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ABSTRACT

It is proved that each non-empty set of positive
integers is the frequency set of a 3-partite tournament and
such a tournament with minimal possible number of vertices
is determined.

The number of vertices of a digraph D having a par-
ticular outdegre d (indegree d) is the {requency of the out-
degree (indegree). The set of distinct frequencies of outde-
grees appearing in D is the frequency set of outdegrees - 3l
The {requency set of indegrees, F , is defined similarly. If
Ft - F~, this set is called the §requency set of D.

A k-partite tournament T(X1,X3,...,Xk) is a digraph
whose vertex set V(T) is the union of k disjoint non-empty
sets, partition sets, x1,xz,...,xk and whose arc set contains
exactly one of the arcs §;§j and ;;§i for each Xy € Xi, each
X3 € Xj and each {i,j} = {1,2,...,k}. A - B denotes that eve-
ry vertex of A dominates every vertex of B, where A and B are

any two disjoint subsets of V(T).
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Let f1,f3,...,fn (0 < £, < f3 < ... <L fn) be a
non-empty set of positive integers, then Nk(fi,fg,...,fn) is
defined as the smallest possible number such that there ex-
ists a k-partite tournament on Nk veftices whose frequency
set is F = {f1,f;,...,fn}. As it was noted in {1] and (31,

n
N (£4,f2,...,f ) 2 ) £,
i=1
clearly holds.

The questions concerning N, and Na have been trea-
ted in [1) and [3]. We shall present the corresponding result
for Na.-

The particular case n = 1 is covered by the follo-
wing lemma.

Lemma. Let f be a positive integer. Then there
existe a 3-partite tournament whose frequency set <8 {f} and
Na(f) = 3f unless either

(a) £ O(mod 3), Zn which case Na(f) = f,
or . :
(b) f 2 0(mod 3) and £ = 0{mod 4) in which case
Na(f) = 2f.

Proof. Since the 3-partite tournament Ti(¥1,¥2,¥Xs)
given by [X1| = |Xal=z |Xa] = £ and X« * (X2 VU X3), Xa * Xs
(all the others arcs are directed from Xi to Xj for each i > j)
has {f} as its frequency set then

N; (£) € 3f.

(This notation will be used throught the paper.)

If £ = 3k then the tournament T1(X1,Xa,Xa) defined as: |[X1| =

= |Xa] = |Xal = k and X+ * Xa, Xa * Xs establishes (a).
Suppose £ 2 0(mod 3) and N3(f) = f. Let T3(X1,Xa,Xs)

be a 3-partite tournament on f vertices whose frequency set is

{f}. This means that all vertices of T have tne same out deg-

v
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ree, say a, and the same indegree, say b. Then

b= |Xz| + |Xa} - a= [Xa|] # [X4] - a =

= [ X4l + |X2] - a

obviously holds and implies [X4| = |Xa| = [Xs|, i.e. [V(T)| =
= f £ 0(mod 3), which contradicts the assumption. Therefore,

Na{(f) 2 2f for f % 0(mod 3).

If £ = 4k, then the 3-partite tournament T4(X4,Xz2,Xa),

given by
X1 = A1 U Az
X2 = Az U A,
Xa = As
fa.] = x (i = 1,2,3,4), |As| = 4k, Ay > As, Az + A4 has {f}
as its frequency set. Since |V(T)| = 8k = 2f, assertion (b) is
proved.

So assume that f £ 0{(mod 3), £ # 0(mod 4) and that
there exists a 3-partite tournament T(X,Y,Z) on 2f vertices
vhose frequency set is {f}. We shall show that it leads to a
contradiction, ,

Let a and b (a > b) be two distinct outdegrees occur-
ring in T with frequencies f and X3, Xz vertices of X having

outdegrees a and b, respectively. The subsets Y,, Y, and 2,,

Z, of ¥ and Z are defined similarly. Let |X| = x, }¥| = y and
|Z| = z. Then ‘
(1) x +y +z=2f = |VW(D)].

We shail consider the following particular cases.

Case 1. WNone of the sets X1,X2,Y4,Y¥2,21,%22 8 emp-
ty.
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Then the indegrees occuring in T are

d;y = y +z -a da =y +z-Db
ds =z +x - a de = z + x - b
ds = x +y - a de = x +y - b

Since there are only two distinct values among djs (i = 1,2,
3,4,5,6), and since d; # d;+1 (i = 1,2,3,4,5), we may assume
w.l.g. that di = da, dz = da and x = y. Now we have

di = da = x+2z -a dz = ds = x + 2 - Db

ds = 2x - a de = 2x - b .

Applying the same reason, we get dy = da = ds and dz = dg =

= de, which gives x = y = z, contradicting by (1) the assump-
tion £ # 0(mod 3) or di = da
plies a = b, contradicting the fact a > b.

de and da = du = ds, which im-

'Case 2.  Exactly one of the sets X1, X2, Y1, Ya, Z1,
Za 18 ampty. ’
We may assume, by svmmetry, that it is Xa. In that case we ha-
ve :

di = y +z - a

ds = 2 + x - a ds = 2z + x - b

ds = x +y ~- a d; X +y -Db
Following the aforementioned reason, we get

(a) di = ds. It follows that x = y and

da = x +z - a de = x +z -b

o
iy
n

ds = 2x - a de = 2x - b.

