Z B O R N I K R A D O V A Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 17,1(1987) REVIEW OF RESEARCH
Faculty of Science
University of Novi Sad
Mathematics Series, 17,1(1987)

CONVERSES OF GENERALIZED BANACH CONTRACTION PRINCIPLES AND REMARKS ON MAPPINGS WITH A CONTRACTIVE ITERATE AT THE POINT

Boleslaw Palczewski and Antoni Miczko Politechnika Gdánska, Wydział Fizyki Technicznej i Matematyki Stosowanej, Majakowskiego 11/12, 80-952 Gdansk, Poland

ABSTRACT

The aim of this paper is to prove the converses of some generalizations of the Banach fixed point principles.

1. INTRODUCTION

In [2] and [13] some converses of the Banach fixed point principle are proved.

In this paper we give the converses of some generalized Banach fixed-point principles for families of nonnecessarily continuous mappings on a metric space (see Teorems 3.1-3.4).

In §4 we consider some mappings fulfilling Sehgal type conditions. We compare the mappings considered by F.Browder [3], O.Hadžić [10], O.Hadžić and Lj.Gajić [11], K.Iseki [12],

AMS Mathematics Subject Classification (1980): 47H10.

Key words and phrases: Converses of generalized Banach contraction principles, common fixed points, contractive iterate at the point, metric spaces.

J.Matkowski [15] and our paper [16] taking advantage, for this purpose, of the converses from §3.

The results of §3 of this paper are generalizations of the theorems of paper [20], which have been presented at the NATO Conference on "Nonlinear Functional Analysis and Fixed Point Theory", Maratea (Italy), April 22 - May 3, 1985.

2. NOTIONS, DEFINITIONS AND LEMMAS

Let X be a nonempty set on which two metrics d and e are given. We say that d is topologically equivalent to e, if the topologies τ_e and τ_d generated by e and d respectively are the same. It is obvious that d is topologically stronger than e iff $\tau_d \supset \tau_e$ or equivalent iff $x_n \xrightarrow{\tau_d} x \longrightarrow x_n \xrightarrow{\tau_e} x$.

Metrics d and e on X are C-equivalent, if every (x_n) is a Cauchy sequence in (X,d) iff it is a Cauchy sequence in (X,e).

REMARK 2.1. If d and e are metrics on X, then C-equivalence of d and e implies the topological equivalence of these metrics (see for example W.Opojcev [19]).

Let $F=(f_k)_{k\in\mathbb{N}}$ be a countable family of selfmappings on a nonempty set X. We say that sequence $(x_n)_{n\in\mathbb{N}}$ of the form

(2.1)
$$\begin{cases} x_0 \in X \\ x_n = f_n x_{n-1}, & n = 1, 2, ... \end{cases}$$

is an (F,x_0) -orbit.

Let (X,d) be a metric space, F be a countable family of mappings $f_k: X + X$, $k = 1, 2, \ldots$ and let $x_0 \in X$ be given. The (F, x_0) -orbit (x_n) is a Cauchy (F, x_0) -orbit if (x_n) is a Cauchy sequence. We say that (X,d) is (F, x_0) -orbitally complete, if a Cauchy (F, x_0) -orbit is convergent to $x \in X$ and (X,d) is F-orbitally complete, if it is (F, x_0) -orbitally complete for any $x_0 \in X$.

Mapping $g:X \to X$ is (F,x_0) -orbitally continuous at the point $x \in X$ if $d(gx_n,gx) \to 0$ for (F,x_0) -orbit (x_n) such that $d(x_n,x) \to 0$, as $n \to \infty$. Mapping g is F-orbitally continuous if it is (F,x_0) -orbitally continuous for every $x_0 \in X$.

REMARK 2.2. If $F = \{f\}$ then the above definitions of the F-orbital completeness of (X,d) and the F-orbital continuity of g are slight modifications of the well-known corresponding definitions considered in Lj. Cirić's papers [4], [5].

Let the families F and G of selfmappings on a metric space (X,d) be given and let the pair (F,G) have the properties:

- (2.2) for each $f \in F$, there exists $g \in G$, that fg = gf,
- (2.3) for each $f \in F$, $f(x) \subset Z$, where $Z = \bigcap_{g \in G} g(x) \neq \emptyset$,
- (2.4) for each $\lambda \in (0,1)$, there exist a metric $\rho = \rho_{\lambda}$ on Z, and real numbers $\alpha,\beta \geq 0$, $\alpha + 2\beta = \lambda$, such that the inequality holds

$$\begin{split} \rho(f_1x,f_2y) &\leq \alpha \rho(g_1x,g_2y) + \beta[\rho(g_1x,f_2y) + \rho(f_1x,g_2y)] \\ \text{for } f_1f_2 &\in F, \ g_1g_2 \in G, \ g_1f_1 = f_1g_1, \ g_2f_2 = f_2g_2, \ x \in g_1^{-1}(z), \\ y &\in g_2^{-1}(z). \end{split}$$

We can say that F is

- 1. a contraction (with respect to G) on (X,d), in abbreviation $F \in c_G(X,d)$, if (2.2)-(2.4) hold, where
 - a) $\beta = 0$ in condition (2.4)
- b) condition (2.4) holds for arbitrary $f_1, f_2 \in F$, $f_1=f_2=f$ and $g_1=g_2=g \in G$, fg=gf,
- c) ρ_λ is topologically equivalent to d on Z, and (Z,ρ_λ) is complete if (Z,d) is complete.
- 2. a quasi-contraction (with respect to G) on (X,d), to put it short $F \in qc_G(X,d)$, if
 - a) $\beta = 0$ in (2.4)
- b) condition (2.4) holds for arbitrary $f_1 = f_2 = f \in F$ and $g_1 = g_2 = g \in G$, fg = gf,

c) ρ_{λ} is topologically stronger than d on Z and if (Z,d) is (h,x_0) -orbitally complete for some $x_0 \in Z$ and some choice function h:Z+Z, $h(x) \in f(g^{-1}(x))$, $x \in Z$, for any $f \in F$, $g \in G$, fg = gf, then (Z,ρ_{λ}) is (h,x_0) -orbitally complete.

REMARK 2.3. If in 1. (2. respectively), $G = \{id_X\}$ then we say that F is a contraction (quasi-contraction, respectively) on (X,d). In particular, if additionally $F = \{f\}$, then we get a contraction (a quasi-contraction, respectively) on (X,d) and then we write $f \in c(X,d)$ ($f \in qc(X,d)$, respectively).

