Z B O R N I K R A D O V A Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 17,1(1987) REVIEW OF RESEARCH
Faculty of Science
University of Novi Sad
Mathematics Series, 17,1(1987)

DEGREE FREQUENCIES IN 3-PARTITE TOURNAMENTS

Vojislav Petrovic

Institute of Mathenatics, University of Novi Sad 21000 Novi Sad, Dr Ilije Djuričića 4, Yugoslavia

ABSTRACT

It is proved that each non-empty set of positive integers is the frequency set of a 3-partite tournament and such a tournament with minimal possible number of vertices is determined.

The number of vertices of a digraph D having a particular outdegree d (indegree d) is the frequency of the outdegree (indegree). The set of distinct frequencies of outdegrees appearing in D is the frequency set of outdegrees - F^+ : The frequency set of indegrees, F^- , is defined similarly. If $F^+ = F^-$, this set is called the frequency set of D.

A k-partite tournament $T(X_1,X_2,\ldots,X_k)$ is a digraph whose vertex set V(T) is the union of k disjoint non-empty sets, partition sets, X_1,X_2,\ldots,X_k and whose arc set contains exactly one of the arcs x_1x_1 and x_1x_1 for each $x_1 \in X_1$, each $x_1 \in X_1$ and each $\{i,j\} \subset \{1,2,\ldots,k\}$. A \to B denotes that every vertex of A dominates every vertex of B, where A and B are any two disjoint subsets of V(T).

AMS Mathematics Subject Classification (1980): 05C20.

Key words and phrases: Digraph, k-partite tournament, frequency set.

Let f_1, f_2, \ldots, f_n (0 < f_1 < f_2 < \ldots < f_n) be a non-empty set of positive integers, then $N_k(f_1, f_2, \ldots, f_n)$ is defined as the smallest possible number such that there exists a k-partite tournament on N_k vertices whose frequency set is $F = \{f_1, f_2, \ldots, f_n\}$. As it was noted in [1] and [3],

$$N_k(f_1, f_2, \dots, f_n) \ge \sum_{i=1}^n f_i$$

clearly holds.

The questions concerning N_1 and N_2 have been treated in [1] and [3]. We shall present the corresponding result for N_3 .

The particular case n = 1 is covered by the following lemma.

Lemma. Let f be a positive integer. Then there exists a 3-partite tournament whose frequency set is $\{f\}$ and $N_3(f)$ = 3f unless either

(a) $f \equiv 0 \pmod{3}$, in which case $N_3(f) = f$,

or

(b) $f \not\equiv 0 \pmod{3}$ and $f \equiv 0 \pmod{4}$ in which case $N_A(f) = 2f$.

Proof. Since the 3-partite tournament $T_1(X_1, X_2, X_3)$ given by $|X_1| = |X_2| = |X_3| = f$ and $X_1 + (X_2 \cup X_3)$, $X_2 + X_3$ (all the others arcs are directed from X_1 to X_j for each i > j) has $\{f\}$ as its frequency set then

$$N_3(f) \leq 3f$$
.

(This notation will be used throught the paper.) If f = 3k then the tournament $T_1(X_1, X_2, X_3)$ defined as: $|X_1| = |X_2| = |X_3| = k$ and $X_1 \rightarrow X_2$, $X_2 \rightarrow X_3$ establishes (a).

Suppose $f \neq 0 \pmod{3}$ and $N_3(f) = f$. Let $T_3(X_1, X_2, X_3)$ be a 3-partite tournament on f vertices whose frequency set is $\{f\}$. This means that all vertices of T have the same out deg-

ree, say a, and the same indegree, say b. Then

$$b = |X_2| + |X_3| - a = |X_3| + |X_1| - a =$$

$$= |X_1| + |X_2| - a$$

obviously holds and implies $|X_1| = |X_2| = |X_3|$, i.e. $|V(T)| = f \equiv 0 \pmod{3}$, which contradicts the assumption. Therefore,

$$N_3(f) \ge 2f$$
 for $f \not\equiv 0 \pmod{3}$.

