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ABSTRACT

A new definition of the convolution of distributi-
ons is given and some of its properties are Investigated.

-4
The convolution of two functions is normally defined as follows,

see for example Sikorski [5].

Definition 1.let f and g be functions. _Then the convolution

f * g is defined by

(£ = g)x) = Jm £(t)g(x~t)at

for all points x for which the integral exists.

It follows easily from the definition that if (f * g)(x) exists
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then (g * £)(x) exists and

(£ *g)(x) = (8*£)(x) A - (1)
and if (£ *# g)'(x) and (f * g'}(x) (or (£' * g)(x)) exist, then
(£ *g)(x) = (£=*g")x) (or (£' * g)(x)). (2)

The following theorem also holds and it is an immediate

consequence of Hoélder's inequality for integrals.

Theorem 1.Iet f and g be functions in IP(~w,w) and LY(-e,e)
respectively, where 1/p + 1/q = 1. Then the convolution

(£ * g)(x) exists for all values of x.

Now suppose that the convolution (f * g)(x) exists for all
values of x and let ¢ be an arbitrary test function in the space
K of infinitely differentiable functions with compact support. Then

) ) .
J $(x) J £(t)g(x - t)dtdx
- -

((£ * 8)(x),¢(x))

r &(y) r £(+)¢(y + t)atdy

—o —eo
which for convenience we will write as
((£ = g)(x),8(x)) = (&(y),(£(x),8(x + ¥)),
even though the infinitely differentiable function (f(x), ¢(x+y))
does not necessarily have bounded support.
This leads us to the following definition for the convolution
of certein distributions f and g, see for example Gelfand and

_Shilov [3].

Definition 2.1et f and g be distributions satisfying either
of the following conditions:

() either f or g has bounded support,
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(v) the supports of f and g are bounded on the same side.
Then the convolution f * g 1s defined by-

e, ex) = (e(y),(e(x) , 0(x + ¥))
for a.rbif.rary test function ¢ in K.

Note that with 'l;his definition, if f has bounded support,
then (£(x), ¢(x+y)) isin K and so (g(y),(£(x),4(x + ¥)))
is meaningful. If on the other hand either g has bounded support
or the supports of f and g are bounded on the same side, then
the intersection of the supports of g(y) and (£(x), ¢{(x+ y))
is bounded and so (g(y),(f(x), ¢(x + y))) is again meaningful.

It follows that if the convolution f * g exists by this
definition then equations (1) and (2) always hold.

Definitions 1 and 2 are very restrictive and can only be
used for a small class of distributions. In order to extend the
convolution to a larger class of distributions, Jones [4] gave

the following definition.

Definition 3.Iet £ and g be distributions and let 7 be an
infinitely differentiablefunction satisfying the following conditions:
(1)  r(x) = 1(=x),

(11) o0 £ 7(x) < 1,

(1ii1) r(x) = 1 for |x| € %,
(iv) 7(x) = 0 for |x| 2 1.
let

£(x) = £(x)r(x/n), g (x) = g(x)r(x/n)
for n=1,2, ... . Then the convolution f * g is defined as the

1imit of the sequence ifn * gn], providing the limit h exists
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in the sénse that

lim (fn * B ¢) = (h, $)

N+w

for all test functions ¢ in K.

Note that in this definition the convolution fn * 8, exists
by definition 2 since fn and 8, both have bounded supports.
It is also clear that if the limit of the sequence {fn * gn}

exists, so that the convolution f * g exists, then equation (1)

holds. However equations (2) need not necessarily hold since

Jones proved that
1 *8gnx = x = sgnx *1
and
(1 *sgnx)' =1, 1" * sgnx =0, 1 * (sgnx)"' - 2.
An alternative extension of definitions 1 and 2 was given
in [2]. To distinguish this definition from definition 3 the
"convolution of two distributions f and g was denoted by £ ® g

when it existed.

Definition b4.let f and g be distributions and let £, be
defined as in definition 3. Then the convolution £f®g is defined

as the limit of the sequence {fn * gnl, providing the limit h

exists in the sense that

im (fm'l gs9)

Db

(h, ¢)
- for all test functions ¢ in K.

In this definition the convolution fn * g 1s in the sense of
definition 2, the distribution fn having bounded support. We also

note that because of the lack of symmetry in this definition the
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convolution of two distributions is not always commutative.

In the following we are now going to give another non-commutative
extension of definitions 1 and 2. This definition is also
possibly an extension of definition )4 since not only are all the
results proved in [2] in agreement with the new definition but
further convolutions exist which are not defined by definition 'l...
Whether or not there exist distributions f and g which give
different results for the convolution f @g, or for which the
| convolution f ® g exists by definition l;-. but not by the new
definition, are open guestions.

First of all we need the following definition given by van der

Corput ' [1].