- 3. a generalized contraction (with respect to G) on (X,d), briefly speaking $F\in gc_G(X,d)$, if
 - a) $\alpha = \beta = \frac{1}{3} \lambda \text{ in (2.4)}$
 - b) as b) in def. 1.
 - c) as c) in def. 1.

REMARK 2.4. If in 3., $G = \{id_X\}$ and $F = \{f\}$, then we say that f is a generalized contraction on (X,d) and thus we write $f \in gc(X,d)$.

The next two special classes are defined

- 4. $F \in (C.4)_G$ iff (2.2) (2.4) hold, where
- a) $\alpha = \beta = \frac{1}{3} \lambda$ in (2.4)
- b) as c) in def. 1.
- 5. $F \in (C.5)_G$ iff (2.2) (2.3) hold and (2.4) holds for $f_1, f_2 \in F^2 \Delta_F$ or $g_1, g_2 \in G^2 \Delta_G$, where
 - a) $\alpha = \beta = \frac{1}{3} \lambda \text{ in } (2.4)$
 - b) as c) in def. 1.,

 $\Delta_{\mathsf{F}}(\Delta_{\mathsf{G}}, \mathsf{resp.})$ denotes a diagonal in F^2 (in G^2 , resp.).

REMARK 2.5. If $G = \{id_X\}$, $F = \{f_1, f_2\} \in (C.5)_G$, then the pair (f_1, f_2) fulfils the generalized contraction condition for pairs, and so we may write $(f_1, f_2) \in gcp(X, d)$.

We say that $a: R_+ \rightarrow R_+$ is a contractive gauge function (see W.Walter [25]), if it has the properties

- (a₁) a is non-decreasing and continuous from the right
- (a_2) lim $a^n(t) = 0$ for any t > 0.

The well-known Kwapisz's contractive gauge function (see for example [21], [26]) has the property (a_1) and in addition fulfils the following condition

(a₃) for any $q \in R_+$ there exists a maximal solution m(q) of the equation t = q + a(t), $t \in R_+$, which satisfies m(0) = 0.

REMARK 2.6. It is obvious, that if $a:R_+ \to R_+$ fulfils (a_1) and (a_3) then a also has the property (a_2) .

J.Matkowski [15], W.Walter [25], D.Xieping [26] and others consider the contractive gauge function $a:R_+ + R_+$, which fulfils (a_1) and (a_2) and in addition has the property

$$(a_3')$$
 $\lim_{t\to\infty} (t - a(t)) = \infty.$

In paper [16] (see also [11]), we prove the following simple fact

LEMMA 2.1. ([16], Lemma 2.2) Let $Q = \{t \in R_+: t \leq q + a(t)\}$, $q \in R_+$, where a fulfils $(a_1) - (a_2)$ and (a_3') . Then

- (i) $Q \neq \emptyset$ and $\hat{a}(Q) \subset Q$, where $\hat{a}(t) = Q + a(t)$, $t \ge 0$
- (ii) Q is bounded for each q>0, the maximal solution m(q) of the inequality $t \le q + a(t)$ is a fixed point of \hat{a} and $m(q) = \sup Q$
- (111) the maximal solution m(0) of the inequality $t \le a(t)$ is equal to 0.

REMARK 2.7. The above lemma was proved without the assumption that a is continuous from the right. It is evident that if a fulfils $(a_1)-(a_2)$ and (a_3') , then a fulfils (a_1) and (a_3) .

Let (X,d) be a metric space and let $f:X \to X$. We define

$$O_f(x) := \{x, fx, ...\},$$

 $O_f(x,p) := \{x, ..., f^p x\},$

 $x \in X, p \in N.$

For the sequence $(x_n)_{n \in \mathbb{N}_0}$, we define the following sets

$$O(x_n, p) = \{x_n, \dots, x_{n+p}\}$$

 $O(x_n, \infty) = \{x_n, x_{n+1}, \dots \},$

 $n \in N_0$, $p \in N$.

LEMMA 2.2. ([17], Lemma 1.1) Let $(x_n)_{n \in \mathbb{N}_0}$ be a sequence in a metric space (X,d) such that

- a) $d(x_0, x_1) \leq q_0$
- b) the function $a:R_+ \to R_+$ fulfils (a_1) , and there exists the maximal solution $m(q_0)$ of the inequality $t \le q_0 + a(t)$, $t \in R_+$, and $a^n(m(q_0) \to 0$ as $n \to \infty$, where $a^0 = id_{R_+}$, $a^{n+1} = aa^n$, $n = 0, 1, \ldots$,
 - c) for each $n \in N_0$, $p \in N$, the inequality holds $diam (O(x_n,p)) \le a(diam(O(x_{n-1},p-1))).$

Then $diam(O(x_0,\infty)) \le m(q_0)$ and (x_n) is a Cauchy sequence in (X,d).

LEMMA 2.3. (Meyers Theorem [18]) Let X be a metrizable space whose topology is generated by d and let f be continuous selfmapping on X. If there exists $\overline{x} \in X$ such that

$$(2.5) \quad \bar{x} = f\bar{x}$$

- (2.6) $d(f^n x, \bar{x}) \rightarrow 0$ as $n \rightarrow \infty$ for each $x \in X$,
- (2.7) there exists an open neighbourhood U of \bar{x} such that $f^n(U) \to \{\bar{x}\}$, i.e. for each neighbourhood V of \bar{x} there exists $n(V) \in N$, that $f^n(U) \subset V$ for n > n(V), then $f \in c(X,d)$.

LEMMA 2.4. Let f be a continuous selfmapping on a metric space (X,d). If there exists $\bar{x} \in X$, that

 $(2.8) d(\bar{x}, fx) \le a(d(\bar{x}, x))$

for each $x \in X$, where $a:R_+ + R_+$ fulfils $(a_1) - (a_2)$, then $f \in C(X,d)$.

PROOF. Obviously $\bar{x} = f\bar{x}$. From the inequality $d(f^nx,\bar{x}) \le a^n(d(\bar{x},x))$, we get $d(f^nx,\bar{x}) + 0$ as $n + \infty$ for any $x \in X$. Let $U = \{x \in X : d(\bar{x},x) < 1\}$. Then for each neighbourhood V of \bar{x} there exists n(V) that for n > n(V), $f^n(U) \subseteq \{x \in X : d(\bar{x},x) < a^n(1)\} \subseteq V$, because $a^n(1) + 0$.

All the assumptions of Meyers Theorem hold and thus $f \in c(X,d)$.

