Univ. u Novom Sadu, REVIEW OF RESEARCH
Zb. Rad. Prirod.-Mat. Fak. FACULTY OF SCIENCE
Ser. Mat. 18,1,77-92(1988) MATHEMATICS SERIES

ON ELECTRICAL SELF-DUALITY OF “sMaLL”
SELF-DUAL MATROIDS

Dragan M.Acketa
Prirodno~matematidki fakultet,Institut
z2a matematiku, 21000 Novi Sad, dr Ilije
Djuridida br.4, Jugoslavija

ABSTRACT

A1l the non-isomorphic ESD (electrlcal]y sel f-dual,
in the sense of [5])matroids on at most B elements are deter-
mined. The investigation is based on catalogue [4}. It turns
out that only ten (out of 266) self-dual matroids on 8 ele-
ments are not ESD. We also give all the possible "electrical'
permutations for ESD matroids on less than 8 elements. The
paper includes a list of all the non-isomorphic self~dual
matroids on at most 8 elements, together with the data concern-
ing their "electricity'". Some general methods for checking

whether an SD matroid is ESD are also presented.

1. PRELIMINARIES

Sets are mostly denoted without brackets and commas.
An n-set 1s a set of cardinality n. Non-defined notions can
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be found in [61].

A self-dual (SD) matroid on a (2n)-set S is ([51)
electrically self-dual (ESD) if there is a permutation p of
S which satisfies

a) p (M) = M* {where M* denotes dual of M)

b) p consists of n pairwise disjoint transposi-
tions.

We call the above permutation p - "electrical".

An NESD-matroid is a SD matroid, which is not ESD. The word
"cpodt" abbreviates "covering product of disjoint transposi-
tions", i.e, a candidate (satisfying b)) for an "electrical”
permutation.

A cyclic flat of a matroid is a flat which is also

a union of circuits. It is known (cf.[1]) that the complements
(w.r.t. the ground~set) of cyclic flats of M are cyclic flats
of M*, An essential flat is a cyclic flat, which is different
from the ground-set and which cannot be "predicted" (by using
semimodularity, as a "minimal® consequence) from the family

of cyclic flats of lower ranks. The essential flats, accompa-
nied by theilr ranks, are sufficient to describe a matroid.

The ground-sets of all the exhibited matrolds are
subsets of the set W=abcdefgh.

2. DENQTATIONS IN THE LIST OF SELF-DUAL MATROIDS

Our main denotations are of the form "k=SD:E",
where

- "SD" denotes a self-dual matroid M on 2n elements
(0<n<4)
- "E" gives information on the electrical self-dua-

lity of M

- "k" denotes the ordinal number of M, within the
class of all the non-isomorphic self-dual matroids
with n fixed.
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The letters "SD" stand for the family of essential
flats of M, separated by commas and accompanied by their ranks
(in brackets). This family is empty in the uniform case. The
denotation of rank is omitted whenever the rank of an essen-
tial flat F belongs to the set {n-1, |F|-1}.

Given n=4, a natural number "j" in the beginning of
a list of essential flats (after the sign "=") replaces the
entire family of (ranked) essential flats corresponding to
the SD matroid with the ordinal number j.

EXAMPLE. Denotations "40=43,dfgh"; "43=45,cegh";
"45=ab,abcd(2) ,abef(2)" - mean that the ranked essential flats
of the self-dual matroid with the ordinal number 40 are ab(l),
abed(2), abef(2), cegh(3), dfgh(3). We point out that the SD
matroids 40, 43 and 45 also have the non-essential cyclic
flat abcdef(3).

Given again n=4, the denotation "E" stands ,except
for the NESD cases, for an "electrical" permutation p of the
ground-set abcdefgh. The elements in the same transposition
of p are written together, while the transpositions are
separated by short lines. We shall write down only three trans-
positions; they uniquely determine the fourth one. A natural
number "i" in the place of "E" means that the permutation p
coincides with the one corresponding to the SD matroid with
the ordinal number i.