Definition 5.A neutrix N is a commutative additive group of
functions v : N' - N* (where the domain N' 4s a set and the
range N"' is a commutative additive group) with the property that
if v isin N and v(f) =y for all ¢ in N', then 4 =0,
The functions in N are said to be negligible. Now suppose that N'
is contained in a topological space with a 1limit point b which is
not in N' and let N be a commutative additive group of functions
v ¢+ N' «+ N* with the property that if N contains a function of

¢ which tends to a finite limit vy as ¢ tends to‘ b, then «

= 0. It follows that N is a neutrix. If now f : N' » N" and
there exists a constant # such that f(£) - F 1is negligible in
N, then £ is called the neutrix limit of f£(£) as & tends to
b and we write

N-lim £(£) = B,
£+b
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where A 1s always unique if it exists.

Definition 6.let £ and g be distributions and let T, be

the infinitely differentiable function defined by

1, le € n,
-rn(x) = r(n"x - nn+1)’ x> n,
r(n"x + ™Y, x< -n,

where 7T is defined as in definition 3. let

£.(x) = £(x)7 (x)

for n=1,2, ... . Then the convolution f@g is defined as the
neutrix 1limit of the sequence {fn * g}, providing the limit h

exists in the sense that

N-lin (f_*g,¢) = (h,9)

Nerowo
for all test t‘ur_xctions ¢ in X, where N 1s the neutrix having
domain N' = {1,2, «.. ,n, ...} and range N" the real numbers
with negligible flunctions finite linear sums of the functions
nA'lnr-d n, inTn
for A>0 end r=1,2, ... , and all functions f(n) for which
lim £(n) = 0.

N~»oo

The convolution fn * g in this definition is again in the
sense of definition 2, the distribution fn having bounded
. support since the support of L is contained in the interval
(-n=n"",n+ n0).

From now on all the convolutions denoted by f * g will be as
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defined in definitions 1 or 2 and those denoted by f®g will

be as defined in definition 6.

Theorem 2.Let f and g be functions in IP(-w,=) and LY (~c0 00 )
respectively, where 1/p + 1/q = 1. Then the convolution f® g

exists and

r®g = r*g.

Proof. For arbitrary ¢ > 0 we have

|7 e(tdetx - 0201 - 7 (0)]ae

It * g -1 *el

N

le(t)g(x ~ t)] at < €
el 2n
for all n greater than some ny. Thus if ¢ is an arbitrary test

function in K then
[(£*8,8) - (f, *g,¢)| < sup {lp(x)|}e

for n > n, and it follows that

lim (£, *&,9¢) = (f£*g,¢) = N-lim(f *g,9),

N> oo N-w
or equivalently that
r®g

This completes the proof of the theorem.

f*g.

This theorem therefore shows that definition 6 is an extension
of definition 1. The next theorem shows that definition 6 1is also

an extension of definition 2.

Theorem 3.1et f and g be distributions satisfying either
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condition (a) or condition (b) of definition 2. Then the
con;rolution f@g exists and

f@g = f*g,
Proof. Suppose first of all that the support of £ is bounded.

Then f = fn for large enough n and so

Lin (£, *g,9¢) = (f*g,¢) = N-ln (£ *g,¢)

N> N eo
for all test functions ¢ in K. The result follows in this cas.e. |
Now suppose that the support of g 1is contained in the bounded
interval (a,b) and let ¢ be an arbitrary test function in K

with support contained in the bounded interval (c¢,d). Then

(r*g-f *g,¢) = (e(y),(f(x) - £,(x), ¢(x+y)))

b d-y
J s(y) J £(x)[1 ~ 7 (x)]¢(x +y)axdy

a c=y
= 0
for large enough n and the result follows in this second case.
Finally suppose that the supports of f and g are bounded on
the same side, say on the left, so that the supports of f and g
are contained in the half-bounded intervals (a,w) and (b,e)
respectively. Then if ¢ d4is an arbitrary test function in K with

its support contained in the bounded interval (c,d) we have

) L] d—y
(crg-1,069) = [ 80) | " 20alt -7 00l00ery) axay.
ey

Now £(x) =0 if x< a and so

d-y
[ 2t - 700160 + yax = o
c-y

if y>d -~ a. Thus
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d-a d-y
(crg-t,0 69 = [ 6] £t (eteey) ey
c—~y .

= 0
for large enough n and the result follows in this third case. .

This completes the proof of the theorem.

Having proved that definition 6 13 an extension of both
definitions 1 and 2, we will now consider a particular
cohnvolution which is defined by definition. 6 but which is not

defined by definitions 1, 2, 3 or 4.
Example. 2 ® (22 4 ¢2)-1 = "1_(x2 - ¢2). (3)
We put
(::2)n = xzrn(x), f((x) = (x2 + ¢2)-1.