REMARK 2.8. From Lemma 2.4, it follows that various continuous contractive selfmappings on a metric space (X,d) are contractions on (X,d) (see D.Xieping [26], Theorem 7 and some of our remarks from [21]).

3. CONVERSES OF GENERALIZED BANACH CONTRACTION PRINCIPLES FOR FAMILIES OF MAPPINGS

At first we shall prove the converse of generalized Banach fixed-point principle for a family of noncontinuous mappings.

THEOREM 2.1. Let (X,d) be a metric space and let F be a family of selfmappings on X. Suppose that there exist the point $\bar{x} \in X$ and the contractive gauge function $a:R_+ + R_+$ fulfilling $(a_1)-(a_2)$ so that the inequality holds

$$(3.1) d(\bar{x},fx) \leq a(d(\bar{x},x))$$

for each $f \in F$ and each $x \in X$.

Then $F \in (C.4)_{id_X}$ i.e. for each $\lambda \in (0,1)$, there exists a metric d_λ , topologically equivalent to d, and complete if d is complete such that the inequality (3.2) holds:

(3.2)
$$d_{\lambda}(f_1x,f_2y) \leq \gamma (d_{\lambda}(x,y) + d_{\lambda}(x,f_2y) + d_{\lambda}(f_1x,y))$$
for each $f_1, f_2 \in F$, $x,y \in X$, where $\gamma = \frac{1}{3}$.

PROOF. a) We define the family of balls $(B_n(r_0))_{n\in\mathbb{Z}}$ as follows

$$B_n(x_0) = \{x \in X : d(\overline{x}, x) \le \alpha_n\},$$

 $n \in Z = \{0, \pm 1, \ldots\}, r_0 > 0,$

where

$$\alpha_n = \begin{cases} a^n(r_0) & \text{for } n = 0, 1, 2, ... \\ \\ \min\{r: r \in a^n(r_0)\} & \text{for } n = -1, -2, ..., \end{cases}$$

where

$$a^{-p}(r_0) = \{r \in R_+ : a^p(r) = r_0\} = (a^p)^{-1}, p=1,2,...$$

Function µ is defined in the following way

$$\mu(x,y) = \begin{cases} n(x) + n(y) & \text{for } x \neq \text{and } y \neq \bar{x} \\ \\ 2\min\{n(x), n(y)\} & \text{for } x = \bar{x} \text{ or } y = \bar{x}. \end{cases}$$

From the definition of μ we get the inequality for $f_1, f_2 \in F$, $x \neq \overline{x}$ and $y \neq \overline{x}$

$$\mu(f_1x,f_2y) \ge \max\{\mu(x,y),\mu(x,f_2y),\mu(f_1x,y)\} + 1.$$

For $\gamma = \frac{1}{3} \lambda$ we define

$$\rho_{\gamma}(x,y) = \begin{cases} 0 & \text{if } x = y = \bar{x} \\ \\ \gamma^{\mu(x,y)} d(x,y) & \text{if } x,y \in X, x \neq \bar{x} \text{ or } y \neq \bar{x}. \end{cases}$$

If $x \neq \overline{x}$ and $y \neq \overline{x}$, then we can easily obtain the inequality $\rho_{\gamma}(f_1x, f_2y) \leq \gamma(\rho_{\gamma}(x, y) + \rho_{\gamma}(x, f_2y) + \rho_{\gamma}(f_1x, y))$, $f_1f_2 \in F$.

However, if
$$\mathbf{x} = \overline{\mathbf{x}}$$
 and $\mathbf{y} \neq \overline{\mathbf{x}}$, then
$$\rho_{\gamma}(\mathbf{f}_{1}\overline{\mathbf{x}}, \mathbf{f}_{2}\mathbf{y}) = \rho_{\gamma}(\overline{\mathbf{x}}, \mathbf{f}_{2}\mathbf{y}) =$$

$$= \mu(\overline{\mathbf{x}}, \mathbf{f}_{2}\mathbf{y}) \qquad \mu(\overline{\mathbf{x}}, \mathbf{y}) = \mu(\overline{\mathbf{$$

and again we receive

$$\rho_{\gamma}(\mathtt{f}_1\overline{\mathtt{x}},\mathtt{f}_2\mathtt{y}) \, \leq \, \gamma(\rho_{\gamma}(\overline{\mathtt{x}},\mathtt{y}) \, + \, \rho_{\gamma}(\overline{\mathtt{x}},\mathtt{f}_2\mathtt{y}) \, + \, \rho_{\gamma}(\mathtt{f}_1\overline{\mathtt{x}},\mathtt{y})) \, .$$

Thus for each $x,y \in X$ and $f_1,f_2 \in F$,

$$\rho_{v}(f_{1}x,f_{2}y) \leq \gamma(\rho_{v}(x,y) + \rho_{v}(x,f_{2}y) + \rho_{v}(f_{1}x,y)).$$

Obviously, $\rho_{\gamma}(x,y) = \rho_{\gamma}(y,x)$ and $\rho_{\gamma}(x,y) = 0$ iff x = y, $x,y \in X$.

b) Now we shall introduce the functional for which the triangle inequality holds.

Let

$$d_{\lambda}(x,y) = \inf\{L_{\gamma}(\sigma_{xy}) : \sigma_{xy} \in \Sigma_{xy}\},$$

where Σ_{xy} denotes the set of chains $[x = x_0, ..., x_m = y]$ and

$$L_{\gamma}(\sigma_{xy}) = \sum_{i=1}^{m} \rho_{\gamma}(x_i, x_{i-1}).$$

We have $d_{\lambda}(x,y) = d_{\lambda}(y,x)$, $d_{\lambda}(x,x) = 0$ and $d_{\lambda}(x,y) \le d_{\lambda}(x,z) + d(z,y)$ for $x,y,z \in X$.

c) We shall prove that $d_{\lambda}(x,y)>0$ for $x\neq y,\ x,y\in X$. Let $y\neq \bar{x}$ and let, for example, $n(x)\leq n(y)$ for some $y\in X$. Then:

$$d_{\lambda}(x,y) \ge \gamma^{2n(y)} \min\{d(x,y),d(x,B_{n(y)+1}(r_0)),d(y,B_{n(y)+1}(r_0))\}$$

and hence $d_{\lambda}(x,y) > 0$, where d(x,A) denotes, as usual, the distance between point x and set A.

Analogically, if $y = \overline{x}$ then we have $d_{\lambda}(x,\overline{x}) \ge 2 y^{2n(x)} d(x,B_{n(x)+1}(r_0)) > 0$. Thus is this case we also have $d_{\lambda}(x,y) > 0$ for $x \ne y$, $x,y \in X$.

d) Metrics d_1 and d are topologically equivalent.