If f = 4k, then the 3-partite tournament $T_4(X_1, X_2, X_3)$, given by

$$X_1 = A_1 \cup A_2$$

 $X_2 = A_3 \cup A_4$
 $X_3 = A_5$

 $|A_i| = k$ (i = 1,2,3,4), $|A_5| = 4k$, $A_1 \rightarrow A_3$, $A_2 \rightarrow A_4$ has {f} as its frequency set. Since |V(T)| = 8k = 2f, assertion (b) is proved.

So assume that $f \not\equiv 0 \pmod 3$, $f \not\equiv 0 \pmod 4$ and that there exists a 3-partite tournament T(X,Y,Z) on 2f vertices whose frequency set is $\{f\}$. We shall show that it leads to a contradiction.

Let a and b (a > b) be two distinct outdegrees occurring in T with frequencies f and X_1 , X_2 vertices of X having outdegrees a and b, respectively. The subsets Y_1 , Y_2 and Z_1 , Z_2 of Y and Z are defined similarly. Let |X| = x, |Y| = y and |Z| = z. Then

(1)
$$x + y + z = 2f = |V(T)|$$
.

We shall consider the following particular cases.

Case 1. None of the sets $X_1, X_2, Y_1, Y_2, Z_1, Z_2$ is empty.

Then the indegrees occuring in T are

$$d_1 = y + z - a$$
 $d_2 = y + z - b$
 $d_3 = z + x - a$ $d_4 = z + x - b$
 $d_6 = x + y - a$ $d_6 = x + y - b$.

Since there are only two distinct values among d_{i} s (i = 1,2,3,4,5,6), and since $d_{i} \neq d_{i+1}$ (i = 1,2,3,4,5), we may assume w.l.g. that $d_{1} = d_{3}$, $d_{2} = d_{4}$ and x = y. Now we have

$$d_1 = d_3 = x + z - a$$
 $d_2 = d_4 = x + z - b$
 $d_5 = 2x - a$ $d_6 = 2x - b$.

Applying the same reason, we get $d_1 = d_3 = d_5$ and $d_2 = d_4 = d_6$, which gives x = y = z, contradicting by (1) the assumption $f \not\equiv 0 \pmod{3}$ or $d_1 = d_3 = d_6$ and $d_2 = d_4 = d_5$, which implies a = b, contradicting the fact a > b.

Case 2. Exactly one of the sets X_1 , X_2 , Y_1 , Y_2 , Z_1 , Z_2 is empty.

We may assume, by symmetry, that it is X2. In that case we have

$$d_{1}^{-} = y + z - a$$
 $d_{3}^{-} = z + x - a$
 $d_{5}^{-} = x + y - a$
 $d_{6}^{-} = x + y - b$

Following the aforementioned reason, we get

(a)
$$d_1^2 = d_2^2$$
. It follows that $x = y$ and $d_1^2 = d_2^2 = x + z - a$ $d_4^2 = x + z - b$
 $d_5^2 = 2x - a$ $d_6^2 = 2x - b$.

This gives $d_1 = d_3 = d_5$, which implies x = y = z or $d_1 = d_3 = d_5$ and $d_4 = d_5$, which implies a = b; in both cases, a contra-

diction.

(b)
$$d_1 = d_5$$
. Similar to (a).

(c)
$$d_3 = d_5$$
. Then $y = z$ and

$$d_1 = 2y - a$$

$$d_3 = d_5 = x + y - a$$
 $d_4 = d_6 = x + y - b$.

If $d_1 = d_3 = d_5$, then x = y = z, a contradiction. So $d_1 = d_4 = d_5$. This gives y = x + a - b and

$$d_3 = d_5 = 2x - a$$
 $d_1 = d_4 = d_6 = 2x + a - 2b$.

If E(T) is the arc set of T, then the equality

(2)
$$f(a+b) = f((2x-a) + (2x+a-2b)) = |E(T)|$$

clearly holds, and we get x = b, y = z = a.

From an obvious equality

(3)
$$E(T) = xy + yz + zx$$
,

and the fact f = (x + y + z)/2 = (2a + b)/2, it follows that

$$(2a+b)(a+b)/2 = a + 2ab$$

and a = b, a contradiction. Case 2 is settled.

Case 3. Exactly two of the sets X_1 , X_2 , Y_1 , Y_2 , Z_1 , Z_2 are empty.