Then the convolution (::2)n * fg_(x) " exists by definition 1 and

(P, * £ (x) = r (x - )27 (x = ) 4,
- 2

-n
2 2
= jmx =) gy rm o)t 5
nx 24 nrx t?+ 2

. j-m-x (x=t)’r(x-1) at.

-n-n4x 24+ €2
Now
X (x - t)2 _ ™HX x2 - €2 oxt
5 at = > >~ 3 > + 1]dt
X tT+ ¢ -mx - t7 +.¢€ t + ¢

- ' . 2 2
N [tm-‘ln-n-x _tan—1x:n]_x1n(n+x) * €, om,

€
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ljnm ax {x~ )2 r(x-tzdt‘ < (nen i

tec (n+x)2 * (2
and similarly
> 4 2
; o {x - t)r(x~-t) at = o(x™
o0 4x tz +? ( )

It follows that

w-1im ((2) ¢ £ (x), $(x)) = L(2 - ¢2,9)

Nee

for arbitrary test function ¢ in K and equation (3) follows.

We now put
] = £ £ = -—2———2—€
‘(X) ¥ ‘(x) {x" +€°) °

It is well-known that

1im § (I) = 5(1),
€+ 0

where & 1is the Dirac delta-function, and it follows from

equation (3) lthat

22®8€ =‘iz-€2-

@8 = 2 = XZ‘S,
t-vO

& result we should certainly hope to obtain since & acts as the
identity with the convolution product.
It can be proved similarly that

’(224— ¢2)-1 ®F = z-(xz-cz)
and so we also have

11::)8‘@}::2:8*::2.

We now prove scae more general results.
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Theorem 4, Llet  and g be distributions and suppose that the
convolution £ ® g exists. Then the convolution r®g' exists

and

(r®g)' = r®g'.

Proof. Since the convolution fn * g exists by definition 2 we

have
(£, *8) = £ =g
Thus
((£Pg)',¢) = ~(£@g,¢') = - Nlin (£ *g,¢"')
b e T
= Nlim (£, *&)',¢) = N-lin (£ *g',9)
N4w N ~»eo

for arbitrary test function ¢ in K. It follows that the
convolution f®g' exists and
(r@®g) = £G@g".

This completes the proof of the theorem.

This result also holds for the convolution given by definition

L, see theorem 3 of [2]. However, this result does not hold in

general for the convolution given by definition 3, .see [4].

Theorem 5. Iet f be an odd distribution. Then the convolution

£f®1 exists and

£r®1 = o.

Proof. Since the convolution fn * 1 exists by &efinition 2,
equation (1) holds and so

(£, *1,8) = (1*£.,9)

it

(£,0),(1, (x + 3)))
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for arbitrary test function ¢ 4in K. If the support of ¢ is

contained in the interval (a,b) we have

(1,9(x + y)) $(x + y)ax

-

a-y

\
P

-
-
b=
~—

[

Q
-

j: o(x)ax =

where ¢ 3is a constant. Thus

(fn *1,¢) = (fn(y):c) 0,

[\]

since fn is an odd distribution. letting n tend to infinity we

see that £ @1 = 0. This completes the proof of the theorem.

This theorem also holds for the convolution given by definition
4, see theorem 4 of [4].
A particular case of this theorem is
sgnx®1 = 0 (%)
and since |
(sgnx)'®1 = 25 *4 = 2
£ 0 = (sgnx@1),
it follows that the equation
(r@g) = r'Og
does not hold in general.

Further particular cases of the theorem are
x2r+1 ®1 =0
for r = 0,+1,£42, ... and more generally

(sgnx.lxl)‘) ®1 =0

for all A.
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Theorem 6. The convolution x+"'@ %% = 0

for A > -1 and 8 =0,1,2, ... .

Proof. The convolution (x+A)n@xs, where
Ay L A
(x_._ )n = x, Tn(x)’
again exists by definition 2 and so
A s \ -
(M), * =%, 8() = (M) .G, ¢x + 3))

for arbitrary test function ¢ in K. If the support of ¢ 1is
contained in the interval (a,b) we have

by
f x*¢(x+ y)ax
a-y

%, 6(x + ¥))

u
M
®

P
[

b

f (t - y)%¢(t)at
a

where

8 = (i) O, 8(t))

for 1= 0,1, ¢es ,8. Thus

(M) ¢ 3,66 = I a (M, s
+ n ) 1=0 +_ n

~n
s n nen ,
= X 2y [IO y)""i ay + I yA"'idy]

i=0 n
s A+ied
= I %47 + O(n A,
i=0 A +1i+1
and it follows that
. A s
N-1lim ((x+ )n * x7, ¢(x)) = o.