At first let $x \neq \overline{x}$ and let $x \in (B_{n(x)-k}(r_0))^O$ for some $k \in N$, and moreover $n(y) \ge n(x)$ for some $y \in X$, where for $A \subset X$, A^O denotes the d-interior of A.

We have the inequality

$$d_{\lambda}(x,y) \leq \gamma^{2\{n(x)-k\}} \min\{d(x,y),d(x,X \setminus (B_{n(x)-k}(r_{o}))^{\circ}\}$$

 $d(y,X \setminus (B_{n(x)-k}(r_{o}))^{\circ}\}.$

Let $\varepsilon > 0$. If $d(x,y) < \delta$, where

$$\delta = \epsilon \gamma^{-2\{n(x)-k\}} \min\{1, d(x, X \setminus (B_{n(x)-k}(r_0))^0), d(y, X \setminus (B_{n(x)-k}(r_0))^0)\}$$

then $d_{\lambda}(x,y) < \varepsilon$ and therefore, if $d(x_n,x) \neq 0$, then $d_{\lambda}(x_n,x) \neq 0$ as $n + \infty$.

Let $n(y) \le n(x)$ for some $x,y \in X$, $x \ne \overline{x}$. Then the inequality holds

$$d_{\lambda}(x,y) \ge \gamma^{2\{n(x)+k\}} \min\{d(x,y),d(x,B_{n(x)+k}(r_{o})),d(y,B_{n(x)+k}(r_{o}))\}$$

for some k ∈ N.

Let $0 < \varepsilon < \min\{d(x,B_{n(x)+k}(r_0)),d(y,B_{n(x)+k}(r_0))\}$. Hence, if

 $d_{\lambda}(x,y) < \delta = \varepsilon \delta^{2\{n(x)+k\}}, \text{ then } d(x,y) < \varepsilon. \text{ Thus } d_{\lambda}(x_n,x) + 0 \text{ implies } d(x_n,x) + 0 \text{ as } n + \infty.$

Let now $x = \overline{x}$ and let, for example, $y \in B_O(r_O)$. We have

$$d_{\lambda}(\bar{x},y) \leq \rho_{\gamma}(\bar{x},y) \leq d(\bar{x},y)$$

and so if $d(x_n, \bar{x}) \to 0$ then $d_{\lambda}(x_n, \bar{x}) \to 0$ as $n \to \infty$.

For each $\varepsilon > 0$ there exists n_o such that $\min\{a^{n_o}(r_o)\} < \frac{\varepsilon}{2}$. If $d(\bar{x},y) > \varepsilon$ then $d(y,B_{n_o}(r_o)) > \frac{\varepsilon}{2}$ and $d_{\lambda}(\bar{x},y) \ge \gamma^{m_o} d(y,B_{n_o}(r_o)) > \gamma^{m_o} \frac{\varepsilon}{2}$ for some $m_o \in N$. If $d_{\lambda}(\bar{x},y) < \delta$, $\delta = \varepsilon \gamma^{-m_o}$, then $d(\bar{x},y) < \varepsilon$.

Therefore d_{λ} is topologically equivalent to d.

e) Let (X,d) be complete. We shall prove that in that case (X,d_λ) is also complete.

Let (x_m) be a Cauchy sequence in (X,d_λ) and let us assume that (x_m) is not convergent in (X,d_λ) . Then we have $n(x_m) i.e. for each <math>m \ge 0$, $x_m \notin B_p(r_0)$.

Let $b = \alpha_p - \alpha_{p+1}$, where α_p is defined as in the part a) of this proof $\{p = 0, \pm 1, \ldots\}$. For sufficiently large n,

$$d(x_n, x_{n+j}) \le b\gamma^{2(p+1)}$$
.

It is easy to verify that

$$d_{\lambda}(x_{n}, x_{n+1}) \ge \gamma^{2(p+1)} \min\{d(x_{n}, x_{n+1}), b\}.$$

In that way

$$\gamma^{-2(p+1)} d_{\lambda}(x_n, x_{n+j}) \ge d(x_n, x_{n+j})$$

and (x_n) is a Cauchy sequence in (X,d). Then $d(x_n,x) \to 0$ for some $x \in X$ and from the topological equivalence of d and d_{λ} , $d_{\lambda}(x_n,x) \to 0$. This contradiction proves that (X,d_{λ}) is complete if (X,d) is complete.

Therefore $F \in (C.4)_{\{id_X\}}$ and the proof is complete.

In [21] we get the following characterization of continuous selfmappings on a metric space:

THEOREM 3.2..([21], Theorem 2.2.) Let (X,d) be a metric space and let $f_i:X\to X$, $i=1,\ldots,n$, be continuous mappings. Suppose that there exists the point $\overline{x}\in X$ and there is a real number $\alpha>0$ so that the inequality holds

(3.3)
$$d(\bar{x}, f_i x) \le \alpha d(\bar{x}, x), i = 1, ..., n,$$

for each $x \in X$. Then the following conditions are equivalent

(i)
$$\{f_1, ..., f_n\} \in c(X,d)$$

(ii)
$$\{f_1, \ldots, f_n\} \in (C.5)_{\{id_x\}}$$
.

Now we shall formulate coincidence type converses for commuting selfmappings on metric spaces.

THEOREM 3.3.. Let F and G be two families of self-mappings on a metric space (X,d), such that (2.2)-(2.3) hold. Assume that there exist $\mathbf{x}_0 \in \mathbf{Z} = \bigcap_{\mathbf{g} \in G} \mathbf{g}(\mathbf{X})$ and a countable family of functions $(\mathbf{h_i})_{\mathbf{i} \in \mathbf{N}}, \ \mathbf{h_i}(\mathbf{x}) \in \mathbf{f_i}(\mathbf{g_i^{-1}}(\mathbf{x})), \ \mathbf{x} \in \mathbf{Z}, \ \mathbf{f_i}\mathbf{g_i} = \mathbf{g_i}\mathbf{f_i}, \ \mathbf{i} \in \mathbf{N}, \ that \ (\mathbf{Z},\mathbf{d}) \ is \ ((\mathbf{h_i})_{\mathbf{i} \in \mathbf{N}}, \ \mathbf{x_0}) - \text{orbitally complete.}$ Then $\mathbf{F} \in (\mathbf{C.4})_G$ iff there exist $\mathbf{x} \in \mathbf{Z}$ and the contractive gauge function a fulfilling $(\mathbf{a_1})$ -($\mathbf{a_2}$) such that the inequality holds

(3.4)
$$d(\bar{x}, fx) \leq a(d(\bar{x}, gx))$$

for each $f \in F$, $g \in G$, $fg = gf$, $x \in g^{-1}(Z)$.