(Note that they cannot be X_1 and X_2 and similarly Y_1 , Y_2 and Z_1 , Z_2 .) There are two essentialy different subcases.

Subcase 3.1.
$$X_2 = Y_2 = \emptyset$$
.

Then

$$d_{1}^{-} = y + z - a$$
 $d_{3}^{-} = z + x - a$
 $d_{5}^{-} = x + y - a$
 $d_{6}^{-} = x + y - b$.

Now we have

(a) $d_1 = d_3$. It follows that x = y and $d_1 = d_3 = d_3 = d_4 = 2x - b$ (because $d_1 = d_3 = d_5$ leads to x = y = z). This gives x = y = (a + b)/2, z = (3a - b)/4 and z = (x + y + z)/2 = (5a + b)/4. Now, using (2) and (3) we get

$$(5a + b)(a + b)/4 = (a + b)^{2}/4 + 2(a + b)(3a - b)/4$$

which gives a = b.

(b)
$$d_1 = d_5$$
. As (a).

(c)
$$d_3 = d_5$$
. As (a).

Subcase 3.2. $X_2 = Z_1 = \emptyset$.

Then

$$d_1 = y + z - a$$
 $d_3 = z + x - a$
 $d_4 = z + x - b$
 $d_6 = x + y - b$

- (a) $d_1 = d_3 = d_6$. It implies that x = y, z = x + a b and we have 3.1.(a).
- (b) $d_1 = d_4 = d_6$. It implies that y = z, y = x + a b, and it is again 3.1.(a).
- (c) $d_1 = d_4$ and $d_3 = d_6$. Then y = x + a b and z = x + 2a 2b. So,

$$d_{\overline{1}} = d_{\overline{4}} = 2x + 2a - b$$

 $d_{\overline{3}} = d_{\overline{6}} = 2x + a - 2b$

Using (2), we get x = (-a + 3b)/2, y = (a + b)/2, z = (3a - b)/2, f = 3(a + b)/4. Substituting in (3), we obtain

$$3(a + b)(a + b)/4 = (-a + 3b)(a + b)/4 +$$

+ $(a + b)(3a - b)/4 + (3a - b)(-a + 3b)/4$

and a = b.

Case 4. Exactly three of the sets $X_1, X_2, Y_1, Y_2, Z_1, Z_2$ are empty. (Note that the case $X_1 = Y_1 = Z_1 = 0$ is impossible). Assume that $X_2 = Y_2 = Z_1 = 0$. Now we have

$$d_1 = y + z - a$$
 $d_3 = z + x - a$

$$d_6 = x + y - b.$$

It is clear that

(a)
$$d_1 = d_3$$
. Then $x = y$, $f = z = 2x$ and $d_1 = d_3 = 3x - a$ $d_6 = 2x - b$.

f = x + y = z

By (2), it follows that 5x = 2(a + b), and clearly x = 2k. But thus implies f = 2x = 4k which contradicts the assumption $f \not\equiv 0 \pmod{4}$.

(b)
$$d_3 = d_6$$
. Then $z = y + a - b$, $x = a - b$ and $d_1 = 2y - b$ $d_3 = d_6 = y + a - 2b$.

It follows, by (2), that y = 4b/3 and f = z = (3a + b)/3. Now

it gives

$$(3a + b)/3 = (a - b)4b/3 + 4b(3a + b)/3 + (3a + b)(a - b)/3$$

or b(7b - 3a) = 0. Since $b \neq 0$ (because y = 4b/3 and $y \neq 0$), then 3a = 7b. It implies f = 8b/3, and, therefore, $f \equiv 0 \pmod{4}$. This contradiction completes the proof of the lemma.

Now, we shall prove the main theorem.

Theorem. Let $F = \{f_1, f_2, \ldots, f_n\}$, (n > 1), $0 < f_1 < < f_2 < \ldots < f_n$, be any nonempty set of positive integers. Then there exists a 3-partite tournament whose frequency set is and

$$N_3(f_1, f_2, ..., f_n) = \sum_{i=1}^{n} f_i$$

unless

n = 2 and $f_1 = 1$, $f_2 = 2$ in which case $N_3(1,2) = 4$.

