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ABSTRACT

The aim of this paper is to prove the converses of

some generalizations of the Banach flxed point principles.
1. INTRODUCTION

In [2] and [13] some converses of the Banach fixed
point principle are proved.

In this paper we give the converses of some genera-
lized Banach fixed-point principles for families of nonneces-
sarily continuous mappings on a metric space (see Teorems
3.1-3.4).

In §4 we consider some mappings fulfilling Sehgal
type conditions. We compare the mappings considered by F.Brow-
der [3], O.Had%ié [10], O.Had¥ié and Lj.Gajié [11],K.Iseki [12],
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J.Matkowski [15) and our paper [16] taking advantage, for this
purpose, of the converses from §3.

The results of §3 of this paper are generalizations
of the theorems of paper [20], which have been presented at
the NATO Conference on "Nonlinear Functional Analysis and Fix-
ed Point Theory", Maratea (Italy), April 22 - May 3, 1985.

2, NOTIONS, DEFINITIONS AND LEMMAS

Let X be a nonempty set on which two metrics 4 and
e are given. We say that d 1is topologically equivalent to
e, if the topologies Te and T4 generated by e and d res-
pectively are the same. It is obvious that 'd is topological-
ly s:ronger than Te iff Tq > T OF equivalent iff
d e

X — X = X ~——r X.
n n

Metrics d and e on X are C-equivalent, if every
(xn) is a Cauchy sequence in (X,d) iff it is a Cauchy sequen-
ce in (X,e).

REMARK 2.1, If d and e are metrics on X, then
C~equivalence of 4 and e implies the topological equival-.
ence of these metrics (see for example W.Opojcev [12]).

‘ Let F=(fk)keN be a countable family of selfmappings
on a nonempty set X. We say that sequence (xn)nGN of the form
o
X, € X
2. { |
X, = fnxn-l’ n=1,2,...

is an (F,xo)-orbit.

Let (X,d) be a metric space, F be a countable fami-
ly of mappings fk=x+x, k=1,2,... and let X, € X be given. The
IF,xo)-orbit (xn) is . a Cauchy (F,xo)-orbit if (xn) is a Cauchy
sequence. We say that (X,d) is (F,xo)-orbitally complete, if
a Cauchy (F,xo)-orbit is convergent to x € X and (X,d) is
F-orbitally complete, if it is (F,xo)—orbitally complete for
any x € X.
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Mapping g:X+ X is (F,xo)-orbitally continuous at the
point x € X if d(gxn,gx)-*o for (F,xo)—orbit (xn)_such that
d(xn,x)-*O, as n+«, Mapping g is F-orbitally continuous if
it is (F,xo)-orbitally continuous for every x € X.

REMARK 2.2. If F={f} then the above definitions of
the F-orbital completeness of (X,d) and the F-orbital continu-
ity of g are slight modifications of the well-known corres-
ponding definitions considered in Lj. ¢irié~’s papers [4], [5].

Let the families F and G of selfmappings on a metric
space (X,d) be given and let the pair (F,G) have the proper-
ties:

(2.2) for each f € F, there exists g € G, that fg = gf,

(2.3) for each f € F, £f(X) « 2, where 2= n g(X) # #,
g€G

(2.4) for each A € (0,1), there exist a metric p = Py on

Z, and real numbers a,8 > 0, a + 28 = X, such that the inequ-
ality holds

plf x,f,o¥) < aplgx,9,y) + Blo(g,x,f¥) + p(f,x,9,y)]
for £,f, € Fi 9,8, €6, 9,6, = £,9,, 9,f, = £59,, x € gIl(Z),
y € 950 (D). ‘ o '

We can say that F is

1. a contraction (with tespect to G) on (X,d), in
abbreviation F € cG(x,d), if (2.2)-(2.4) hold, where

a) B = 0 in condition (2.4)
b) condition (2.4) holds for arbitrary f f € F,
f1=f2=f and 9,=9,=9 € G, £fg = gf,

c) Py is topologically equivalent to d on Z, and
(Z,pk) is complete if (Z,d) is complete.

2. a quasi-contraction (with respect.to G) on (X,d),
to put it short F € ch(x,d), if

a) B8 =0 1in(2.4)

b) condition (2.4) holds for arbitrary f,=f,=f € F
and g,=g9,=g € G, fg = gf,
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c) Y is topologically stronger than 4 on 2 and
if (2,d) is (h,x )~orbitally complete for some x_ € Z and some
choice function h Z+%, hix) € £{g~ (x)), X € 2, for any £ € F,
g € G, fg = gf, then (z,pA)-is (h,xo)-orbitally complete.

