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ABSTRACT

Let'{E(t{} be a Gaussian process with a discrete
spectral type and H P)(E) be the linear closure of Hermite
polynomials of degree p in variables {E(t)}. zn this paper the
innovation process and the spectral type in HIP/(E), p =2 2 are
determined.

1. INTRODUCTION

Let {E(t),t > 0}, EE(t) = 0, EE2(t) < = be the real
mean square continuous and purely non-deterministic process.

Denote

HD ) = n £ {E(w), u < tre},
e>0
where £{+} is the mean square linear closure of random varia-
bles in the parenthesis. The space HtM (g) = % Hé"(g)‘is a
separable Hilbert space with the scalar product (g,n) = EEn.
The Cramer representation [1] of {E(t)} is:
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N t )
(1) gty =} g (t,udn (u), N may be = ,
n=10

where

1. {n (t),t >0}, n
gonal increments,

i,...,N are mutually ortho-

N t
CEE2(t) = NE(eyi2 = ] f g2(t,u)dF_(u),
n=1 0
an(u) = d“nn(u)ﬂz,
2. N
(2) ‘ KIV(CE) = Ienuin)
n=1

3. The measures an, n=1,...,N are ordered by
absolute continuity

dF4 2 dF2 2 ... 2 dPN‘

The correlation function r(s,t) Eg(s)E(t); s,t.> 0, uniquely
determines the so-called spectral type of {£(t)} i.e. the
chain of equivalence classes of measures

() P12 Pa R e Py,

where dPn € P

This fact follows from the well-known theorem on the
complete system of unitary invariants of a self-adjoint opera-
tor in a separable Hilbert space. Also, one says that (3) is
the spectral type of the family'{ﬂé1’(6),t > 0} or of the re-
solution of the identity {Pt,t > 0}, where P, is the projecti-
.on operator from K¢ (f) onto Ké"(;).

The main result of {1) is that for an arbitrary
chain (3), there exists a continuous process {f(t)} with the
spectral type (3).

The processes {nn(t),t >0, n=1,...,N} are called
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the innovation process of {£(t)} and N is called the multipli-
city of {g(t)}. A linear functional ¢ of {£(t)} is an element’
of H!M(E).It is evident from (1) and (2) that ¢ has the fol-

;owing representation

N = N o ‘
t= } h (u)dn (), g2 = 7 f h;(u)an(u).
n=1.0 n=10

2. SQUARE INTEGRABLE FUNCTIONALS OF THE GAUSSIAN PROCESS

In the sequel we suppose. that the process {£(t)}
is Gaussian. Consider the set H(g) of all square integrable
funectionals of {§(t)} i.e. the set of all random variables
X,EX = 0, EX?® < =, measurable with respect to {E(t)}. H(E)
is a Hilbert space with the scalar product (X,Y) = EXY. Since
the set of all polynomials of E(t), t » 0, is dense in H(E),
it follows that H(E) is separable. Denote by o{.} the ¢g-field
of random variables in the parenthesis and

Ft(S) = n of{g(u),u < t+e}.
e>0 .

Let Ht(g) be the subspace of H(£) consisting of all random

variables X, EX = 0, EX2 < =, measurable with respect to Ft(E),

‘Consider the conditional expectation Et(°) = E(-Ift(E)). It is

evident that EtH(E) = Ht(E). It is a well-known fact that

K-(12 () reduces Bt to Pt'

In [4] and [5], we solved the problem of the deter-
mination of the spectral type of {Ht(g),t > 0}. It is shown
there that if p, in (3) is continuous then the spectral type
in H(E) is

P M P e

i.e. the maximal spectral type ps in H¢*) (E) is the uniform
maximal spectral type of infinite multiplicity in H(E) (termi-
nology of [6]).

The situation is more complicated in the general
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case ([51), but p4 is always the maximal spectral type in
H(E). We shall elaborate the case whep py is discrete in sec-
tion 3 of this paper. &
In {4] we constructed the innovation process
{Zn(t),t >0, n=1,2,...} in H(E) i.e. the mutually orthogo-
nal martingals-{zn(t)}, ns=1,2,..., satisfying
o
HeCE) = F @ HAD(Z ), diZeCE2 2 dlZa(EN2 2
n=1
The random variable Zn(t) is expressed as a multiple Itd inte-
gral with respect to measures dnn(t), n=1,...,N.
Simply combining the above mentioned main result
from [1) and (4], we have

Proposition 1. There exiets a continuous {X(t),
t > 0} such thaqt any square integrable functional X of {E(t)}
18 a@ linear one of {X(t)}

We say that {X(t)} <8 the process associated to
{g(tr}.

