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ABSTRACT

A digraph D is n-unavoidable if each tournament on n
vertices contains a subdiagraph isomorphic to D. It is proved a
that the diagraph H(n,i) defined as a simple n-path vq4 = va +
... * v_ with an aditional are vqv, (3 £ i £ n), is n-unavoi-
dable f8r each n(n 2 4) and i = 4.'So are H(n,3) and H{n,n-1)
for n 2 b, excluding two particular cases.

*

The terminology used in the paper is that of [3],
except as noted. A digraph D is said to be n-unavoidable if
each tournament on n vertices contains a subdigraph isomorphic
to D. Let H(n,1i) be a simple n-path v, + vz + ... =+ v with an
additional arc vavy (3 s i 2 n). The following two results are
well known. ’

(A) (Rédei, [4]) the Hamiltonian path is n-unavoidable
for each n(n 2 2).

(B)  (Griinbaum, [1, p. 2111) H(n,n) - Hamiltonian bypass
is n-unavoidable for each n (n 2 3), except for two tournaments
T% and T§ (Fig. 1).
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T% : T%
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Fig. 1..

At the Sixth Yugoslav Seminar on Graph Theory, Zag-
reb 1986,,V. S8s proposed the

Conjecture. H(n,i) s n-unavoidable for each n
(n 2 5) and eaeh i (4 £ 1 < n-1).

We shall prove the conjecture for i = 4, and show
that H(n,3) and H(n,n-1) are alsc n-unavoidable for n = 4,

except for two particular cases.

Theorem 1, H(n,4) Zs n-unavoidable for each n
(n 2 4).

Proof. By induction on n. For n.= 4, the theorem
follows by (B). If n = 5, let Ts be an ‘arbitrary 5-tournament
with vertex set {v4,vVva2,Va;Va4,Vs}. First assume that Ts is not
strong. Then there is a unique degomposition of Ts into strong

&) 2) (i) .
components Ts + Ts -+ ... + Ts~’, where i $§ 5, and each ver-

tex of Tgi) dominantes each vertex of ng) iff 1 < 3. If
IV(T;1))[ < 4, the assertion follows by (A). If |V(Td)| = &
then, by (B), T;1) has a Hamiltonian bypass, which composed
with T;z) (obviously k = 2 and T;z, is a single vertex) gives
H(5,4). Now assume that Ts is strong. Let vq » va + ... > v,
be its Hamiltonian cycle. Then Viez T Vs for each i € {1,2,3,4%,5}
(all sums are modulo 5). Otherwise, Vi Vil T Vi T Vi
Vi is H(5,4) in Ts. But, now, v¢4 + va + Vs * va + va4 1is
H(5,4). Therefore, the theorem holds for n = 5.

Suppose that H(n,4) is n-unavoidable for some n
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{n > 5), and prove that is H(n+1,4) also. Assume that there

is a tournament T on n+l vertices without H(n+1,4) and

n+l
show that it leads to a contradiction.

Let {visVa, ve.s vn,v} be the vertex set of T By

n+l*
the induction hypothesis, Tn ~ v has H(n,4). We can assume

w.l.g. that it is vq4 + v2 + ... * Vo This clearly forces

(1) Voo,
Also
(2) v > {Vq,Vs,...,Vn_l}.

A

Indeed, if v, v (4 < i £ n-1), denote by i, the smallest i
. Inserting v into the path
l°+1

such that vio+ v.and v > v.
v, We get H(n+1,4)

Vg > Vg > Vg > e =+
V1‘*V2+V3+V“+...+V.+V+V.+1+...+V.
o

ig i n

Next we shall consider two cases.

Case 1, v +» vq. Then
(3) V3 g V,
because of H(n+1l,4) - v+ vq » vz + ... » V. Similarly,
(u') V@ > Vn,
because of v+ v > W > ... o> Vot Vi Va eV (by (2)).
Further,
(5) Va > Vi

because of v +» vy > vy > vs > ... > vV, * Va * va. Reasoning in




232 . V. Petrovid

the same way as for (2), we conclude that
(8) ' va -+ {v“,vs,...,vﬁ_l}.