REMARK 2.3. If in l. (2. respectively), G={idx}
then we say that F is a contraction (quasi-contraction, res-
pectively) on (X,d). In particular, if additionally F={f},
then we get a contraction (a quasi-contraction, respectively)
on (X,d) and then we write f € c(X,d) (f € gc(x,qd), respect—
ively).

3. a generalized contraction (with respect to G) on
(X,d), briefly speaking F € gcg (X,d), if

a) o =f = % Ain (2.4)

b) as b) in def. 1.
¢) as c) in def. 1.

REMARK 2.4, If in 3., G = {idx} and F ={f}, then
we say that f 1is a generalized contraction on (X,d) and thus
we write £ € gc(X,4).

The next two special classes are defined

4., F € (c. 4)G iff (2.2) - (2 4) hold, where
a) o=gf = A in (2.4)

b) as c) in def. 1.

5. Fe (C S)G iff (2.2) - (2 3) hold and (2.4)
holds for fl,f2 €F \AF or g,.9; € G N, where.

a) G-B-glin(2.4)

b) as c¢) in def. 1.,

2, resp.).

AF(AG, resp.) denotes a diagonal in F2 (in G
REMARK 2.5. If G = {idx}, F = {fl,fz}i (c.5) g,

then the pair (fl,fz)fulfils the generalized contraction con-

dition for pairs, and so we may write (fl,fz) € gep(X,d).
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We say that a:R._'_-*R_F is a contractive gauge function
(see W.Walter [25]), if it has the properties

) a 1is non-decreasing and continuous from
the right

(a1

(ay)  lim a(t) = 0 for any t > 0.

n-+o

The well-known Kwapisz’s contractive gauge function
(see for example [21], [26]) has the property (a;) and in ad-
dition fulfils the following condition

(aj) for any q € R, there exists a maximal solution
m(g) of the equation t=g+a(t), t € R, , which satisfies m(0)=0.

REMARK 2.6. It is pbviéus, that if a:R+-*R+ fulfils
(al) and (a3) then a also has the property (az).

J.Matkowski [15]), W.Walter [25], D.Xieping [26] and
others consider the contractive gauge function a:R+4-R+, which
fulfils (a,) and (a,) and in addition has the property

(a:'s) lim (t = a(t)) = =,

t+oo .

In paper [16] (see also [11]), we prove the follow-

ing simple fact

LEMMA 2.1. ([16], Lemma 2.2) Let Q ={t € R_:t<q +
+ a(t)}, q € R,, where a fulfils (a;)-(ay) and (aj). Then

(1) Q # # and a(Q) < Q, where a(t) = g+a(t), t>0

(ii) Q 28 bounded for each q> 0, the maximal solu-
tion m(q) of the inequality tsq+a(t) is a fixed point of A&
and m(q) =sup Q

(111) the maximal solution m(0) of the inequality -
t<a(t) <& equal to O. ) ’

REMARK 2.7. The above lemma was proved without the
assumption that a 1is continuous from the right. It is evi-
dent that if a fulfils (a,)-(a,) and (aj), then a fulfils
(al) and (a3). : :
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Let (X,d) be a metric space and let f:X -+ X. We de-
fine :
Of(x): = {x, £x, ...},

Oplx,p): = {x, ..., £Px},

x € X, p € N.

For the sequence (x ) €N , we define the following
sets
O(x,,p) = {xn, vee 4 X1}

O(xn,w) =

I
~—
L

=]
-
®

n € No' P € N.
LEMMA 2.2. ([17], Lemma 1.1) Let (xn)nEN be a sequ-
ence in a metrice space (X,d) sueh that °

a) d(x ,xl) £ a,

b) the funetion a: R *R, fulfiles (a ), and there
ex18ts the mamtmal solution m(q ) of the 1nequalzty t:sq +a(t),
n+l n

t € R+, and a (m(q ) >0 as n+e, where a® = idR ;. a = aa ,

n=20,1,...,

c) for each n € Né, p € N, the inequality holds
diam (O(xn,p)) b1 a(diam(O(xn_l,p-l))).

Then diam(o(xo,w)) b m(qo) and (xn) i8 a Cauchy sequence in
(x,4).

LEMMA 2.3. (Meyers Theorem [18]) Let X be a-metrisz-
able epace whose topology i8 generated by d and let £ be con-
tinuoue eelfmapping on X. If there exists X € X such that

(2.5) X = fx
(2.6) a(e®%,X) + 0asg n + for each x € X,
(2.7) there exists an open neighbourhood U of X such that

£ (U) » {X}, ©Z.e. for each neighbourhood V of x there exists
n(V) €N, that £2(U) ¢ v for n>n(V), then £ € c(X,qd).
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LEMMA 2.4. Let.f be a continuous eéelfmapping on a
metric space (X,d). If there exists X € X, that

(2.8) d(x,fx) < ald(x,x)).

for each x € X, where a:R +R,_ fulfils (a;)-(ay), then f€c(X,d).