EXAMPLE. The SD matroids 54 and 36 have respective-

ly the denotations "36" arid ."af-be~cd". It follows that the
abcde fgh
fedcbahg
each of those two matroids.

electrical permutation p={( ) corresponds to

Given n€{0,1,2,3}, the denotations "E" are replaced
by descriptions of the entire lists of the corresponding
"electrical" permutations.
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3.

A LIST OF SELF-DUAL MATROIDS

0 elements:

The only matroid is trivially ESD.

2 elements:

1

a: ab
uniform: ab

4 elements:

o W -

ab(0): ac-bd, ad-bc

= a,abc: ad-bc
= ab,cd: all 3 cpodt’s
= ab,abcd: ac-bd, ad-bc

uniform: all 3 cpodt’s

6 elements:

-~

(- NV B PSR SR

= abc(0): those 6 cpodt’s, which map abc to def

ab(0), abcd(l): ae-bf-cd, af-be-cd
a,abc(l) ,ade(1): af-bc-de, af-bd-ce, af-be-cd

= a,abc(l),abcde: af-bd-ce, af-be-cd
= a,abcde: like number 3

ab,cd,ef: those 7 cpodt’s, which include at least one
of the transpositions (ab), (cd), (ef)
def (1), abc: like number 1

= ab,cd,abef: like number 2

10 =
= ab,abcd,cef: like number 2
12 =

11

13

14
15
16
17
18

abc (1) : like number 1
ef,abcd: ab-cd-ef, ac-bd-ef, ad-bc-ef

ab,abcd: like number 2

abc,ade,bef,cdf: those 7 cpodt’s which include at least
one of the transpositions (af), (bd), (ce)

abc,ade,cef: ab-cd-ef, ad-be-cf, af-bc-de, af-be-cd

= abc,def: like number 1
= abc,ade: like number 3

abc: like number 1
uniform: all 15 cpodt’s
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8 elements:

1 = abcd(0): ah-bg=-cf 2 = abc(0),abcde(l): 1 3 = ab(0),
abcd (1) ,abef(l1): 1 4 = 5,abcd(l): 1 5 = ab(0), abcdef(2):1
6 = a,abc(l) ,ade(l) ,afg(l): ah-bc-de 7 = a,abcd(l),aefg(2):1
8 = a,abc(l),ade(l),abcfg(2): 1 9 = a,abcd(l),abcdefg: 1

10 = a,afg(l) ,abcde(2): 6 1ll=a,abc(l),abcde(2),adfg(2): 1
12 = a,abc (1) ,abcde(2) ,abcdefg:1 13 = a,abcd(2),abef(2),
acfg(2),adeg(2): 1 14 = a,abcd(2),abef(2),adfg(2): 1

15 = 17,aefg(2): 1 16 = 17,abef(2): 1 17 = 18,abcd(2): 1
18 = a,abcdefg: 1 19 = ab,cd,ef,gh: 1 20 abc (1) ,de, fgh:l
21 = ab,cd,ef,abgh(2): ah-bg-cd 22 = abcd(l),efgh: 1

23 abc(l) ,de(l),abcfgh: 1 24 = abcd(l1): 1 25 = ab,cd,
efgh(2): ab-cd-eh 26 = ab,cd,abef(2),cdgh(2): 1 27 = 28,
egh,cdegh: 21 28 = ab,cd,abef(2),abefgh: 21 29 = 31,dfgh:l
30 = ab,cd,abef,abcdgh: 1 31 = abc(l),abcde(2): 1 32 = 33,
efgh: 1 33 = ab,cd,abcdef,abcdgh: 1 34 = 36,cef: af-bd~ce
35 = ab,abgh(2),cdef(2): 1 36 = abc,ade,bdf,gh: af-be-cd