Proof. Let
(4) T1(= p1) 2 T2 3 -
‘be the spectral type of {H (§)}. According to [1], there exists
a continuous process {X(t),t > 0} such that the chain (4) is
its spectral type. It means that

(5) HEN (X)) = H (g), HOD(X) = H(E).

Let X € H(g). The relation (5) shows that X is the linear func-
tional of {X(t)}. This completes the proof.

1,2,...} is the innova-
tion process in H (1) (X),the functional X has the representation

Moreover, since {Zn(t), n

X= 7 £ (n)az (n), bxiz = 7 f;(u)dGn(u),
n=0 0 n=1 0




Representation of the square integrable ... 157

dG_(u) € 1_.
n n
3. CASE OF THE DISCRETE SPECTRAL TYPE OF {£ (t)}

In this section we shall elaborate in detail the
construction of the associated process {X(t)} and its innova-
tion process when {{(t)} has the discrete spectral type. The
reason of the restriction to the discrete case is that the
construction of the process of multiplicity N > 1 in the ge-
neral case involves rather "pathologic" functions gn(t,u)
(see [2]).

Consider the Hermite polynomial Hp(£1,...,Ep) of
degree p of Gaussian r&nhdom variables 51,;..,£P (not necessa-
rily different). Denote

Hip)(ﬁ) = ego E{HP(E(u1),...,E(up),u1,...,up < tte},

1Py =y Hip)(g).
t

(p)(E) reduces {Et}’ EtH(P)(g) = Hip)(ﬁ).

Also, there is the orthogonal decomposition

The Hilbert space H

-

- (p)
(6) | 1e(g) = Je Pl
p=1 - ,
For these reasons it is sufficient to consider the space
1Py, p 2 2.

To avoid cumbersome notation, we shall assume that
N = 1 and that p4 is concentrated on an unbounded sequence of
points 0 < t4 < t3 < ... . Let

(7 ‘ g(t) =} g (tn,

tkst

be a Cramér representation. It means that independant Gaussian
variables n4,na,-.. (say, E“i = 1) satisfy N, € Hé"(ﬁ) for

t, = t. To ensure the continuity of {E(t)}, we suppose that

gk(-) is continuous and gk(tk) = 0, gk(tk+£) # 0,
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Proposition 2. The space Hip)(s) cotncides with
C{Hp(nk,...,nkp),:tki < t}.

Proof. The proof is based on the following proper-
ty of Hermite polynomials. Consider

ma ms mp
HoCL 855 Dngseens £ g
1 1 1

where some. of the variables Ei,nj, %y may be equal. Examinati-
on of the explicit expression of Hermite polynomial (see [31})
yields the relation

mq ma mp
HP( X Ei’ 2 nj’.." Z ;k) = X Hp(ai’nj’;“’ck)'
1 1 1 i,3,k ‘

We thus conclude that H (E(U1),...,E(up)),€ C{Hp(nk,...,nkp),
tky S maXuP}. Since (7) is a Cramér representation we have,
for some 0 < g4 * ga #* ,,, ¥ 8y < tha?
k .

T\k = '): ajE(sj)
. J=1 .

( . '
or Hp(“k1""’nkp) € ﬂtp)(E) for tx; < t. This completes the
proof.

Lemma. Two Hermite polynomials of degree p in inde-
pendent variables mNi,Nas... are identical or orthogonal.

Proof. Since Hermite polynomials are symmetric
functions, all Hp(my ,...,Mky)s where q = (k1,..20k) is the
same combination (with repetition) of {1,2,...}, p at a time,
are identical. Let q. be the number of occurrences of j, j €
€ {1,2,...} in q. We rewrite
- Hp(k1,..-,kp) = Hp§q) = Hp(n1,...,n1,n=,...n3,...).

Q4 times qgz times

By the idenpedence of n1,Na,..., we have the factorisation

HP(Q) = Hq‘ (n1,..-,n1)Hq2(n3,...,nz) eeo (Ho(+) = 1).
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Two combinations q and q7 are different if for at
least one j; qj # qg. So in EHp(q)Hp(q’), one factor is
EHQj(“j""’“j)qu(“j””’“j) = 0. This completes the proof.
Denote by C(p,k) = (P**"1y. ¢(p,0) = 0, the number
of combinations (with repetitidn) of k elements, p at a time.
The are C(p,k) mutually orthogonal Hermite polynomials of
degree p in variables U, W On the figure f?r)p = 3 Her-
mite polynomials are marked by 0. Observe that Htp (£) in the
linear closure of C(p,k), k = tmg% j, Hermite polynomials.
Hermite polynomials correspondifig to the point t = tj (the
number of these is C(p,j) - C(p,j-1) are the innovation rece-
ived at time t = tj. _