PROOF. Obviously X = fx. From the inequality
da(£"x,x) € a™(d(x,x)), we get d(f"x,%) +0 as n+~ for any x € X.
Let U = {x € X : d(x,x) <1}. Then for each neighbour-
hood V of X there exists n(V) that for n>n(V), £7(U) €
c {x € X : d(x,x) <a®(1)} € vV, because a™(1)+0.
All the assumptions of Meyers Theorem hold and thus
f € c(x,d).

REMARK 2.8. From Lemma 2.4, it follows that various
ccntinuous contractive selfmappings on a metric space (X,d)
are contractions on (X,d) (see D.Xieping [26], Theorem 7 and
some of our remarks from [211]).

3. CONVERSES OF GENERALIZED BANACH CONTRACTION
PRINCIPLES FOR FAMILIES OF MAPPINGS

At first we shall prove the converse of generalized
Banach fixed-point principle for a family of noncontinuous
mappings.

THEOREM 2.1. Let (X,d) be a metric space and let F
be a family of selfmappings on X. Suppose that there exist the
point X € X aﬁd the contractive gauge function a:R, +R_ ful-
filling (al)—(az) so that the inequality holds

(3.1) a(x,£x) < a(d(®,x))

for each £ € F and each x € X.

Then F € (C. 4){id } i1.e. for each A € (0,1), there exists a
metric d, . topologtcally equivalent to d, and complete zf d is
ccmplete such that the inequality (3.2) holds:

(3.2) ay (£33, £,9) <y (4, (%,9) 44, (X, £,y) 44, (£,%,))

for each £,,f, € F, x,y € X, where Yy = % .
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PROOF. a) We define the family of balls (Bn(ro))n€2

as follows

Bn(ro) = {x € X : d(x,x) s_an},
n€2={0' tl, -o.}, r°>0,
where
an(ro) for n=0,1, 2, ...
a =
n n
min{r:r € a (ro)} for n=-1, -2, ...,
where

a-p(ro) ={r e R, :aP(r) = ro} = (ap)_l, P=1l,2,... .

Function ¢ is defined in the following way
n(x) + nly) for x # and y # %

pix,y) = { - -
2min{n(x), n(y)} for x = x or y = x.

From the definition of u we get the inequality for fl,f € F,

2
X#xand y # X

u(flx,fzy)imax{u(xry),U(x,fzy),u(flxyy)} + 1.

1

For y = A we define

W

0 if x=y =X
p {x,y) =
Y uix,y) - -
Y '¥la(x,y) 1if x,y€X, x#X or y#x.

If x # X and y # X, then we can easily obtain the inequality
oY(flx,fzy) s Y(OY(X:Y) + pY(x,fzy) + oY(flx,y)), £,£, € F.

However, if x = x and y # X, then
py(flx,fzy) = DY(xlfzy) =

o oulx, ) W,y -
-y d(x,fzy) <y ya{x,y) =YoY(x,y)

and again we receive

PylE)X,£2y) S Ylp (Rey) + o, (X,£5y) + o (£,%,y)).
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Thus for each x,y € X and fl,f2 € F,

pY(flx,fzy) b Y(DY(X.Y) +"pY(x,f2y).+ °y(f1x'Y)"

Obviously, pY(x,y)=pY(y,x) and pY(X,Y)=0 iff x=y, x,y € X.

b) Now we shall introduce the functional for which
the triangle inequality holds.
Let '

4, (x,y) = inf{Ly(cxy):c*y € zxy}’

where Xxy denotes the set of chains [x = XKyreeor¥py = y) and.

We have dk(x,y) =d, (y,x), dx(x,x) =0 and dx(x,y) E‘
< dk(x,z) +d (z,y) for x,y,z € X.

c) We shall prove that 4, (x,y) >0 for x'#y, x,¥y €X.
Let y # X and let, for example, n(x) € n(y) for some y € X. Then:

2n(y)

d}‘ (x,y) 2 v min{d(x,y) ,d(x,B'n(y)_*_1 (ro) ) ”d(y’Bn(y)+1 (ro) )}

and hence d (x,y) » 0, where d(x,3) den'otes, as usual, the dis-
tance between peint x  and set A.

Analogically, if y=X then we have d, (x,%) 2
s> .2n(x)

2 ¥ d(x,B (ro)) > 0. Thus is this case we also have

n(x)+1
d, (x,y) >0 for x#y, x,y € X.

d) Metrics d)‘ and 4 are topologically equivalent.