This gives d; = d3 = ds, which implies x = y = z ov d5 = da =
de and ds = ds, which implies a = b; in both cases, a contra-

i
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diction.
(b) di7 = ds . Similar to (a).
(c) ds = ds . Then v = z and

dy = 2y - a

ds =ds = x +y - a de = dsg = X +y - b,

If d7 = d3 = ds, then x = y = z, a contradiction. So d; = ds =

= deé. This gives y = x + a - b and

d5 = ds = 2x - a dy = ds = ds = 2x + a - 2b.
If E(T) is the arc set of T, then the equality
(2) f(a+b) = f((2x-a) + (2x+a-2b)) = |E(T)]|

clearly holds, and we get x = b, ¥y = z = a,.
From an obvious equality

(3 E(T) = xy + yz + zx,

and the fact f = (x +y + 2)/2 (2a + b)/2, it follows that

(2a+b)(a+b)/2 a + 2ab

and a = b, a contradiction. Case 2 is settled.

Case 3. Ezxactly two of the sets X4, Xz, Ya, Yz, Z4,
Za2 are empty.
(Note that they cannot be X4 and Xz and similarly Y., Ya and

Z,, Zz.) There are two essentialy different subcases.

Subcase 3.1. Xa = Y5 = (.

Then
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Now we have

(a)

d7 = da . It follows that x

de

Xx +y - Db.

= de = 2x - b (because dy = ds = ds leads to
gives x =y = (a +b)/2, z = (3a - b))/ and f
= (5a + b)/4, Now, using (2) and (3) we get

(5a + b)(a + b)/% = (a + b)>/4% + 2(a + b)(3a - b)/b

which gives a =

(b)

(c)

. Subcase 3.2.

Then

a1
-
1

da = 2 + x - a

(a)

dy = d3 = d,.

+ a - Db and we have 3.1.(a).

(b)

d7 = d, = dg.

b.
a7 = d5. As (a).
ds = ds. As (a).
Xag = 24 = @.
=y + 2 - a
a
de

2 +Xx-D)

X +y =D

X

y and d7 = ds

y

= z). This

(x +y + z)/2

It implies that x

It implies that y

+a =-Db, and it is again 3.1.(a).

()
zZ = x + 2a - 2b.

d7 = di and da
So,

de .

Then y

X
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dy = ds = 2x + 2a - b

d3; = de = 2x + a - 2b

Using (2), we get x = (-a + 3b)/2, y = (a +b)/2, z = (3a -
- b)/2, £ = 3(a + b)/4., Substituting in (3), we obtain

3Ca + b)(a + b)/4 = (-a + 3b)(a + b)/u +

+ (a + b)(3a - b)/4 + (3a - b)(~-a + 3b)/4
and a = b.

Case 4. Exaqctly three of the sets X1,X2,Y¥1,¥2:214:%Z2
are'empty. (Note that the case Xi =Y. = Z. = 0 is impossible).

i i
Assume that Xa Y2 = 2, = 0. Now we have

d1 + zZ2 - a

i
«

da =2 + x - a

d5=x+y—b.

It is clear that

n
N

f=x+y

ds. Then x

~~
o]
~
[al
-
n

2x and

[0}
<
»

o]

"

N
n

d7 = d3 = 3x - a de 2x = b.

By (2), it follows that 5x = 2(a + b), and clearly
x = 2k. But thus implies f = 2x = L4k which contradicts the as-
sumption £ Z 0 (mod 4).

(b) d; = dg. Then z.=y +a-b, x=a-b and

d, = 2y - b dy = dg =y +a - 2b.

It follows, by (2), that y = 4b/3 and £ = z = (3a + b)/3. Now
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it gives

(3a + b)/3 = Ca - b)4b/3 + 4b(3a + b)/3 +
+ (3a + b)(a - b)/3

or b(7b - 3a) = 0. Since b # 0 (because y = 4b/3 and

then 3a = 7b. It implies f = 8b/3, and, therefore, f

This contradiction completes the proof of the lemma.
Now, we shall prove the main theorem.

<

# 0),
0(mod 4).

Theorem. Let F = {f1,f3,...,fn}, (n > 1), 0 < f4 <
< f£2 <... < fn’ be any nonempty set of positive integers. Then

there exists a 3-partite tournament whose frequency set is

and

n
Na(f1,fa,...,8 ) = | £
_ i=1
unless

n=2and £4 = 1, £2 = 2 in which case N3(1,2) = u,

Proof.

Case 1. n =2k +1 (k=2 1). A 3-partite tournament
T, = T(X,sX3,X3), which establishes (1), can be constructed as

follows. The partition sets are

Xy = Aq U Az VU ...V Ak-l U A2k

Xa = A UA L U ... UA,

Xa = Ajpyq,

where |A.] = £, (1

the arc set is given by

]

Ay > Agpeq-g

Xa + Xa

for i = 1,2,,..,k-1.