Subcase 1.1, v + va. Then H(n+i,4) - v¢ + va = v
*Va > Ve > Ve > ... >V (by (6)) implies

7 Va + V4.

But this produces H(n+1,4) =~ v + Vva + va + Vi1 + V4 +» Vs > .., *
Vv, » 2 contradiction.

Subcase 1.2. vz + v, H{n+1l,4) - va + v + v1 > v3 +
T Ve e v forces (7) and it gives, by (3), va + v1 + va »
TV Ve Vs >l YV, contradicting the assumption.

Case 2, vq + v. Then (2) and v1 + vz + va > v + va +
Y oeen >V imply

(8) vV + Va.
Subcase 2.1. Vv 4+ vz. Then
(9) Va + Vy,

because of vy + V 4 vz + V3 + ... > V. Using (9), we get from

H(n+1l,4) Va + V4 + V > V4 4+ c0e + Vo Va

(10) ' Va > V.

Further (10) forces
(11) ‘ Va + {VusVas sees Vo _q}-

Otherwise, vz can be inserted in the path v, + Vg + ... & Ve

producing H(n+1,4) = Vva o V4 > V> V, % ...+ Vu + .e. V.
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But by (7) and (11), we have H(n+1,4) = v + vy + V4 > Vg + VvV, >

A VA
n

_ Subcase 2,2. vg =+ v. Again (9) holds by v, > vy, =

+ V> Vs +> Vy + +o. + V_. But, now, it gives H(n+1l,4) - vy -

n
T V3 > Vg VRV e >V, completing the proof.

The following lemma is important for discussing

H(n, 3).

Lemma. Let H : v+ v _, * ... > va*> Vi be a Ha-
miltonian path of a tournament Tn (n 2 4) in which arcs ViViso
(i=1,2,...,n=2) are present, Then there exists a Hamiltonian

path of Tn starting at V1.

Proof. By induction on n. First we check for small

n’s.
(a) n = 4., Then we have Hs : v4 + va * va + va.
(b) n =5, If va + vs, then Hs : vi + va * va + vs + vu4
and if vs + va, then Hs : v4 + va + vs + v2 + va.

(c) n =6, He : V1 + v3 » va + v4 * Vg + Vs 1is present

in Te.

Now suppose that the lemma is true for all positive
integers not greater than n, and prove that it holds for n+1
too.

Case 1. n = 3k (x 2 2). Then n+1 = (3(k-1) + 1) + 3.
By the induction hypothesis and (a), there exists a path P4

Ve > e containing vertices VasVaseetsVary_ 1)1

T Vi(k-1)+1

and the path Py : Vay_ 1341 * Va(k-1)+3 * Va(k-1)+2 ~ Va(k-1)+u°
Connecting P, and  P,, we get Hn+1 starting at vs.

+ v
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Case 2. n = 3k+l (k 2 2). Now, n+l = (3(k=1)+1) + 4

and P4 connected with Ps +>

P Va(k-1)+1 T Va(k-1)+3 T 0
* Va(k=1)+4 (using (b)) produces again Hn+1 starting at vi.

Case 3. n = 3k+2 (k 2 2). Using (c) and connecting

P, with Ps : v3(k-1)+1 -+ v3(k-1)+2 + e * va(k_1)+u, we get
Hn+1 with the starting vertex v,.

Theorem 2. H(n,3) 28 n-unaveoidable for each n (n 2 4),
unless Tn t8 of the type Ta + Tg_é, where T% is that in Pig. 1.

Proof. First consider the case when Tn is strong.
Let

Vg + Va3 + ., >V
1 a n

be its Hamiltonian cycle. If 7B for some i €{1,2,...,n}

2
(all sums are modulc n), then, obviously, there is H(n,3) in

Tn' So
(12) v, + Vv

for -each i €{1,2,...,n}. Let T4 be the tournament on vertices

v1,v3,v;;v . Its Hamiltonian path is, by (12),

n

H;:V1"V3"Vn"va
or

Hi” ¢+ vy + Vp T Va * va

according to vi; -+ v, or v, * Va.
On the other hand, the subtournament Tn \ T, has, by