- : o
At first let x# X and let x € (Bn(x)-k(ro)) for
some k € N, and moreover n(y) 2n(x) for some y € X, where for
A c X, A° denotes the d-interior of A.
We have the inequality

2{n(x)-k}pinia (x,y) ,d(x,X~(B

o
(r,))°}.

(o]
dy (xsy) < ¥ n(x) -k Fo)) )

a(y,x\ (Bn(x) -k

Let € > 0. If d(x,y) <§, where
5 = ey_z{n(x)—k}min{1,d(x,X\(B
d(y,x\(Bn(x)_k(ro))o)}

n(x)- k(r ))°
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then dx(x,y) < ¢ and therefore, if d(xn,x)-*o, then dx(xn,x)-+0
as n+ e, _

Let n(y) £ n(x) for some X,y € X, x # X. Then the
inequality holds '

2{n(x)+k}_

4, (x,y) 2 v min{d(x,y),d(x,B (xr ),

n(x)+k

dly,B (r,))}

n(x)+k

for some k € N.
- Let 0<e¢ <min{d(x,Bn(x)+k(ro)),d(y,Bn(x)+k(r°))}. Hence, if

dx(x,y) <§= esz{n(x)+k},

plies d(xn,x)-+0 as n+x,

then d(x,y) < €. Thus dl(xn,x)-+0 im-

Let now x=x and let, for example, y € B_(r ). We
have

d)‘(;‘rY) 3 D,Y(;(lY) -<- d(;‘ry)
and so if d(xn,)-:) +0 then 4, (xn,i)' +0 as n+w,

n
For each € >0 there exists n_ such that min{a o(ro)}<%.
- - m

If d(x,y) >€e then d(y,Bno(ro))>'% and dl(x,y)Z'Y %4 (y,B o(ro))>

> yMo % for some m_ € N. If dx(i,y) <8, §=ey ™, then
d(x,y) <e.

n

Therefore dx is topologically equivalent to d.

e) Let (X,d) be complete. We shall prove that in
that case (x,dx) is also complete.

Let (xm) be a Cauchy sequence in (x,dx) and let us
assume that (xm) is not convergent in (x,dA). Then we have
. >
n(xm) <p<w i.,e. for each m2 0, X ¢ Bp(ro).

Let b=a_ - «a ny where a_ is defined as in the part
a) of this proof {p=0, *1, ...}. For sufficiently large n,

2 (p+l)
d(xn, xn+j) < by .

It is easy to verify that

2(p+l)
dx(xn,xn+j) >y min{d(xn,xn+j), bl.
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In that way

-2(p+1)
Y dk(xn'xn+j) 2 d(xn’xn+j)

and (xn) is a Cauchy sequence in (X,d). Then d(xn,x)-O for
some x € X and from the topological equivalence of 4 and
dA' dx(xn,x)+ 0. This contradiction proves that (x,dx) is com-
Plete if (X,d) is complete.

Therefore F € (C.4){1dx}and the proof is complete.

In [21] we get the following characterization of con-
tinuous selfmappings on a metric space:

THEOREM 3.2..([21], Theorem 2.2.) Let (X,d) be a met-
rie space and let fi:x-x, i=1, ..., n, be continuous mapp-
ings. Suppose that there exists the point x € X and there <&

a real number a>0 8o that the inequality holds

(3.3) d(§,fix) £ od(x,x), 1 =1, ..., n,

for each x€ X. Then the following conditions are eqﬁivalent
(1) {fl' ooy fn} € c(x,d)
(ii) {fl' ceny fn) € (C'S){idx)'

Now we shall formulate coincidence tYpe converses
for commuting selfmappings on metric spaces.

THEOREM 3.3.. Let F and G be two families of self-
mappings on a metric space (X,d), such that (2.2)-(2.3) hold.
Assume that there exzist X, €2 = 26 g(X) and a countable
family of functions (hy),enr hy(x) € fi(gzl(x)), x €2z, £

1947
= gifi' i € N, that (2,4) is ((hi)iGN'_xo) - orbitally comp-
lete. Then F € (C.4)G i1ff there exist x € 2 and the contract-
ive gauge function a fulfilling (al)-(az) such that the in-

equality holds

(3.4) d(x,fx) £ a(d(x,gx))

1

for each £ € F, g € G, fg=qgf, x € g " (2).