PROOF 1. If $F \in (C.4)_G$, then by standard arguments we get that (F, \mathbf{x}_0) -orbit (\mathbf{x}_n) , $\mathbf{x}_n = \mathbf{h}_n \mathbf{x}_{n-1}$, $n = 1, 2, \ldots$, is a Cauchy orbit in $(X, \mathbf{d}_{\lambda})$ and $\mathbf{d}_{\lambda}(\mathbf{x}_n, \mathbf{x}) + 0$ for some $\mathbf{x} \in \mathbf{Z} = \bigcap_{g \in G} g(X)$.

For each $f \in F$, $g \in G$, fg = gf, we have for $h: Z \to Z$, $h(x) \in f(g^{-1}(x))$, $x \in Z$, the inequality $d_{\lambda}(\overline{x}, h\overline{x}) \le d_{\lambda}(\overline{x}, x_n) + d_{\lambda}(h_n x_{n-1}, h\overline{x}) \le d_{\lambda}(\overline{x}, x_n) + \gamma[d_{\lambda}(x_{n-1}, \overline{x}) + d_{\lambda}(x_{n-1}, h\overline{x}) + d_{\lambda}(x_n, \overline{x})]$ and taking $n \to \infty$, we get $d_{\lambda}(\overline{x}, h\overline{x}) \le \gamma d_{\lambda}(\overline{x}, h\overline{x})$ i.e., $\overline{x} = h\overline{x}$.

Thus $\bar{\mathbf{x}} \in f(g^{-1}(\bar{\mathbf{x}}))$, and from fg = gf, $f\bar{\mathbf{x}} = g\bar{\mathbf{x}}$. But $d_{\lambda}(\bar{\mathbf{x}}, f\bar{\mathbf{x}}) = d_{\lambda}(h_{1}\bar{\mathbf{x}}, f\bar{\mathbf{x}}) = d_{\lambda}(f_{1}\bar{\mathbf{u}}, f\bar{\mathbf{x}})$, where $\bar{\mathbf{u}} \in g_{1}^{-1}(\bar{\mathbf{x}})$, $g_{1}\bar{\mathbf{u}} = \bar{\mathbf{x}}$, $f_{1} \in F$, $g_{1} \in G$, $f_{1}g_{1} = g_{1}f_{1}$.

Therefore

$$\vec{a}_{\lambda}(\vec{x}, f\vec{x}) \leq \gamma[\vec{d}_{\lambda}(\vec{x}, x) + \vec{d}_{\lambda}(\vec{x}, f\vec{x}) + \vec{d}_{\lambda}(\vec{x}, f\vec{x})] =$$

$$= 2\gamma \vec{d}(\vec{x}, f\vec{x}).$$

So $\bar{x} = f\bar{x} = g\bar{x}$.

If $\overline{y} = f\overline{y} = g\overline{y}$ for each $f \in F$, $g \in G$, fg = gf, then $d_{\lambda}(\overline{x}, \overline{y}) = d_{\lambda}(f_{1}\overline{x}, f_{2}\overline{y}) \leq 3\gamma d_{\lambda}(\overline{x}, \overline{y})$ and $\overline{x} = \overline{y}$.

2. If the inequality $d(\bar{x},fx) \leq a(d(\bar{x},gx))$ holds for each $f \in G$, $g \in G$, fg = gf, then from Theorem 3.1, we get the searched for assertion.

THEOREM 3.4. ([21], Theorem 2.4.) Let (X,d) be a metric space and let $f_i, g_i: X \to X$, $f_i g_i = g_i f_i$, $f_i(X) \subset Z$, $i=1,\ldots,n$, Z=0, $g_i(X)$. Suppose that there exist the i=1 point \bar{x} in X and a real number $\alpha>0$ such that the inequality holds

(3.5)
$$d(\bar{x}, f_1 x) \le \alpha d(\bar{x}, g_1 x), i = 1, ..., n,$$

for each $x \in X$. If for each $i \in \{1, ..., n\}$ there exists a continuous choice function $h_i: Z \to Z$, $h_i(x) \in f_i(g_i^{-1}(x))$, $x \in Z$, then the following conditions are equivalent

(i)
$$\{f_1, \dots, f_n\} \in c_{\{g_1, \dots, g_n\}}(x, d)$$

(ii)
$$\{f_1, ..., f_n\} \in (C.5)_{\{g_1, ..., g_n\}}$$
.

REMARK 3.1. Theorems 3.1. and 3.3. are generalizations of the results of [22] (see [21], Theorems 2.1. and 2.3.). In [21] we prove converses of generalized Banach fixed-point theorems in the case where the contractive gauge function a in conditions (3.1) and (3.3) has the form $a(t) = \alpha t$, $t \in R_+$, $\alpha \in (0,1)$.

4. SOME REMARKS ON MAPPINGS WITH A CONTRACTIVE ITERATE AT THE POINT

Let (X,d) be a metric space. For mapping $f:X\to X$, the following conditions are taken into account

(4.1) (V.M.Sehgal [24]) there exists $\alpha \in [0,1)$, that for each $x \in X$ there exists $w(x) \in N$ that for any $y \in X$ the inequality holds

$$d(f^{w(x)}x,f^{w(x)}y) \leq \alpha d(x,y)$$

(4.2) (K.Iseki [12]) there exist α , β , $\gamma \geq 0$, $\alpha+4(\beta+\gamma)<1$, that for each $x \in X$ there is $w(x) \in N$ such that for any $y \in X$,

$$d(f^{W(x)}x,f^{W(x)}y) \leq \alpha d(x,y) + \beta[d(x,f^{W(x)}x) + d(y,f^{W(x)}y)] + \gamma[d(f^{W(x)}x,f^{W(x)}y) + d(f^{W(x)}x,y)]$$

- (4.3) (J.Matkowski [15]) there exists the function $\alpha: R_+^{5} \to R_+$, nondecreasing with respect to each variable separately, that $a: R_+ \to R_+$, $a(t) = \alpha(t, t, 2t, t, 2t)$, $t \ge 0$, has properties $(a_1) (a_2)$ and (a_3') , and let for every $x \in X$ be a positive integer w = w(x), such that for all $y \in X$, $d(f^w x, f^w y) \le \alpha(d(x, y), d(x, f^w x), d(y, f^w y), d(x, f^w y), d(f^w x, y))$.
- (4.4) (see [16]) there exists the function $\alpha: R_+^5 \to R_+$, non-decreasing related to each variable separately that $a: R_+ \to R_+$, $a(t) = \phi(t, t, 2t, t, 2t)$, $t \in R_+$ is upper-semicontinuous and r = 0 is a unique solution of the inequality $t \le a(t)$, $t \in R_+$, and for each q > 0 there exists a maximal solution m(q) of the inequality $t \le q + \phi(t, q, 2t, t, q+t)$, $t \in R_+$.