(12), a Hamiltonian path v _, + vV + .vo + Vg + Vy, where v,

n=-2

- Vie2 for each i € {4,5,...,n-3}. According to the lemma, there

is a Hamiltonian path Hn-u of Tn ~ T4 starting at v,4. Connectin-

L

ing Ha4 or Hi” and H,_, (it is possible since v, + v,), we abtain
H(n,3).
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Now, assume that T is not strong. Let TA" + Té” +
+ «.. be its decomposition into strong components. If ]V(T;)[ <
< 3, the assertion follows immediately by (A). If ]V(T;)I =

= ny 2 4, then there is H(n:,3) in T!" (T{"! is strong)
whlch with any Hamiltonian path of T ‘= Tay forms H(n,3) in
T .

n

Theorem 3. H(n,n-1) <8 n-unavoidable for each n
(n 2 3), unless n = 4 and Ty = T™¥ + vand n = 6 and Te = TS +

+ v, where T% and T are those in Fig. 1,

Proof. If n< 5 and Tn is none of the forbidden
types, it is easy to verify the theorem.

Suppose that for n 2 6 there exists a tournament Tn’
on n vertices, without H(n,n-1). We shall show that it produ-
ces a contradiction. ,

Let {v1,V2,...,vn_1} be the vertex set of the tour-
nament T_. According to the conditions of theorem and (B), the- .
re is H(n-1,n-1) - a Hamiltonian bypass in Tn + v. We can as-
sume it is

Vg *+ Va2 *+ ... *+ 'V

n=1
where
(13) Vi > V4.
Then, obviously,
(1) Vv
Case 1. Vv > v,. Since v +» v, + ses » Voo * Vg

would be H(n,n-1) if v ~» V29 it follows that

(15) ‘ Viep * V.
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Two subcases are characteristic.

Subcase 1.1. v__, dominates none of the v,, i € {2,
3,...,n~2}. Then, Tn is of the type Tn-i > Voo (by (13) and
(1&)) and a Hamiltonian bypass - H(n-1,n-1). of T _4 joined to
Vh-q forms H(n,n-1) in T .

Subcase 1.2. v _, dominates at least one of the v,,

ie {2,3,.+.,n=2}. In that case, Vv can be inserted in the

n-1
path v¢4 + va + ... =+ vn_z.vBy (15), it produces H(n,n-1) -
VA F eee TV T e TV TV if v * V.- So
(16) Vieg * Vi-
Similarly, H(nyn-1) - v+ vq4 *> .., * Vel ™ ocer T Vo3 T Voo
implies
(17) Vi.z * V..

Now, from (14), (15), (16) and (17), it follows that

> > E R > vy + vy
Vp-2 7 V1 7 Va Vn-3 n-1

H(n,n-1) in Tn‘
Case 2. v4q4 * v, Then,

(18) Vo Voo

since vy * vz * ... * vV vy is H(n,n-1) in Tn'

n~2 n-1

By (18), v can be inserted in the path v, &+ v + ... +
+ Voo and H(n,n-1) implies

(19) v

+ V,.
n-2 1
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On the other hand, H(n,n-1) = v + v 4 > Va *Va *> ... +V +
+ vy, which follows from (14) and (19), forces

(20) Va > Vo 4

Now we shall consider two possibilities.

Subcase 2.1. {V3,Vu,...,vn_3} + v, _4- Then T is

of the type Tn * V1o and it is the subcase 1.1,

-1
Subcase 2.2. Vv _4 dominates at least one of vertices
Vi iE{B,H,..'.,n-—l}.Then,vn_1 can be inserted in the path va -+

(by (16)), and H(n,n-1) - v + va + «.. + V

vy > ... >+ V
3 n

-2
+ v4 induces

n-1

* ... TV
n-2

(21) va + V.,

But now we get, by (14), (16) and (21), H(n,n-1)

-+ > ... + VvV, *V + V
V2 Va T Vn-2 L n-1°?

. proving the theorem.
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REZIME
0 NEI1ZBEZNIM PODDIGRAFOVIMA TURNIRA

U radu se pokazuje da se digrafovi H(n,3), H(n,4) i
H(n,n-1) pojavijuju, sem u nekoliko lzuzetaka, u svakom turni-
ru. Time se delimi&no potvrdjule hipoteza V, S$6sa.

Recedlved by the editons February 25, 1986.