82 B. Palezewski and A. Miczko

PROOF 1. If F € (C.4)G, then by standard arguments
we get that (F,xo)—orbit (xn), xn_= hn’--‘n-—l' n=l,_2, ..., is a
Cauchy orbit in (x,dx) and dx(xn,x) +0 for some x € Z = N g(X).
g€G

For each f € F, g € G, fg=gf, we have for h:2-32,
h(x) € £(g"1(x)), x € 2, the inequality 4, (X,hX) <
< 4, (x,xg) +d>‘(hnxn_l,hx) 24, (x,x)) +Y[§>‘ (:_(n_l,x)_+ dé(xn-l'hx)'*
+ dx(xn,x)] and taking n- e, we get dx(x,hxnsde(x,hx) i.e.,
X = hX.

Thus X € £(g" (X)), and from fg=gf, fX=g%. But

- - - - - - - -1 - - =

dx(x,fx) =d>‘(hlx,fx) =d>‘(flu,fx), where u € g; (x), g,u=x,
fl € F, 9, € G, flgl=glfl'
Therefore

4, (x,£X) s vld, (X,x) + d, (X,£x) + 4, (X,£X)] =

= 2vd(x,£X).

So X = fX = gx.
If y=fy=gy for each f € F, g € G, fg=gf, then d>‘(§,§) =
= 4, (£,%,£,¥) < 3de(§,§)rand X=y.

2. If the inequality d(x,fx) < a(d(x,gx)) holds for
each £ € G, g € G, fg = gf, then from Theorem 3.1, we get the
searched for assertion.

THEOREM 3.4. ([21], Theorem 2.4.) et (X,d) be a
metric space and Zetnfi,gi:x - X, figi = gifi' fi(x) < Z,
i=1], «c.y n, 2= 1 gi(X)' Suppose that there exist the

- i=1
point X in X and a real number o> 0 such that the inequality

holds

(3.5) d(i,fix) < ad(i,gix), i=1, ..., n,

for each x € X, If for each i € {1, ..., n} there exists a
. . =1
1%~ 2, hi(x) € fi(gi (x)), x€32,

then the following conditions are equivalent

continuous choice funetion h

(1) {fl,...,fn} € c{gl’..',gn}(x,d)

(ii) {fl""'fn} € (C‘s)-{gl,.--,gn}'
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-’ 7 v,
REMARK 5.1. Theorems 5.1. and 5.3. are generaliza-
tions of the results of ([22] (see [21], Theorems 2.1, and 2.3.).
In [21] we prove converses of generélized Banach fixed-point
theorems in the case where the contractive gauge function a-
in conditions (3.1) and (3.3) has the form a(t) = at, t € R,
a € (0,1).

k. SOME REMARKS ON MAPPINGS WITH A CONTRACTIVE
ITERATE AT THE POINT

Let (X,d) be a metric space. For mapping f:X - X,
the following conditions are taken into account '

(4.1) (v.M.Sehgal [24]) there exists a € [0,1), that for
each x € X there exists w(x) € N that for any y € X the in-
equality holds ‘'

d(fw(x) w(x)y) < adix,y)

(4.2) (K.Iseki [12]) there exist a, B, Y > 0, a+4(B+Y)<1,
that for each x € X there is w(x) € N such that for any y € X,

W (x)

ace” Xy, fw‘x’y) < ad(x,y) + pld(x, ) ) +

+aly, 21+ v @@ X, "Xy 4 a @ ¥ Xy,

(4.3) (J.Matkowski [15]) there exists the function a: RE»R+,
nondecreasing with respect to each variable separately, that
a:R_ » R, a(t) = alt, t, 2¢t, t, 2t), t > 0, has properties

(a )-(az) and (a3), and let for every x € X be a positive in-
teger w = w(x), such that for all y € X, ae” x, £ y) < al(d(x,y),

d(x,£%x) ,d(y, %) ,a(x, %) ,d (£¥%,y)) .

(4.4) (see [16]) there exists the function u:Rf -+ R, non-
decreasing related to each variable separately that é:R+ - R+,
a(t) = o(t, t, 2t, t, 2t), t € R+'is upper-semicontinuous and
r = 0 is a unique solution of the inequality t < a(t), t € R, ,
and for each q > 0 there exists a maximal solution m(q) of
the inequality t < q + ¢@{t, q, 2t, t, g+t), t € R

Let w:X -» N be such that for every X,y € X,

Ay, X gy < piaix,y a0 ® a2 Xy
atx, &My ,a0y, " ® ).
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REMARK 4.1. V.M, Sehgal [24] and K.Iseki [12] assum~
ed f to be a continuous mapping in a complete metric space.
L.Guseman noted in [8] that the continuity condition of f in
the fixed point theorems of Sehgal and Iseki is superfluous.