Proof.

Case 1. n = 2k + 1 ($k \ge 1$). A 3-partite tournament $T_1 = T(X_1, X_2, X_3)$, which establishes (1), can be constructed as follows. The partition sets are

$$X_1 = A_1 \cup A_2 \cup ... \cup A_{k-1} \cup A_{2k}$$

 $X_2 = A_k \cup A_{k+1} \cup ... \cup A_{2k-1}$
 $X_3 = A_{2k+1}$

where $|A_i| = f_i$ (i = 1,2,...,2k+1), $A_i \cap A_j = \emptyset$ (i \neq j) and the arc set is given by

$$A_i + A_{2k+1-i}$$
 for $i = 1, 2, ..., k-1$.
 $X_2 + X_3$

Obviously,

$$|V(T_1)| = \sum_{i=1}^{2k+1} f_i$$

and all vertices belonging to a particular subset A_i have the same outdegree (indegree) in T. Denote the outdegree (indegree) by d_i^+ (d_i^-) and denote by S_1 and S_2 the sums

$$S_1 = f_1 + f_2 + \dots + f_{k-1} + f_{2k} = |X_1|$$

 $S_2 = f_k + f_{k+1} + \dots + f_{2k-1} = |X_2|$

From the definition of T_1 , we obtain

$$d_{i}^{+} = f_{2k-1-i} \quad \text{for } i = 1, 2, ..., k-1,$$

$$d_{j}^{+} = S_{1} + f_{2k+1} - f_{2k-1-j} \quad \text{for } j = k, k+1, ..., 2k-2,$$

$$d_{2k-1}^{+} = S_{1} + f_{2k+1}$$

$$d_{2k}^{+} = 0$$

$$d_{2k+1}^{+} = S_{1}$$

and

$$d_{i}^{-} = S_{2} + f_{2k+1} - f_{2k-1-i}$$
 for $i = 1, 2, ..., k-1$,
 $d_{j}^{-} = f_{2k-1-j}$ for $j = k, k+1, ..., 2k-2$,
 $d_{2k-1}^{-} = 0$
 $d_{2k}^{-} = S_{2} + f_{2k+1}$
 $d_{2k+1}^{-} = S_{2}$.

Since $0 < f_1 < f_2 < \ldots < f_{2k+1}$, all d_i^+s (d_i^-) (i = = 1,2,...,2k+1) are distinct. This implies that the frequency set of T_1 is $\{f_1,f_2,\ldots,f_{2k+1}\}$.

Case 2. $n = 2k+2 (k \ge 1)$.

Consider the 3-partite tournament $T_2 = T(X_1, X_2, X_3)$ defined by

$$X_1 = A_1 \cup A_2 \cup ... \cup A_k \cup A_{2k+1}$$

 $X_2 = A_{k+1} \cup A_{k+2} \cup ... \cup A_{2k}$
 $X_3 = A_{2k+2}$

where
$$|A_{i}| = f_{i}$$
 (i = 1,2,...,2k+2), $A_{i} \cap A_{j} = \emptyset$ (i \neq j)
 $A_{i} + A_{2k+1-i}$ for i = 1,2,...,k

Using the former notation and putting

 $X_2 + X_3$.

$$S_3 = f_1 + f_2 + \dots + f_k + f_{2k+1} = |X_1|$$

 $S_4 = f_{k+1} + f_{k+2} + \dots + f_{2k} = |X_2|,$

we get

$$d_{i}^{+} = f_{2k+1-i} \quad \text{for } i = 1, 2, ..., k$$

$$d_{j}^{+} = S_{3} + f_{2k+2} - f_{2k+1-j} \quad \text{for } j = k+1, k+2, ..., 2k$$

$$d_{2k+1}^{+} = 0$$

$$d_{2k+2}^{+} = S_{3}$$

and

$$d_{i}^{-} = S_{4} + f_{2k+2} - f_{2k+1-i}$$
, for $i = 1, 2, ..., k$
 $d_{j}^{-} = f_{2k+1-j}$ for $j = k+1, k+2, ..., 2k$
 $d_{2k+1}^{-} = S_{4} + f_{2k+2}$
 $d_{2k+2}^{-} = S_{4}$.