37 = ab,cde,cfg,abdh(2): ag-bf~-ch 38 = gh,abc,def: 36
39 = fg,abc,ade,abcdeh: ah-be-cd 40 = 43,dfgh: 1 41
cef ,abcd(2) ,abegh,dfgh: 1 42 = ab,cde,cfg,abcdeh: 37
43 = 45,cegh: 1 44 = de,abc,adef(2),bdegh: ac-bf-dh
45 = ab,abcd (2),abef(2): 1 46 = de,abc,abcfgh: 1 47 = 49,
dfgh: 1 48 = 50,dfgh: 1 49 = 53,cegh: 1 50 = ab,cde,
abcdef,abcgh: 1 51 = 53,efgh: 1 52 = ab,cde,abcdef,abfgh:
NESD 53 = ab,abcd(2),abcdef: 1 54 = gh,abcdef: 36 55 = 56,
efgh: 1 56 = 57,cdgh: 1 57 = ab,abcdef: 1 58 = abcd(2),
efgh(2): 1 59 = abc,cde,efg,agh: 1 60 = 59,bdfh: 1

61 = abcd(2),efg,aefgh: 1 62 = abc,ade,fgh,bdfgh,cefgh:
NESD 63 = abc,ade,afg: 1 64 = 63,bdfh: 1 65 = 64,begh: 6
66 = 64,cegh: 1 67 = 65,cdgh: 6 68 = 67,cefh: 6 69 = abc,
adg,def,abceh: ah~-bc-df 70 = 69,bfgh: 69 71 = abcd(2): 1
72 = 71,aefg: 1 73 = 71,efgh: 1 74 = 72,befh: 1 75 = 74,
cegh: 1 76 = 75,dfgh: 1 77 = abc,def,abcgh,defgh: ad-be-cf
78 = abc,def,abcgh,adefg: NESD 79 = abc,def,abcdg,adefh:
ag-bc-dh 80 79,begh: 79 81 = 80,cfgh: 79 82 = abc,ade,
abcfg: 1 83 = 82,bdfh: 1 84 = 82,dfgh: 1 85 = 83,cegh: 1
86 = 83,cdgh: 1 87 = 84,begh: ah~bf-cg 88 = 87,cefh:87

ab,
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89 = 86,begh: 87 90 = 89,cefh: 87 91 = abc,abcde: 1

92 = 91,dfgh: 1 93 = 100,bdfh: 1 94 = 100,befh: 1
95 = 100,efgh: 1 96 = 93,aefh: 102 97 = 93,cdgh: 1
98 = 93,cegh: 1 99 = 93,efgh: 1 100 = 91,adfg: 1 101 = 96,

befg: 1 102

98 ,aefh: ag-bh-cf 103 = 100,aefh,begh,cdgh:
af-bg-ch 104 96,cdgh: 102 105 = 99,cdgh: 1 106 = 104,
befg: 1 107 94,aegh,bdgh,cdfh: 37 108 = 104,begh cefg:
103 109 = 91,afgh,defg: 1 110 = 91,adfh,bfgh,defg: 102

111 = 91,adfh,begh,cfgh,defg: 37 112 = 91,adfh, bdgh,cfgh,
defg: 37 113 = 112,aegh: 103 114 113,befh: 37 115 = abc,
adefg: 69 116 = 115,bdeh: 69 117 116,bfgh: 69 118 = 116,
cfgh: 69 119 = 116,cdfh: ah-bc-dg 120 = 117,cdfh: 119

121 120,cegh: 119 122 = abc,defgh: NESD 123 = uniform:1
124 = abed: 1 125 = 124,abef: 1 126 = 124,efgh: 1 127 =125,
aceg: 1 128 = 125,cdgh: 1 129 = 127,adfg: 1 130 = 125,
abgh,cdef: 1 131 = 127,bceh: 1 132 = 127,bdfh: 1 133 =128,
efgh: 1 134 = 129,bceh: 1 135 = 127,abgh,bceh: ad-bf-cg
136 = 130,aceg: 1 137 = 130,cdgh: 1 138 = 132,cdgh: 1