Let w:X \rightarrow N be such that for every x,y \in X, $d(f^{w(x)}x,f^{w(x)}y) \leq \phi(d(x,y),d(x,f^{w(x)}x),d(y,f^{w(x)}y),$ $d(x,f^{w(x)}y),d(y,f^{w(x)}x)).$ REMARK 4.1. V.M. Sehgal [24] and K.Iseki [12] assumed f to be a continuous mapping in a complete metric space.

L.Guseman noted in [8] that the continuity condition of f in the fixed point theorems of Sehgal and Iseki is superfluous.

THEOREM 4.1. Let f fulfil one of conditions (3.1)-(3.4) and let (X,d) be an (F,x₀)-orbitally complete metric space for some $x_0 \in X$, where $F(x) = f^{W(x)}x$, $x \in X$. Then there exists a unique common fixed point \bar{x} of f in X and $d(f^{n}x,\bar{x}) \rightarrow 0$ for each $x \in X$. If f fulfils (4.1)-(4.4), then $f^{m} \in gc(X,d)$, $m = w(\bar{x})$. If f is continuous in topology τ_d and if one of (4.1)-(4.4) holds, then $f \in c(X,d)$.

PROOF. We have the following sequence of implications: $(4.1) \Rightarrow (4.2) \Rightarrow (4.3) \Rightarrow (4.4)$.

- A) In [16] we prove (see also [21]) that if (4.4) holds, f has a unique fixed point \bar{x} in X and $d(f^nx,\bar{x}) \to 0$ for each $x \in X$.
- B) If f fulfils (3.4), then $d(\bar{x}, f^m x) \le a(d(\bar{x}, x))$, $x \in X$. Function a fulfils $(a_1) (a_2)$ and thus the assumptions of Theorem 3.1. are fulfilled. In consequence $f \in gc(X, d)$.
- C) If f fulfils (4.1)-(4.4) and f is a continuous mapping in the topology generated by d, then all the assumptions of Meyers Theorem [18] hold for the iterate f^{m} of f, $m = w(\bar{x})$.

For example, there exists an open neighbourhood U of \bar{x} that $f^{nm}(U) \to \{\bar{x}\}$. But in that case also $f^n(W) \to \{\bar{x}\}$, where

$$W = \bigcap_{j=0}^{m-1} f^{-j}(U)$$

(compare P.Meyers [18]). As a result f ∈ c(X,d).

(4.5) (W.Walter [25], (C.5)) for every $x \in X$ there exists a positive integer w(x) such that for $n \ge w(x)$ and $y \in X$,

$$d(f^nx, f^ny) \le a(diam(O_f(x,n) \cup O_f(y,n))),$$

where $a:R_+ \rightarrow R_+$ fulfils $(a_1)-(a_2)$ and (a_3')

(4.6) for every $x \in X$ there exists $w(x) \in N$ such that for $n \ge w(x)$, $y \in X$,

$$d(f^{n}x,f^{n}y) \leq a(diam(O_{f}(x,n) \cup O_{f}(x,n))),$$

where $a:R_+ \rightarrow R_+$ fulfils (a_1) and (a_3) .

THEOREM 4.2. Let (X,d) be a complete metric space and f be a continuous selfmapping on X fulfilling one of the conditions (4.5)-(4.6). Then there exists a unique fixed point \bar{x} of f in X and $d(f^nx,\bar{x}) \rightarrow 0$ for each $x \in X$. Moreover, $f \in qc(X,d)$.

PROOF. A) We have the implication $(4.5) \Rightarrow (4.6)$. It is easy to verify, on the basis of Lemma 2.2, that $\operatorname{diam}(O_f(x)) < \infty$ for each $x \in X$. Let $\rho(x,x) = 0$ and $\rho(x,y) = \operatorname{diam}(O_f(x)) \cup O_f(y)$ for $x,y \in X$. It is obvious that (X,ρ) is a metric space and for each $x \in X$ there exists $w(x) \in N$, that for any $y \in X$, $\rho(f^{w(x)}x,f^{w(x)}y) \le a(\rho(x,y))$, $x,y \in X$. We also have $\rho(x,y) \ge d(x,y)$ for each $x,y \in X$.

B) Now we shall prove that (X,ρ) is F-orbitally complete, where $Fx = f^{W(X)}x$, $x \in X$.

Let (x_n) be (F,x_0) -orbit for some x_0 , i.e. $x_n = f \begin{pmatrix} w(x_{n-1}) \\ x_{n-1} \end{pmatrix}$, n = 1, 2, ...

As in the proof of Theorem 2.2. of [21], we have

$$\sup\{\sup\{\rho(x_k,f^1x_k):1\geq 1\}:k\geq n\}\to 0\quad \text{as}\quad n\to\infty$$

and so (x_n) is a Cauchy sequence in (X,d) and $d(x_n, \bar{x}) \to 0$ for some $\bar{x} \in X$.

Moreover, $\sup\{\sup\{d(x_k,f^1x_k):1\geq 0\}:k\geq n\}\to 0$ and thus $\rho(x_n,f^kx_n)\to 0$ as $n\to\infty$ for each $k\in N$.

