our general case too).
Therefore, if 0:Q->N(E) is measurable, O(w) is open for each
we€ and A(w) =6_(7) (w€Q), then A is separable (cf. [9, Prop.
2.61).

L. RANDOM FIXED POINT THEOREMS

Following (3], [10], [16] we shall prove:

LEMMA. Let E be a separable Fréchet space with a
metrie d and A:Q->CLl(E) a separable mapping. Suppose F:Gr A~
-k (E) 78 a random usc operator. Let 2 be a countable set as
it appears in Definition 6. We shall define for all (w,x)€EGr A:

Fn(w,x) : = U{P(w,2):z€A(w)NZ, d(z,x) < %} (neEN)
H(w,x): = N conv F_(w,x).
n=1 n

Then H:Gr A->N(E) has the following properties:
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(1) ¢ #H(w,x) cF(w,x) ((w,x)€Gr A).

{2) H(w,+):A(w) »K(E) 78 usc for each WEQ.

(3) Let T(w,x): =x-H(w,x) ((w,x)€Gr A). Then
{(w,x)€Gr A:T(w,x)ND# @}EYBL(E) for each compact
DcE.

PROOF. (Similar to [3], [10], [16], [8] for the

special case of Banach spaces). In the proof of (1) and (2),
we choose w fixed (but arbitrary). Therefore, we do not
write the argument wéefl, .
(1) Let x€A(w). For all n€N, we choose ynEFn(x) .
Then, there exists az,€A(w)NZ with d(z,,x) <3 ana y €F(z))c
F( Ul{z }) (n€N). since {z ,n€N}u{x} is compact and F(w,-):

n=
A(w) »k(E) is usc the set {yn, néEN} is relatively compact.
Therefore, we can take without loss of generality yn-yEE.
Assume yfH(x). Then there exists n €N with yfconv F__(x), and
we can find n> ng, with Yo ¢conv F (x) . However, Y, €conv F (x)
cconv F_ (x) . Consequently, H(x) #¢ Now, we shall prove that
for all xEA (w), there exists n€N with conv Fn(x) cF(x). This
implies H(x) cF(x).
Assume that we can find a y€conv F_(x) (n€N) but yfgF(x) for
some xX€A(w). Since F(x) is closed and E is locally convex,
there exists an absolute convex open neighbourhood V of zero
with (y+V)NF(x) =@. Because F is usc, there exists neN such
that we have F(z) cF(x)+V for each z€A(w) with d(z,c) <%. Con-
sequently F (x) cF(x)+V. Since F(x)€k(E), F(x)+V is closed
and convex, and therefore, y€F(x)+V. This is a contradiction.

(2) Clearly, using (1), H(x)€k(E) for each x€A{(w). We
prove that H 1(B) is closed for each closed BcE. Let BCE be
closed and (xj) be a sequence in {x€A(w) :H(w,x) nlB#¢} with

x. +x. For eagh n we choose xjf with d(x.,x) <uh o Since
d(zk,x) 5d(zk,xj) +d(xj,x) for all zkEA(w)nZ, it follows
an(xj)-%:—_lé_‘n(x). Therefore Fn(x)ntan(xj)nBEH(xj)nB#¢ (neN).
Since conv F_(x) cF(x) (n2n)) (cf. the second part of the
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proof of (1)), conv Fn(x) is compact for n_>_no. Because
Fn(x) an (x) (n€EN) and B is closed, we have

@ # N [conv Fn(x)nB] = H(x)NB,
n=1

+1

(3) Let GcE be open and n€N. Then (cf. [3])
{ (w,x)EQXE: x€A (W), Fn(w,x)nG#{D}

= U ([ax{x€E:d(x,z) <2}InGr A
zZ€2Z

N[wEQ:2zEA (W), F(w,2)ING # @}xE])EYQ L(E) (cf. Remark 2 and
Definition 4). Then Fn is measurable on (Gr A, (Y®L(E))NGr A).
Now, we shall apply the results by Himmelberg ([9, Theorem
9.1., Pfop 2.6.]1) and therefore conv F_ is measurable on

Gr A (n€EN). We define T (W,x) = x - conv F_(w,x) ((w,x) €Gr A)

(n€N) . Then Tn is measurable on Gr A too (n€N). Since T(w,x)=
- -]

= N Tn(w,x), using [9, Corollary 4.3. and Theorem 3.2], we
n=1

obtain

{(w,x)€Gr A:T(w,x)ND # @}€Y8L (E) for each compact DcE.
Now, we shall introduce the following notation.