_ Now it is easy to construct the innovation process
'{Z;p)(t),t >0, n= 1,2,...}

2{Plt) = H;j, 2P = g HPG= ] DY,
t.sSt t.£t t1<t. St
] ] J
_ m= 2,...,C(p,2) - C(p,1)
(p) - ma, . May
z Pty =} Hy (= ) Hy Y,

t.<t ta<t, St
j SR

m = C(p,2) - C(p,1)+1,...,C(p,3) - C(p,2)

and so on. )
Concerning the spectral type of
®w{Pery + alz{PU2 3 alzfPhe > ...
we obtain immediately

Proposition 3. The apectral>type of Hép)(a) ig

dF+4 > dF2a4 ~ dF22 ~ ... ~ d > dFaq¢ ~

F2,d4(p,2)

~ dF3a ~ ... ~ d > e

F3,d(p,3)
where d(p,k) = [ C(p,k)

C(p,k-1)} =~ [C(p,k-1) - C(p,k-2)]
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e Trer ©
Consider H(E). Since (6) holds, H p (£) reduces

{Et} and d(p,2) = p + > as p + @, we-have

and the measure de1 i8 concentrated at pointe tk

Corollary. The spectral type of {ut(g)} is
dF44 > dF24 ~ dFa2¢4 ~ ...

Finally we shall give a Cramér representation of
"the continuous associated process'{x(p)(t)} in H(p)(ﬁ), p 2z 2.
Proposition 4. 4 contznuoua procees {X(P)(t) t > 0}
with the innovatiorn process {Z (p) (t),t >0, n = 1,2,...} ©in
(P)(E) has a Cramér representatzon

xXPley = § 7 (t - tj)JH;J
nz1 tjst , . .
(Actually, the domain of the summation of n is {1,...,N(t)}
where N(t) = C(p,k) - C(p,k-l), k = tgg% j.
Proof. The continuity of {X(P)(t)} follows from

“X(p)(tj+e) - x(P’ctj-e)H2 =

_ ini _ ey signina
PN Ceyve -t H) I Cegmemty YHDN

n21 igj . igi-1
N(t) .
. i i,4 ni
< 7 {. ; [Cty=t;+e) ~Cty-ty-e) 13 NHDI2) +
n=1  igj-1

+ e23anju=}+ 0,6 + 0.

To show that

(p)y _ (P)y
HEV (X Py = ] e mgn(z P
n2j

it suffices to show that H;JEHé1KX(P)) for tj S t. For the sake
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of simplicity, we shall consider the example p = 3 and t, £ t

€ t< ts, (k = 4). Choose arbitrarily C(p,k) - C(p,k-1) = 20
distinet points s; in [te,tate), tuy+e< ts and consider the

system of 20 linear equations in 20 variables H}', H3}*, ...
’H“OI“:

10 . . .
X (s;) = [ cSi—tj)JHE‘J, i= 1,...,20.
n=1 jsy
It is not difficult to see that this system has a unique so-
lution, so that HaJ is a linear combination of X¢3)(s. ), i=
1,...,20. It means that H3) € HEV (X)),

This completes the proof.

(3)

Z1o o
(3) 10 “(u11)
- :

o4
(3) ' H.

2 ‘ s (421)
(2) Ha (422)

Z7 2
(3) H7u(

7. a3 (431)

63 64
e Ha (311) Hg (432)
L1 L
83
(3) Hy (321) Hy '(433)
Z4 - - .
43 4y
(3) Ha (322) Hj (441)
Za A *
32 33
2 &) Ha (211) Hs (331) Hj (442)
22 23
2, Ha (221) Hs (332) Ha '(443)

11 13 14
Hay (111) Ha (222) Ha (333) H,; (u4uy)

1
T

ta ta ta ty
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REPREZENTACIJA KVADRAT-INTEGRABILNIH FUNKCIONALA
GAUSOVSKOG PROCESA DISKRETNOG SPEKTRALNOG TIPA

Neka Je {E{t}} Gausovski proces diskretnog spektral-~-
neka Je H{P){E) linearna zatvorenost Ermitskih po-

linoma stepena p od promenljivih {g(t)lﬁ)u radu se odredjuje

inovacioni

proces i spektralni tip u H (), p 2 2.
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