We have

$$\begin{split} & \rho\left(\bar{\mathbf{x}},\mathbf{x}_{n}\right) \; = \; \text{diam}\left(O_{\mathbf{f}}\left(\bar{\mathbf{x}}\right) \cup \; O_{\mathbf{f}}\left(\mathbf{x}_{n}\right)\right) \; = \\ & \max\{\sup\{d\left(\mathbf{f}^{k}\bar{\mathbf{x}},\mathbf{f}^{l}\bar{\mathbf{x}}\right):k,l \geq 0\}, \; \sup\{d\left(\mathbf{f}^{k}\mathbf{x}_{n},\mathbf{f}^{l}\mathbf{x}_{n}\right):k,l \geq 0\}, \\ & \sup\{d\left(\mathbf{f}^{k}\bar{\mathbf{x}},\mathbf{f}^{l}\mathbf{x}_{n}\right):k,l \geq 0\}\}. \end{split}$$

On the other hand, we get estimations

$$\begin{split} d(f^{k}\bar{x},f^{l}\bar{x}) & \leq d(f^{k}\bar{x},f^{k}x_{n}) + d(f^{k}x_{n},x_{n}) + d(x_{n},f^{l}x_{n}) + \\ & + d(f^{l}x_{n},f^{l}\bar{x}), \\ d(f^{k}x_{n},f^{l}x_{n}) & \leq d(f^{k}x_{n},x_{n}) + d(x_{n},f^{k}x_{n}) \quad \text{and} \\ d(f^{k}\bar{x},f^{l}x_{n}) & \leq d(f^{k}\bar{x},f^{k}x_{n}) + d(f^{k}x_{n},x_{n}) + d(x_{n},f^{l}x_{n}) \end{split}$$

and from the continuity of f in τ_d , we obtain $\rho(x_n, \bar{x}) \to 0$ as $n \to \infty$.

From Theorem 4.1, we get the assertion

(4.7) (O.Hadžić [9], Theorem 2) Let $f,g_1,g_2:X \to X$ be such that

(i)
$$f,g_1,g_2$$
 are continuous in τ_d

(ii)
$$f(x) \subset Z$$
, $Z = g_1(x) \cap g_2(x)$

(iii)
$$fg_i = g_i f_i$$
, $i = 1,2$.

Let there exist $w:X \to N$ and $q \in [0,1)$ that

(iv)
$$d(f^{w(x)}x, f^{w(x)}y) \le q \min\{d(g_1x, g_2y), d(g_2x, g_1y)\},$$

 $x,y \in X$

(v) for every $x \in X$, one of the sets $\{f^{m}g_{1}^{p}x: p \in N, m \in \{0,1,...,w(x)-1\}\} \text{ and } \{f^{m}g_{2}^{p}x: p \in N, m \in \{0,1,...,w(x)-1\}\}$

is bounded.

THEOREM 4.3. (compare Theorem 4.1. of [21]) Let (X,d) be a complete metric space and let $f,g_1,g_2:X \to X$ fulfil

condition (4.7). Then for each $\lambda \in (0,1)$, there exists a metric d_{λ} on Z, topologically equivalent to d, and complete if d is complete, such that $d_{\lambda}(f^{m}x,f^{m}y) \leq \gamma(d_{\lambda}(g_{\underline{i}}x,g_{\underline{j}}y) + d_{\lambda}(g_{\underline{i}}x,f^{m}y) + d_{\lambda}(f^{m}x,g_{\underline{j}}y)$ for $x \in g_{\underline{1}}^{-1}(Z)$, $y \in g_{\underline{j}}^{-1}(Z)$, $i,j \in \{1,2\}$, $\gamma = \frac{1}{3}\lambda$, $m = w(\overline{x})$, $\overline{x} = f\overline{x} = g_{\underline{1}}\overline{x} = g_{\underline{2}}\overline{x}$.

If in addition there exist continuous choice functions $h_{\underline{i}}:Z+Z$, $h_{\underline{i}}(x)\in f^{m}(g_{\underline{i}}^{-1}(x))$, $x\in X,\ i=1,2,\ m=w(\bar{x})$, then for each $\alpha\in (0,1)$ there exists a metric d_{α} , topologically equivalent to d, and complete if d is complete, such that $d_{\alpha}(f^{m}x,f^{m}y)\leqslant \alpha d_{\alpha}(g_{\underline{i}}x,g_{\underline{i}}y)$, $x,y\in g_{\underline{i}}^{-1}(Z)$, $i=1,2,\ m=w(\bar{x})$.

(4.8) (O.Hadžić, Lj.Gajić [10], Theorem 1) Let f,g_1,g_2 be such selfmappings on (X,d), that (4.7)(i)-(iii) holds. Suppose that there exist w:X \in N and nondecreasing $q:[0,\infty) \rightarrow [0,1)$, lim $t(1-q(t)) = \infty$, such that

(vi)
$$d(f^{w(x)}x, f^{w(x)}y) \le$$

 $\leq min\{q(d(g_1x, g_2y)) \cdot d(g_1x, g_2y),$
 $q(d(g_2x, g_1y)) \cdot d(g_2x, g_1y)\}, x, y \in X,$

(vii) for some
$$x_0 \in X$$
 one of the sets
$$\{f^m g_1^p x_0 : p \in N, m \in \{0, \dots, w(x_0) - 1\}\} \text{ and } \{f^m g_2^p x_0 : p \in N, m \in \{0, \dots, w(x_0) - 1\}\}$$

is bounded.

THEOREM 4.4. Let (X,d) be a complete metric space and let $f,g_1,g_2:X\to X$ fulfil condition (4.8). If function $g:[0,\infty)\to [0,1)$ is continuous from the right, then $f^{\overline{M}}\in (C.4)_{\{g_1,g_2\}}, \quad \overline{M}=w(\overline{X}), \quad \overline{X}=f\overline{X}=g_1\overline{X}=g_2\overline{X}. \quad \text{If, besides that, there exist continuous choice functions } h_1:Z\to Z, \quad h_1(X)\in f^{\overline{M}}(g_1^{-1}(X)), \quad X\in Z, \quad 1=1,2, \quad \overline{M}=w(\overline{X}), \quad \text{then } f\in C_{\{g_1,g_2\}}(X,d).$

PROOF. From Theorem 1 of [10], there exists a unique common fixed point \bar{x} of f,g₁,g₂ in X, $\bar{x} \in Z$.

We have the inequality

$$d(\bar{\mathbf{x}}, \mathbf{f}^{\mathbf{m}}\mathbf{x}) \leq \min\{q(d(\bar{\mathbf{x}}, \mathbf{g}_{2}\mathbf{x}))d(\bar{\mathbf{x}}, \mathbf{g}_{2}\mathbf{x}), q(d(\bar{\mathbf{x}}, \mathbf{g}_{1}\mathbf{x}))d(\bar{\mathbf{x}}, \mathbf{g}_{1}\mathbf{x})\}$$

i.e. $d(\bar{x}, f_2^m x) \le q(d(\bar{x}, g_1 x)) d(\bar{x}, g_1 x)$ for each $x \in X$, i = 1, 2. Thus the assumptions of Theorem 3.3. are fulfilled and $f \in (C.4)_{\{g_1,g_2\}}$.

If there exist continuous choice functions $h_1, h_2: \mathbb{Z} \to \mathbb{Z}$, all the assumptions of Theorem 3.4. hold and $f \in c_{\{g_1,g_2\}}(X,d)$ (iff $f \in (C.5)_{\{g_1,g_2\}}$). The proof is complete.