DEFINITION 6. Let AcE be closed and F:A-k(E) a
usc mapping. Let XcA be closed with @cX and xfF(x) for each
X€X. We define that F has a fixed point in the strong sense
on A~X, iff all the usc mappings F:A-+k(E) with F (x) gf‘(x)
(x€A) and F(x) =F(x) (x€X) have a fixed point in ANX.

For instance, let W be an open subset of E, A=W,
F:W-+k(E) a compact mapping with XfF(x) (X€ W) and deg (I-F,
W,0) # O (the Leray-Schauder-degree for multivalued compact
mappings [13]). Then, F has a fixed point in the strong sence
on W=WN\3W, because each usc mapping f‘:W*k(E) with F(x) c
F(x) (x€A) is compact and F(x) = F(x) (x€ W) implies deg (I-F,
ﬁ,o) # 0. Another case, if A=K is closed and convex, then each
condensing mapping F:K-+k(K) has a fixed point in the strong
sense on K (we can choose X=¢).
Now, we can prove our main theorem.
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THEOREM 1., Let E be a separable Frechet space,
A:Q-+C1l(E) separable and F:gr A-k(E) a random usc operator.
Suppose that F{w,+) has for all W€l a fixed point in the
strong sense on A(w)“X(w) for some closed X(w) cA(w). Then
F has a - random fized point.

PROOF. We define H:Gr A-k(E) as in Lemma. Let
wE€Q be fixed, but arbitrary. Let Ao(w) :={y€A(w) :yEF(w,y) }.
Since F(w,-) is usc, Ao(w) is a closed subset of E. Let X(w)
be a closed subset of E with X(w) cA(w) and xfF(w,x) (x€X(w)).
Therefore, x(w)nAo(w) =@ . Since E is normal, we can find a
continuous function f :E *[O,E] with fw(x) = O(XEAO(x)) and
fw(x) =1 (x€X{(w)). We define F(w,x): = fw(x)F(w,x)+(1-fw(x)) x
H(w,x) (x€A(w)).

Since by our Lemma H(w,-) is usc and ¢#H (w,x) c F(w,Xx) (x€A(W)),
f‘(w,-):A(w) +k(E) is usc with F(w,x) cF(w,x) (we apply that
F(w,x) is convgx) for each x€A(w). If x€X(w), then fw(‘x) =1,
and therefore F(w,x) =F(w,x). Since we supposed that F has a
fixed point in the strong sense on A(w)~X(w), there exists a
xoeA(w)\x(w) Yith xoef‘(w,xo) <_:F(w,x°) . Therefore xoer W),
f(xo) =0 and F(w,xo) =H(w,xo), xOEH(w,xo) . We have proved
that P(w) :={x€A(w) :x€H(w,x)}# @ for each w€Q. Because by
Lemma H(w,-) is usc, the sets P(w) are closed (w€f). Now, we
shall prove that the mapping P:2 - Cl(E) is measurable. We de-
fine T(w,x) = x-H(w,x) ((w,X)€Gr A), and obtain

Gr P=1{(w,x)EQxXE:x€P (w) }={ (w,x) EGr A:x€RH(w,x) }=p~! ({o}).
Using our Lemma (3), T l({o})€Y® L(E).

Hence, applying Remark 2, P is measurable. By Remark 3, there
exists a measurable function x:Q-+E with x(w)€EP(w), also
x(w)€EH(w,x(w)) (w€Q). Since H(w,x(w)) c P(w,x(w)), x:Q-+E is
a random fixed point for F.

Now, we shall apply this general Theorem 1 to the derivation
of random fixed point theorems for various special classes of
mappings. We remark, that these theorems are valid for . the
special case, that the domains are "deterministic", i.e.

A(w) =A°€C1(E) (Ww€Q), Gr A=QXAO (Then A is separable).
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THEOREM 2. Let A:Q=CLl(E) be separable and

F:Gr A-+k(E) a random usc operator. We suppose for each WER:

(1) A(w) =W(w)n K(w) such that K(w) <8 a finite inter-
gection of closed convex subsets of E and W a
closed neighbourhood of an u(wW)€EK(w) and K(w) is
starshaped relative u(w).

(2) F(w,x) S K(w) (x€A(w)).
(3) F(w,+*) t8 condensing.
(4) Bx+ (1 - B)u(w)€F(w,x) (xX€EW(w)NK(w) B>1).

Then, F hae a random fixed point.