1,2,...,2k+1), A; N A, =0 (1# 3) and
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Obviously,
2k+1
lvezol= F £,
‘ i=1
and all vertices belonging to a particular subset Ai have the
same outdegree (indegree) in T . Denote the outdegree (inde-
gree) by d; (d;) and denote by S4 and Sz the sums

f1+fz+--.+f + f =|X1I

S1 k-1 ¥ fox

Sz = £ + £ 4+ .o + £ o= [x2]

From the definition of T., we obtain

aj = o gy for i = 1,2,....k-1,
dg =81+ .9 = fy gy for 3= kk+l,...,2k-2,
Qyeq = St + Fyypq
dj = 0
d;k+1 = 54
and
dg =8y + £ - £y gy for i=1,2,...,k-1,
dg = f2k_1_j for j = k,k+1,...,2k-2,
do—q = O
oy = Sa * fyyy
d;k+1 = Sa-

. + - .
Since 0 < f, < f3.< ... < f, .., all d;s (d;) (i =
= 1,2,...,2k+1) are distinct. This implies that the frequency
set of T, is {f,,fz,...,f2k+1}.

Case 2. n = 2k+2 (k 2 1).
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Consider the
by

X4
Xa
Xa

where IAiI =

A

X2

3-partite tournament Ta = T(X41,Xa;Xa) defined

Ay UAz U ... U Ak U A2k+1

Ak+1 u Ak+2 v ...V A2k

Ajks2,

£, (1= 1,2,...,2k42), A; 0 A;

> Agyqoy FOP L= 1,2,k

+ Xa.

Using the former notation and putting

we get

and

f1 + £2 ¢+ ... + fk + f

£

k+1 k+2 2

= f for i = 1,2,...,k

2k+1-1

=83+ fore2 7 Fokery For 3

=0

= S3

=8, +f - £

2k+2 2k+1-1?

= foxe1-4

dokse1 = Se * o4

dok+2

As
set of T2 is

= 8,.

2k+1
+ f AETRR I S [X2],

=@ (1+ 1)

[X4]

k+l,k+2,...,2k

for i = 1,2,...,k

for 3 = k+1,k+2,...,2k

in the Case 1, we conclude that the frequency

{fq,fz,...,f 2} and

2k+
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2k+2
fveT2)[ =} fii
i=1

So, the theorem is proved for n z 3.

Case 3. n = 2, : _
let F = {f4,f2}, where {f4,f2} # {1,2}. If f2 # 2f4, the 3-

partite tournament Ta = T(Xi1,Xa,Xa) given by |X4| = [Xa| = f4,
{Xa|= f2 - £1 # £4, X4 + Xa + Xa, satisfies (1).
If £f2 = 2f1, we distinct two subcases:

Subcase 1. f1 = 2k (k = 1),
Then we construct the tournament T4 = T(X4,Xa,Xas) according to

X4 Aq U Az

Xa = Aa U A,

X3 = A5.

[A;] = k (1 = 1,2,3,4), |As| = 2k, A; N Ay = ¢ (i+# 3),

A1 + Aa, Az > Ay, X1 > X3, X2 » X3. It is eacy to see that
distinct outdegrees (indegrees) occurring in T4 are 0 and 3k
(4k and k) with frequencies f4 and fa, respectively, and that
[V€T4)] = 6k = £4 + Ea.

Subcase 2. fq = 2xk+1 (k 2 1).
Let Ts(= T(X1,X2,Xs) be the 3-partite tournament whose partite

sets are

X4

{U1,u2,oo-’u2k+1}

x2 {V1,V3,---,V2k+1}

Xs = {w,,wz,...,w2k+1},
and whose arc set is given by

u, +> V. for 1= 1,2,.0..052k41
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for j = 1,2,...,2k+1. All vertices of X, have outdegree 1 and
indegree u4k+1, while all vertices of Xa and Xa have outdegree
3k+1 and indegree k+i. Thus |V(Ts)| = 6k+3 = f1 + f2 and the
frequency set of Ts is {f4,fa}. :

For F = {1,2}, there is no 3-partite tournament on
vertices whose frequency set is F. Indeed, such a tournament
on 3 vertices has a frequency set {1} or {3}. Thus, Na(i,2) 2
2 4. The 3-partite tournament T+ = T(X1,X3,X3) defined by

[X4] = [Xal = 1, [Xa] = 2, X1 + (Xa U Xa)

has the frequency set {1,2}, This implies that Na(1,2) = 4.
The theorem is prcved.
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REZ | ME

FREKVENC!JE STEPENA CVOROVA U TRIPARTITNIM
TURNIRIMA

U ovom radu pokazano je da je svaki neprazan skup
prirodnlh brojeva skup frekvenclja izlaznih i ulaznih stepena
¢vorova nekog tripartitnog turnira | pritom su odredjenl turni-
ri sa minimalnim moguéim brojem &vorova.
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