THEOREM 4.1. Let £ fulfil one of conditions (3.1)-
-(3.4) and let (X,d) be an (F,xo)-orbitally complete metrie
space for aome X, € X, where F(x) = fW(X)x, X € X. Then there
exists a unique common fized point X of £ in X and a(£f"x,x%)-0
for each x € X. If f fulfils (4.1)~(4.4), then f™ € gc(X,d),
m=w(x). If £ ©8 continuous in topology T4 and 1f one of

(4.1)-(4.4) holds, then £ € c(X,d).

PROOF. We have the following sequence of implicat-
ions: (4.1) =» (4.2) =» (4.3) = (4.4).

A) In [16] we prove (see also [21]) that if (4.4)
holds, f has a unique fixed point X in X and d(f"x,X) - 0
for each x € X.

B) If f fulfils (3.4), then d(%,£f"x) < a(d(x,x)),
X € X. Function a fulfils (al)-(az) and thus the assumptions
of Theorem 3.1. are fulfilled. In consequence f € gc(X,d).

C) If £ fulfils (4.1)-(4.4) and f is‘a continu-
ous mapping in the topology generated by d, then all the as-
sumptions of Meyers Theorem [18] hold for the iterate £ of £,
m= wix). ‘

For example, there exists an open neighbourhood U
of x that £f™(u) - {x}. But in that case also f(W) - {x},
where

‘m=1 .
W= n £
J=0
(compare P.Meyers [18]). As a result £ € c(X,d).
(4.5 ) (W.Walter [25], (C.5)) for every x € X there exists

a positive integer w(x) such that for n > w(x) and y € X,

a (£, ) < a(diam (0. (x,n) U 0g(y,n))),
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where a:r_ -~ R, fulfils (al)—(az) and (aé)

(4.6) for every x € X there exists w(x) € N such that for
n>wix), y € X, L

d(£7x,£%) < aldiam(0 (x,n) U O (x,n))),

where a:R, - R, fulfils (al) and (a3).

THEOREM 4.2, Let (X,d) be a complete metric space
and £ be a continuous selfmapping on X fulfilling one of the
conditions (4.5)-(4.6). Then there existe a unique fixed point
X of £ in X and d(f™x,X) » 0 for each x € X. Moreover,

f € gci{x,d). ‘

PROOF. A) We have the implication (4.5)=(4.6). It
is easy to verify, on the basis of Lemma 2.2, that diam(Cf(x))<
<o for each x € X. Let p(x,x) = 0 and p(x,y) = diam (Of(x) {]
U Of(y)) for x,y € X. It is obvious that (X,p) is a metric .
space and for each x € X there exists w(x) € N, that for any
y € X, p(fw(x)x’fw(x)y) \
p(x,y) > d{x,y) for each x,y € X.

< a(p(x,y)), x,y € X. We also have

B) Now we shall prove that (X,p) is F-orbitally com-
fW(X)x, X € X. )
wix, )

‘Let (xn) be (F,xo)-orbit for some x,, i.e. x. = £ X _1v

plete, where Fx =

n=1,2,... .
As in the proof of Theorem 2.2. of [21], we have

sup{sup{p(xk,flxk):l 21}k >nl -0 as n-+ =

and so (xn) is a Cauchy sequence in (X,d) and d(xn,i) -+ 0 for
some X € X. : _
Moreover, sup{sup(d(xk,flxk):l > 0}:k > n} -+ 0 and
thus p(xn,kan) + 0 as n-» o for each k € N.
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We have ,
p(x,xn) = diam(of(x)U Of(xn?) =

max{sup{d (£5%,£%) :k,1 » 0}, supla(f*x_,£'x ):k,1>0,

supla(£%%, £1x ) 1k, 1 > 0},

On the oﬁher hand, we get estimations
k= 1= k= .k X 1
d(f™x,£f7x) < d(f'x,f xn) + d(f xn,xn) + d(xn,f xn) +
+ dielx_ 1%,
n
ace®x_,flx ) < a(Fx ,x ) + ax_, %) ana
a(ef%, ehx ) < a (8%, %) + at®x_,x ) + alx el

and from the continuity of £ in Tqr We obtain p(xn,i) - 0

as n - o«,
From Theorem 4.1, we get the assertion

(4.7) (0.HadZié [9], Theorem 2) Let f,gl,gz:x -+ X be such

that

(1) f,gl,g2 are continuous in T4
(ii) f(X) €2, 2 = gl(x) n gz(x)
(1ii) fgi = gif, i=1,2,

Let there exist w:X » N and g € [0,1) that

(1) a(f¥ Xy, 7 Xy) < g minfalg,x,9,9),

d(g,x,9,¥)},
x,y € X,
(v) for every x € X, one of the sets

{fmgfx tp €EN, m€ {0,1,...,w{x)-1}} and

{fmggx :p €N, m€{0,1,...,w(x)-1}}
is bounded.