139 = 135,acfh: 135 140 = 127,abgh,acfh,efgh: ad-bc-eg

141 = 134,bdfh: ‘1 142 = 136,bceh: 1 143 = 136,bdfh: 1

144 = 137,aceg: 1 145 = 137,efgh: 1 146 = 138,efgh: 1

147 = 135,acfh,bdeg: 135 148 = 136,acfh,bdeg: 1 149 = 140,
bdeg: ad-bc-ef 150 = 141,cdgh: 1 151 = 144,bdfh: 1

152 = 144,efgh: 1 '

153 = adeh,adfg,bcfg,bdeg,bdfh,cdef,cdgh,efgh: 135

154 = adeh,adfg,bceh,bcfg,bdeg,bdfh,cdef,cdgh: 149

155 = abgh,acfh,adeh,bcfg,bdeg,cdef, cdgh,efgh: 1
156 = acfh,adeh,adfg,bcfqg,bdeg,bdfh,cdgh,efgh: 1
157 = acfh,adeh,adfg,bceh,bcfg,bdeg,cdgh,efgh: 1
158 = acfh,adeh,adfg,bceh,bcfg,bdeg,bdfh,efgh: 1
159 = aceg,acfh,adeh,adfg,bceh,bcfg,bdeg,bdfh: 1

160 = abgh,acfh,adeh,adfg,bceh,bcfg,bdeg,cdef: 1

161 = 155,bdfh: 1 162 156,cdef: 135 163 = 157,bdfh: 1
164 = 159,efgh: 1 165 160,efgh: 1 166 161,bceh: 1

167 = 164,cdgh: 1 168 = 164,adfg: 1 169 = 165,cdgh: 1

170 = 159,abgh,cdef: 1 171 = 169,bdfh: 1 172 170,efgh: 1
173 = 172,cdgh: 1 174 = 170,abef,cdgh: 1 175 173,abef:
176 = 175,abcd: 1 177 = abcd,aefg: 1 178 = 177,befh: 1
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179 = 177,abeh,bcfg: ad-bh-ce 180 = 178,cdgh: 1 181 = 180,
aceh,bdeg: NESD 182 = 181,bcfg: ab-cf-de 183 182,adfh:
182 184 = 178,cegh: 1 185 = 184,dfgh: 1 186 184 ,adfth:
102 187 = 186,bdfg: 102 188 = 186,bdgh: 103 189 = 188,
cdfg: 103 190 = 186,bcfg,bdeg: 102 191 = 188,bcfg,cdef:
103 192 = 178,acgh: NESD 193 = 192,bdeg: 34 194 = 192,
adeh,bceg: NESD 195 = 192,bdgh,cdef: ab-ch-dg 196 = 195,
adeh,bceg: 195 197 = 193,cdfh: ab-ce~dg 198 = 193,adfh:
NESD 199 = 198,bcfg: ae-bc-dg 200 = 199,cdeh: 199

201 = 178,bcfg,aceh,adfh: ag-bh-ce 202 = 179,acfh,bdef:

179 203 = 177,abgh,cdef: 1 204 = abcd,befh,abgh,adeh: 103
205 = abcd,cegh,ab.gh,acfh,adeh,cdef: 102 206 = 177,abgh,
adeh,bcfg,cdef: 1 207 = 206,acfh,bdeg: 102 208 = 177,abgh,
cegh: af-be-ch 209 = 203,befh: ah-bg-ce 210 = 203,cegh:
208 211 = 208,adeh: 103 212 = 204,dfgh: 103 213 = 211,
bcfg: 208 214 = 204,bcfg,cegh: ae-bf-cg 215 = 209,acfth,
adeh: 201 216 = 205,dfgh: 201 217 = 209,adeh,bcfg: 201

218 = 213,cdef: 208 219 = 217,acfh: 201 220 = 219,bdeg:

201 221 = 179,acfh: 179 222 = 221, bdeg: 179 223 = 208,

bdfh: 208 224 =209,cdgh: 209 225=210,bdfh: 208 226=211,bdfh: 103 227=
212,aceg: 103 228 = 213,bdfh: 208 229 = 214,adfg: 214