As in the Case 1, we conclude that the frequency set of T_2 is $\{f_1, f_2, \ldots, f_{2k+2}\}$ and

$$|V(T_2)| = \sum_{i=1}^{2k+2} f_i.$$

So, the theorem is proved for $n \ge 3$.

Case 3. n = 2.

Let $F = \{f_1, f_2\}$, where $\{f_1, f_2\} \neq \{1, 2\}$. If $f_2 \neq 2f_1$, the 3-partite tournament $T_3 = T(X_1, X_2, X_3)$ given by $|X_1| = |X_2| = f_1$, $|X_3| = f_2 - f_1 \neq f_1$, $X_1 \rightarrow X_2 \rightarrow X_3$, satisfies (1).

If $f_2 = 2f_1$, we distinct two subcases:

Subcase 1. $f_1 = 2k (k \ge 1)$.

Then we construct the tournament $T_4 = T(X_1, X_2, X_3)$ according to

 $X_1 = A_1 \cup A_2$

X2 = A3 U A4

 $X_3 = A_5$.

 $|A_1| = k$ (i = 1,2,3,4), $|A_5| = 2k$, $A_1 \cap A_j = \emptyset$ (i \neq j), $A_1 \rightarrow A_3$, $A_2 \rightarrow A_4$, $X_1 \rightarrow X_3$, $X_2 \rightarrow X_3$. It is easy to see that distinct outdegrees (indegrees) occurring in T_4 are 0 and 3k (4k and k) with frequencies f_1 and f_2 , respectively, and that $|V(T_4)| = 6k = f_1 + f_2$.

Subcase 2. $f_1 = 2k+1 (k \ge 1)$.

Let T_5 (= $T(X_1, X_2, X_3)$ be the 3-partite tournament whose partite sets are

$$X_1 = \{u_1, u_2, \dots, u_{2k+1}\}\$$
 $X_2 = \{v_1, v_2, \dots, v_{2k+1}\}\$
 $X_3 = \{w_1, w_2, \dots, w_{2k+1}\},$

and whose arc set is given by

$$u_i + v_i$$
 for $i = 1, 2, ..., 2k+1$

$$v_j + \{w_{(j-1)(k+1)+1}, w_{(j-1)(k+1)+2}, \dots, w_{j(k+1)}\}$$

for j = 1, 2, ..., 2k+1. All vertices of X_1 have outdegree 1 and indegree 4k+1, while all vertices of X_2 and X_3 have outdegree 3k+1 and indegree k+1. Thus $|V(T_5)| = 6k+3 = f_1 + f_2$ and the frequency set of T_5 is $\{f_1, f_2\}$.

For $F = \{1,2\}$, there is no 3-partite tournament on vertices whose frequency set is F. Indeed, such a tournament on 3 vertices has a frequency set $\{1\}$ or $\{3\}$. Thus, $N_3(1,2) \ge 2$. The 3-partite tournament $T_7 = T(X_1, X_2, X_3)$ defined by

$$|X_1| = |X_2| = 1$$
, $|X_3| = 2$, $|X_1| + (|X_2| \cup |X_4|)$

has the frequency set $\{1,2\}$. This implies that $N_3(1,2) = 4$. The theorem is proved.

REFERENCES

- [1] B. Alspach, K.B. Reid: Degree frequencies in digraphs and tournaments, Journal of Graph Theory, Vol. 2 (1978), 241 249.
- [2] J.W. Moon: Topics on tournaments, Holton, Rinehart and Winston, New York, 1968.
- [3] V. Petrović: On frequency sets in bipartite tournaments, Proceedings of the Sixth Yugoslav Seminar on Graph Theory, Dubrovnik, 1985, (to appear).
- [4] R. Tošić: (private communication), 1985.

REZIME

FREKVENCIJE STEPENA ČVOROVA U TRIPARTITNIM TURNIRIMA

U ovom radu pokazano je da je svaki neprazan skup prirodnih brojeva skup frekvencija izlaznih i ulaznih stepena čvorova nekog tripartitnog turnira i pritom su odredjeni turniri sa minimalnim mogućim brojem čvorova.

Received by the editors February 25, 1986.