PROOF. F has a fixed point in the strong sense on
A(w) =W(w)NK(w) (we choose that X(w) =@) for each weER,
because each usc mapping F(w,-):A(w) »k(E) with F (w,X) = F(w,x)
(x€A(w)) is condensing, F (w,X) cK(w)  (x€A(w)) and the Leray-
-Schauder condition (4) holds for f‘(w,-), too. Therefore, we
can apply for E‘(w, *} a fixed point theorem by Jerofsky [11]
or the theorem in [7] (for c=1).
Then F(w,-) has, in fact, a fixed point in A(w).
Hence, by Theorem 1, F has a random fixed point.

Theorem 2 generalizes for the speciall case K=E Theorem 24 in
[16]. For the special case K is convex, we have proved Theo-
rem 2 for in o demicompact l-condensing mapping {(with the
set-measure of noncompactness) in [8]. We can deduce this re-
sult from Theorem 1, too. We omit the details.

COROLLARY 1. Let A:Q-+Cl(E) be separable and
F:Gr A+k(E) a random usc operator. We suppoge for each we€Q:

(1) A(w) =W(WINK(W) such that K(w) i8 closed and convex
and W(wWw) s open and convecx.

(2) F(w, ) is condensing.
(3) F(w,x) cK(w) (X€A(W)) and F(w,x) €W (x€3W(w)NK(w)).

Then, ¥ hae a random fized point.
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PROOF. Since W is convex, condition F(w,x) ¢_:W
(x€3W(w)NK(w)) implies the Leray-Schauder condition(4) from
theorem 2.

If we assume in (3) that F(w,x) cW (x€3W(w)NK(w)}, then it
suffices to suppose that W(w) is starshaped relative to some
u(w) EW(w)NK(w) (weQ).

COROLLARY 2. Let A:Q2-Cl(E) be separable and
F:Gr A-+k(E) a random usc operator. We suppose for each weEQ:

(1) A(w) 8 convex and F(w,x) cA(w) .(xeaA(w)) .
(2) F(w,*) i8 condensing. ‘

Then F has a random fizxed point.

PROOF. Let wE€Q be with int A(w) =@. Then dA{w) =
= A(w) and conditions (1) and(3) from Corollary 1 hold with
W(w) =E. Let W€Q be with int A(w) ##. Then, we choose in (1)
and (3) of Corollary 1 K(w) =E. Therefore, we can apply Corol-
lary 1.
Corollary 2 generalizes the Rothe-type results by Itoh [10]
and Schleinkofer [16, Theorem 23] for condensing and Engl [4,
Theorem 16] for compact mappings.

THEOREM 3. Let A:Q-+Cl(E) be separable and F:Gr A -

-k (E) a random usc operator. We suppose for each wEQ.

(1) A(w) =U(W)NK(W) such that U(w) Zis open, K(w) is
cloged convex and U(w)NK(w) <8 nmnonvoid and convex.

{(2) F(wr,') is quasicompact with F(w,x) SK'(w) (x€A(W)) .
(3) For all x€3U(w)NK(w), we have F(w,x)NU(w) #@ and
xX€F (w,x) .

Then, F has a random fizxed point.

PROOF. We shall apply Theorem 1 with X(w) = 3U(w)NK(w)
and Proposition 2. Let we€Q.
F(w,*) is quasicompact. It is easy to show that each
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F(w,+):A(W) > k(E) with F(w,x) CF(w,x) (X€A(w)) and F(w,-) is
usc must be quasicompact and we have F(w,x) cK(w) (x€a(w)).
If F(w,x) =F(w,x) for all x€X(w) = 3U(w)NK(w) then F(w,:) sa-
tisfies the conditions of Proposition 2. '
Therefore, F(w,+) has a fixed point in the strong sense on
A(w)~X(w). By Theorem 1, F has a random fixed point.

COROLLARY 3. Let A:Q-Cl(E) be measurable and
F:Gr A-+k(E) a random usc operator, We suppose for each wWE€Q:

(1) A(w) =U(w) and U(w) is open.
(2) F(w,*) <8 quasicompact with F(w,x) cU (x€3U).

Then F has a random fixed point.

Using Remark 1, we can see that such a Rothe-type-theorem
holds for ultimately compact operators F with a nonvoid limit
set F_¥ §, too. |

For guasicompact mappings, we obtain from Proposition 1 and
Theorem 1 with X(w) =@ (WER):

THEOREM 4. [Let A:Q-+Cl(E) separable and F:Gr A -+k(E)
a random use operator. We suppose for each wgﬂ.