THEOREM 4.3. (compare Theorem 4.1. of [21]) Let
(X,d) be a complete metric space and let £,9,/9,:X > X fulfil
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condition (4.7). Then for each A € (0,1), there exists a met-

rie 4, on I, topologically equivalent to d, and complete if 4

i8 complete, such that dx(fmx,fmy) < y(dx(gix,gjy) + dx(gix,fmy)+

+d (fmx,gjy)) for x € 91 Ly, y € g Lzy, 1,5 € (1,2}, vy = %A

m=w(x), x=fx= glx = g2

If in addition there exist continuous choice functions hi:Z*Z,

h,(x) € £(g;' (X)), x € X, 1 =1,2, m=w(X), then for each o €

€ (0,1) there exists a metric d topologically equivalent to 4,

and complete if & 78 complete, such that d (£™ x, fmy)<ud (g. 1 %095 y),
x,y € gi (Z), i=1,2, m=w(x).

(4.8) (0.Had¥ié, Lj.Gajié [10), Theorem 1) Let f,gl,gz be
such selfmappings on (X,d), that (4'.7)(1i)-(iii) holds. Suppose
that there exist w:X € N and nondecreasing q:[0,«) - [0,1),
lim t(1 - g(t)) = =, such that

t-sc0

(vi) a(f¥ Xy, ¥y o

< min{q(d(g,x,9,y)) -d(g;x,9,Y) ,
q(d (glegIY)) -d (glegIY)}l x,y € X,

(vii) for some xg € X one of the sets

{fmgfxo :p€N, me€{0,...,wix )-1}} and

{fmggxo : pE€EN, mE€ {0,...,w(xo)-1}}
is bounded.

THEOREM L.Lk., Let (X,d) be a complete metric space
and let £,9,,9,:X = X fulfil condition (4.8). If function
q:[0,o) - [0,1) <8 continuous from the right, then

m = w(x), X = fx = X = X A
£ € (C'4){91192}’ m=w(x), x fx g,% g X. If, bestides

that, there extet continuous choice functions hi-Z - 2, h (x) €

€ fm(g (x)), x €2, 1 =1,2, m = w(X), then £ € (g9 }(x d).
1792

PROOF. From Theorem 1 of [10], there exists a unique.
common fixed pcint X of £,9,,9, in X, X € 7.
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We have the inequality

(%, £"%) < min{q(d(k,g,%))d(X,g,%), qld(k,g,x))da(X,g,x)}

i.e. d(i,fgx) < q(d(§,gix))d(§,gix) for each x € X, i = 1,2,
Thus the assumptions of Theorem 3.3. are fulfilled and

f € (C.4){gl,gz}.

If there exist continuous choice functions hl,h2:Z -z, all
the assumptions of Theorem 3.4. hold and f € c{g g }(X,d)
) 14
(iff £ € (C.5) ). The proof is complete. 1772
{91:92}

(4.9) (0.Had%¥ié, L.Gajié [10], Theorem 2). Let G={gl,gz},
where 9,095k = X are continuous mappings. Let F be a countab-
le family of mappings fi:x -~2%2,1=1,2,..., 2 = gl(X) n gz(X)
such that figj = gjfi’ i €N, j€ {1,2}. Suppose that

q:{0,») - [0,1) is a nondecreasing continuous function and

for every x,y € X:

d(fixlij) < q(d(QIthzy))
i# 43, 1,7 € N.

THEOREM L4.5. Let (X,d) be a complete metric gpace
and let F and G fulfil (4.9). Thgn F € (C.4)G. If ecard F = n,
Z.e., F = {fl,...,fn} and for each i € {1,...,n} there exist
continuous choice functions hi;Z - Z, hi(x) € fi(gil(x)),
X €Z, k=1and k = 2, then F € (C'S)G'

PROOF. O.HadZié and L.Gajié¢ in [10] proved that
there exists a unique common fixed point x of fi, i=1,...
and g, and g, in X, X € Z. Thus we have the ineguality

d(x,£5%) 5 q(d(X,g;,%))d (X, gy x)

for j € N and k € {1,2}. Hence from Theorem 2.3, F € (C.4)G.
The second part of the assertion follows from
Theorem 2.4.
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FINAL REMARK. Theorems of paragraph 3 of this work
give a new possibility of presenting a wide rangé of contrac-
tive type mappings. An attempt of a .survey of mappings belong-
ipg to classes c(X,d), gc(X,d) and gc(X,d) has already been
made by us before in [21].