(4.9) (O.Hadžić, L.Gajić [10], Theorem 2). Let $G = \{g_1, g_2\}$, where $g_1, g_2: X \to X$ are continuous mappings. Let F be a countable family of mappings $f_1: X \to Z$, $i = 1, 2, \ldots$, $Z = g_1(X) \cap g_2(X)$ such that $f_i g_j = g_j f_i$, $i \in N$, $j \in \{1, 2\}$. Suppose that $g: [0, \infty) \to [0, 1)$ is a nondecreasing continuous function and for every $x, y \in X$:

$$d(f_{i}x,f_{j}y) \leq q(d(g_{1}x,g_{2}y))$$

$$i \neq j, i,j \in \mathbb{N}.$$

THEOREM 4.5. Let (X,d) be a complete metric space and let F and G fulfil (4.9). Then F \in (C.4)_G. If card F = n, i.e., F = {f₁,...,f_n} and for each $i \in \{1,...,n\}$ there exist continuous choice functions $h_i: Z \to Z$, $h_i(x) \in f_i(g_k^{-1}(x))$,

 $x \in Z$, k = 1 and k = 2, then $F \in (C.5)_G$.

PROOF. O.Hadžić and L.Gajić in [10] proved that there exists a unique common fixed point \bar{x} of f_i , $i=1,\ldots$ and g_1 and g_2 in X, $\bar{x}\in Z$. Thus we have the inequality

$$d(\bar{x}, f_j x) \le q(d(\bar{x}, g_k x))d(\bar{x}, g_k x)$$

for $j \in N$ and $k \in \{1,2\}$. Hence from Theorem 2.3, $F \in (C.4)_G$.

The second part of the assertion follows from Theorem 2.4.

FINAL REMARK. Theorems of paragraph 3 of this work give a new possibility of presenting a wide range of contractive type mappings. An attempt of a survey of mappings belonging to classes c(X,d), gc(X,d) and qc(X,d) has already been made by us before in [21].

REFERENCES

- [1] Babu, A.C., A Converse to a Generalized Banach Contraction Principle, Publ. Inst. Math. (N.S) 32(46)(1982), 5-6.
- [2] Bessaga, C., On the Converse of the Banach Fixed Point Principle, Coll. Math. VII, (1959), (1), 41-43.
- [3] Browder, F., Remarks on Fixed Point Theorems of Contractive Type, Nonl. Anal. 3(3)(1979), 657-661.
- [4] Ćirić, L., On Contraction Type Mappings, Math. Balk. 1(1971), 52-57.
- [5] ***, Generalized Contractions and Fixed Point Theorems, Publ. Inst. Math. (N.S) 12(1971), 19-26.
- [6] Conserva, V., Fedele, F., Remark on Browder's Fixed Point Theorem, Math. Jap. 28(2)(1983), 233-237.
- [7] Fisher, B., Mapping with a Common Fixed Point, Math. Sem. Notes, Kobe Univ. 7(1979), 81-84.
- [8] Guseman, L.F., Fixed Point Theorems for Mappings with a Contractive Iterate at a Point, Proc. Amer. Math. Soc. 26(1970), 615-618.
- [9] Hadžić, O., A Common Fixed Point Theorem in Metric Spaces, Math. Sem. Notes, Kobe Univ., 10(1982), 317-322.
- [10] Hadžić, O., Gajić, L., Common Fixed Point Theorems in Metric Spaces, Review of Research Faculty of Science University of Novi Sad, 14(1)(1984), 1-14.
- [11] Husain, S., Sehgal. V., A Fixed Point Theorem with a Functional Inequality, Publ. Inst. Math. 21 (35) (1977), 89-91.
- [12] Iseki,K., A Generalization of Sehgal-Khazanchi's Fixed
 -Point Theorems, Math. Sem. Notes, Kobe Univ. 2(1974),
 1-9.
- [13] Janos, L., A Converse of Banach's Contraction Theorem, Proc. Amer. Math. Soc. 18(1967), 287-289.

- [14] Khan, M.S., Remarks on some Fixed Point Theorems, Demonstratio Mathematica, XV, 2(1982), 375-379.
- [15] Matkowski, J., Fixed Point Theorems for Mappings with a Contractive Iterate at a Point, Proc. Amer. Math. Soc., 62(1977), (2), 344-348.
- [16] Miczko, A., Palczewski, B., Some Remarks on the Sehgal Generalized Contraction Mappings, Zeszyty Naukowe Politechniki Gdanskiej, Matematyka XII, (1982), 21-32.
- [17] Miczko, A., Palczewski, B., Common Fixed Points of Contractive Type Mapping in a 2-Metric Space, Math. Nachr., 124(1985).
- [18] Meyers,P., A Converse to Banach's Contraction Theorem, J.

 Res. Nat. Bur. Standards, (1967), 73 76.
- [19] Opojcev.W.I., The Converse of the Contraction Mapping Principle, Uspehi Mat. Nauk 31(1976), 169-198.
- [20] Palczewski, B., Miczko, A., On some Converses of Generalized Banach Contraction Principles, Zeszyty Naukowe Politechniki Gdanskiej, Matematyka XIV, (to appear).
- [21] Palczewski, B., Miczko, A., On some Converses of Generalized Banach Contraction Principles II, Zeszyty Naukowe Politechniki Gdanskiej, Matematyka XIV, (to appear).
- [22] Park, S., A Generalization of a Theorem of Janos and Edelstein, Proc. Amer. Math. Soc. 66(1977), 344-346.
- [23] ***, Characterization of Metric Completeness, Coll. Math. XLIX (1984), 21-26.
- [24] Sehgal, V.M., On Fixed and Periodic Points for a Class of Mappings, J. London Math. Soc. 2(5)(1972), 571-576.
- [25] Walter, W., Remarks on a Paper by F. Browder about Contraction, Nonl. Anal. 5(1)(1981), 21-25.
- [26] Xieping, D., Fixed-Point Theorems of Generalized Contractive Type Mappings II, Chin, Ann. of Math. 4B(2), (1983), 153-163.

REZIME

INVERZIJE UOPŠTENJA BANAHOVOG PRINCIPA KONTRAKCIJE I PRIMEDBE O PRESLIKAVANJIMA SA KONTRAKTIVNOM ITERACIJOM U TAČKI

U ovom radu su dokazane inverzije nekih uopštenja Banahovog principa kontrakcije.

Received by the editors August 11, 1985.