(1) A(w) 18 closed and convex.
(2) F(w,-) Z8 quastcompact with F(w,x) cA(w) (x€A(w)).

Then F has a random fixed point.

Theorem 4, for the special case when F(w,-) is ultimately com-
pact with F_ ¥ @, contains Theorem 19 in [16].

Our Theorem 1 implies easy special random fixed point theorems
for such usc mappings, for which a degree theory is known.

For instance, we obtain Theorem 17 in [16]:

) THEOREM 5. Let A:Q-+Cl(E) be measurable,
F:Gr A-+k(E) a random usec operator and A(w) =0(w) with open
O(w) (wE€Q). Suppoege that for each WEQ:

(1) F(w,-)
(2) XEF (w,x) (xX€30(w)) ‘
(3) deg (I-F(w,-), O(w),0) # O (s. »[14]) .
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Then, F has a random fixed point.

PROOF. If i;(w,x) gF(w},x), . (x€A (w)) f‘(w,‘) is usc
and F(w,*) is ultimately compact, then f‘(w,-) is ultimately
compact too. Suppose f‘(w,x) =F(w,x) (x€30(w)), then deg
(I-F(w,*), O(w),0) #0 and F has a fixed point (s. [14]) in
O(w). Therefore, F(w,*) has on O(w) =A(w)~30(w) a fixed
point in the strong sense.

Finally, we shall prove a random fixed point theo-
rem for mappings, which are odd on subsets of the domain.

THEOREM 6. Let A:Q-Cl(E) be separable and
F:Gr A-+k(E) a random usc operator.
We suppose for each wEQ.

(1) A(w) =U(W)NK(w) such that U(w) 18 an open symmetric
netighbourhood of O€E and K i8 a closed, absolute

convex subset of E.

(2) F(w,x) €K(w) (x€A(wW)), WEF(w,x) (XEJU(W)NK(wW)).
(3) F(w,x) = ~F(w,-x) for each x€3U(w)NK(w).

(4) F(w,-) i8 condenging or

(4") F(w,*) 8 l~condensing and demicompaect in 0O and

F(w,UnK) 8 bounded.

Then, F has a random fimed point.

PROOF. We shall apply Theorem 1 again and prOve,
that F has a fixed point in the strong sense on A(w~X(w) with
X(w) = 3U(w)NK(w) (w€R). Let weQ fixed, but arbitré.ry. Now, we
do not write this fixed argument w. Let F:A-+k(E) be a. usc
mapping with F(x) cF(x) (x€A) and F(x) = F(x) (x€X). Then
f‘(A) cK. We denote by y the measure of noncompactness. We
obtain ¥ (F(N)) <Y (F(N)) (NcA). If F is condensing, then it
implies P (N) gw(f‘(N) ) <yP(F(N)) (NcA) that F(N) is relatively
compact and therefore F(N) cF(N), too. Hence, F is condensing
and by F(x) =F(x) (x€3UnK) and condition (3), we obtain
E‘(-x) =-f‘(x) (x€3UNK) . Then, by Proposition 3, E‘ has a fixed
_point in UAK. In the other case, if F is l-condensing and de-
micompact in o, we must show, that E‘ is demicompact in  o.
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F is clearly l-condensing and F(UNK) is bounded. Let (x,),
(Zn) be bounded sfquences with wnEA, anF(xn) (n€EN) and

X =2 =o0. Since F(w ) cF(x ) (n€N)) we have z €F(x ) (n€N).
Since F is demicompact in o, there exists a subsequence

(xn ) of (xn) with“xn -+ x’€A. This implies znk-'x’. Becat:se
znkeﬁ(xnk) and Gr F 1s closed, we obtain in the fact x'€F(x’).

By Proposition 3 F has a fixed point. Therefore, F has in
elther case a fixed point in the strong sense on A~X, and
our result follows from Theorem 1.
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REZ IME

STOHASTITKE TEOREME O NEPOKRETNOJ TACLK| ZA
STOHASTICKE ODGORE POLUNEPREKIDNE VISEZNAZNE
OPERATORE k

Dokazana je jedna op3ta teorema o nepokretnoj tafki za
stohasti€ke poluneprekidne viSeznalne operatore sa stohasti&kim
domenom u Fre3$eovim prostorima. Koristeéi ovu teoremu dobijene
su stohastike teoreme o nepokretnoj talki za preslikavanja kon-
denzujudéeq tipa. Ovi rezultati uop3tavaju teoreme koje su doka-
zali Engl [4], Itoh [10] i 3tlajnkofer [16].
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