REFERENCES

[1] Babu,A.C., A Convense to a Genenalized Banach Contraction
Principle, Pubf. Inst. Math. (N.S) 32(46)1(1982), 5-6.
[2] Bessaga,C., On the Converse of the Banach Fixed Point
Principle, CoRR. Math. VIT, (1959), (1), 41-43,
[3] Browder,F., Remarks on Fixed Point Theorems of Contractive
Type, Nonl. Anat. 3(3)(1979), 657-661. ‘
(43 Cirié,L., On Contnaction Type Mappings, Math. Balk. 1(1971),
52-57.
[5] *x%x, Generalized Contractions and Fixed Point Theonrems,
Publ. Inst. Math. (N.S) 12(1971), 19-26.
[6] Conserva,V., Fedele,F., Remark on Browdern’s Fixed Point
Theornem, Math. Jap. 2§(2)(1983), 233-237,
[7] Fisher,B., Mapping with a Common Fixed;Point, Math. Sem.
Notes, Kobe Univ. 7(1979), 81-84.
{8] Guseman,L.F., Fixed Point Theonems for Mappings with a
Contractive Iterate at a Point, Proc. Amen. Math.
Soc. 26(1970), 615-618.
[9] Had2ié,0., A Common Fixed Point Theorem in Metnic Spaces,
Math. Sem. Notes, Kobe Univ., 10(1982), 317-322.
[10] Had¥ié,0., Gajié,L., Common Fixed Point Theorems in Metndic
Spaces, Review of Research Faculty of Science - Uni-
vensity of Novi Sad, 14(1)(1984), 1-14.
[11] Husain,S., Sehgal.V., A Fixed Point Theorem with a Funct-
{onal Inequality, Publ. Inst. Math. 21(35}(1977),
89-91.
f12] i1seki,K., A Genenalization of Sehgal-Khazanchi’s Fixed
-Point Theonems, Math. Sem. Notes, Kobe Univ. 2(1974),
1-9. _ ‘
[13] Janos,L., A Convense of Banach’s Contraction Theonrem,
Proc.Amen . Math.Soc. 18(1967), 287-289.




B, Paglezeweki and A. Miczko

90

{14] Khan,M.S., Remarhs on some Fixed Poinit Theorems, Demonsit-
rnatio Mathematica, XV, 2(1982), 375-379.

[15) Matkowski,J., Fixed ‘Point Theorems for Mappings with a
Contnactive Iterate at a Point, Proc. Amen. Mazth.
Soc., 62(1977), (2), 344-345.

[16] Miczko,A., Palczewsk!,B., Some Remarks on the Sehgatl Ge-
nenalized Contnaction Mappings, Zeszyty Naukowe Poli-
techniki Gdamshiejf, Matematykha XII1, (1982), 21-32,

[{17] Miczko,A., Palczewski,B., Common Fixed Points of Contrac-
tive Type Mapping in a 2-Metrnie Space, Math. Nachnr.,
124(1985),

{18] Meyers,P., A Converse to Banach’s Contraction Theorem, J.-
Res. Nat. Bun. Standands, {1967}, 73 - 76.

[19] Opojcev,W.l., The Convense o4 the Contraction Mapping
Principle, Uspehi Mat. Nauk 31{1976), 169-198.

[(20] Palczewski,B., Miczko,A., On some Convenses of Generaldized
Banach Contraction Principles, leszyty Naukowe Poli-
techniki Gdanskief, Matematyka XIV, [to appeanr).

{21] Palczewski,B., Miczko,A., On some Convenses o4 Genenalized
Banach Contraction Princdiples 11, Zeszyty Naukowe
Politechniki Gdanshief, Matematyka X1V, (ito appear}.

(22} Park,S., A Generalization of§ a Theorem of Janos and Edel-
Atedn, Proc. Amen., Math. Soc. 66(1977), 344-346.

{23] #=%%, Characterdization of Metnic Completeness, Colf. Math.
XLIX (1984), 21-26.

[24] Sehgal,V.M., On Fixed and Perdiodic Points for a CLass of
Mappings, J.London Math, Soc. 2(5)(1972}, 571-576.

{25]) Walter,Ww., Remarnks on a Papen by F.Browder about Contract-
Lon, Nont. Anaf. 5(1){1981), 21-25.

[26) Xlieping,D., Fixed-Point Theorems o4 Generalized Contract-

ive Type Mappings 11, Chin, Ann. of Math. 4B(2},
{1983}, 153-163.




Converses of Generalized Banach Contraction ... 91

REZIME
INVERZIJE UOP3TENJA BANAHOVOG PRINCIPA
KONTRAKCIJE | PRIMEDBE O PRESLIKAVANJIMA

SA KONTRAKTIVNOM ITERACIJOM U TATKI

U ovom radu su dokazane inverzije nekih uopitenja
Banahovog principa kontrakcije. '

Recedlved by the editons August 11, 1985,