Neteo
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The result of the theorem flollows. This completes the proof of the
theorem. ) S
Corollary 1.The convolutions x_A®x°, [x]*®x® and
A s '
(sgn x.|x|") ® x® exist and

x_)‘®x5 = |x]*®x® = (sgnx.|x|*)®x

o

for A > -1 and 5=0,1,2’ see o

Proof. The first result follows on replacing x by -x in the
theorem. The other two .results follow on noting that

)xIA = x+}‘+x_)‘, senx.x]* = xf—x_)‘,

the convolution product being distributive with respect to addition.
Corollary 2.The convolutions x‘_A ®x+5, [x|* ®x+s and
(sgn x.]x|}) @ x_'_s exist and

x_A ® x+8 = (- )""‘| B( A+1,s+1)x_f‘+s+1 , ()]

B( A+1,8¢1) sgnx. [x/M**, even s,

= Ox® - (6)

B{A+1,8+1) le)»+s+1’ odd s,

A+s+t
CB(A+1,8+1)|x] even 8
(sgax.|x*) @2 ’ ’ ’

(7)

lA+s+1

B(A+1,8+1) 3gn x.|x , odd s

for A > -1 end s = 0,1,2, evs o

A

Proof. The convolution x, Ju:_'_8 exists by definition 2 and

. L
rex® o [T G-nMela o Bastsnx, (8)
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where B denotes the beta function. Replacing x by -x we have

A 8
x % x

B(A+1,s+1)x A+84l

(_1 )sx-A . (xs _ x+8)

u

(1 )sx_)‘ @x® - (~ )sx_)‘ G"‘)Jt:"_S
and equation (5) follows on using equations (5) and (8).

Further

(xj‘ + x_)‘) ® x+a

A 8
|x| ‘@x‘_
= xPex%,x*0®x®
+ + - +
and equation (6) follows on using equations ~(5) end (8).
Finally

(sen x.lx])‘) ®x+5 (xj‘ - x_)‘) @ x'.’s

= xPex%_x*@®x®

+ + - +
end equation (7) follows on using equations (5) end (8).
Corollary 3.The convolutions xj‘ ® |x|25"1, xj‘@ lx|2sf1’

|x|* ® |x|25-‘| and (sgnx.|x|*) @ |x|25—1‘ exist and

x+)‘®|xl25-1 = 2B(A+1,2s)x+)‘+2s, (9)
x 2@ x| = 2B(a+t,28)x M2, (10)
[x]* @ x5 - 2B('A+1,2s)lxl)‘+2s, (11)
v(sgnx.lxlk)®|x|25—1 = 2B()\+1,2s)sgnx.lxl)“'zs (12)

for A>=1 and s = 1,2, +0e0 .
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- | - -
Proof. x,,_A ® |x123 = X+A®(2x+28 1 - x23 1)

_ A 281 _ A g 281
= 2x” ¢ x -x, ®x

and equation (9) follows on using equation . (8) and theorem 6.
Equation (10) follows on replacing X by -~-x in equation (9)
and equations (11) and (12) now follow immediately from
equations (9) and (10). |

Corollary 4.The convolutions x+A®(sgnx.x?s),
x_A® (sgnx.xzs), leAO(sgnx.xZS) and

(sgn x. lxlA) ® (sgn x.x°°) exist and

x+A @ (sgn x.xzs) = 2B(A+1,2841 )x+A+25+1,
x_A @ (sgn x.xzs) = =2B(A+1,2841 )x_'\+25+1,
[x|* ® (sgnx.x?®) = 2B(A+1,2s+1) sgn x.IxIM'zs“, (13)

(sgnx.lxlA) @(sgnx.xzs) = 23()\‘4-1,2:»1)lxl)w'zm'1

for A > -1 and 3 = 0,1,2, «¢. &

Proof. The results follow as above on noting that

sgnx.lxlgs = 2x"_23 - xzs.

A particular case of equation (13) is

2r+1
2r _ 2x
x @sgnx = S5

for r = 0,1,2, ... « This result also holds for the convolution

given by definition 4, see theorem 5 of [2].
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The case r =0 is
1®sgnx = 2x
and comparing this equation with equation (4) we see that the
convolution product is not in general commutative, even if the

convolution of two distributions exists in either order.

Theorem 7.The convolutions x> ®x” and x®*®x" exist and

xT®x® = X*@®xT = o

for 8=0,1, ¢oe ,r=1 and r=1,2, ... .

This theorem was proved in [2] for the convolution given by
definition 4. The proof can easily be adapted for the convolution

gliven by definition 6 and 8o we omit the proof.
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REZ I ME

NEUTRIKSI | KONVOLUCIJA DISTRIBUCIJA

Data je jedna nova definicija konvolucije distribucija
i ispitane su neke njene osobine.
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