230 = 215,cdgh: 201 231 = 216,abef: 201 232 = 217,cdgh:
201 233 = 218,bdfh: 208 234 = 219,cdgh: 201 235 = 234,
bdeg: 201 236 = 181,abgh,cdef: NESD 237 = 182,abgh,cdef:
182 238 = 182,adfh, abgh: 44 239 = 183,abgh,cdef: 182
240 = abcd,dfgh, befh,cegh,abgh,cdef: 1 241 = 211,dfgh:
103 242 = 212,aefg,acfh,cdef: 102 243 = 240,bcfg,adeh: 1
244 = 243,acfh,bdeg: 1 245 = 185,abgh: 214 246 = 245,
cdef: 214 247 = 245,adeh: 103 248 = 247,bcfg: 214 249 =
247 ,acfh,cdef: 102 250 = 248,cdef: 214 251 = 249,bcfg:
214 252 = 251,bdeg: 214 253 = 186,abgh,cdef: 102 254 =
253,bdfg: 102 255 = 186,bcfg,bdeg,abgh: 199 256 = 255,
cdef: 199 257 = 192,adeh,bcfg: NESD 258 = 193,adeh: 34
259 = 193,bcfg: 34 260 = 258,bcfg: 34 261 = 195,adeh: 195
262 261,bcfg: 195 263 = 197,adeh: 197 264 = 263,bcfg:
197 265 = 201,abgh: ad-be-ch 266 = 265,cdef: 201

[}
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L., ON CHECKING THE ELECTRICAL SELF-DUALITY
OF SELF-~DUAL MATROIDS

In this section we shall give a number of methods
which were used for checking whether an SD matroid on <8
elements is ESD. The majority of these methods can also be
applied to SD matroids on larger sets,

a) Loops - coloops

Any isomorphism between the matroids M and M* (i.e,
a permutation p of the common ground-set, which satisfies
p(M)=M*; its existence means that M is SD) maps the loops
(coloops) of M to the loops (coloops) of M*, which are at the
same time coloops (loops) of M (thus the numbers of loops and
coloops in an SD matroid are the same). It follows that

LEMMA 1. Any transposition of an "electrical" per-
mutation (corresponding to an ESD matroid) - either includes
a loop and a coloop or none of them,

CONSEQUENCE. There is a natural bijection between
all the non-isomorphic ESD matroids on a (2n)-set and all the
non~-isomorphic ESD matroids with loops on a (2n+2)-set. It is
established by the addition of one loop and the corresponding
coloop to each matroid of the first class.

EXAMPLE. Since all the SD matroids on 6 elements
are ESD, we have that all the SD matroids with loops on 8
elements are ESD,

b) Cyclic chains

A gyclic (=essential,[2]) chain'is a matroid M
which satisfies that each two cyclic flats of M are compar-
able.
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LEMMA 2. All the SD cyclic chains are ESD.

PROOF. Let Co'cl""'ck (Cocclc...cck) be all the
cyclic flats of an SD cyclic chain M on S. We define a cor-
responding "electrical" permutation p of S as follows:

1) p(p(x)) = x for each x€S
2) If x€C_, then p(x)€ESC
° K k-2
3) 1f xECi+1\Ci, where 0<i< == then

P(X)E(SNC, _IN(SNC) 1)

4) If k 1is odd and x€D=C +1\C « then

k~1
z

k
p(x)€D~{x1}.

It is routine to check that p maps the sets
Co'cl""'ck to S\Ck,S\Ck_l,...,S\Co respectively. Further-
more, the permutation p has no fixed points (x and p(x)
are placed in disjoint sets, except for case 4), where x#p(x)
is explicitly stated). Observe that the set D must be of an
even cardinality, otherwise M would not be SD. Thus p is a
cpodt.

CONSEQUENCE. A lower bound for the number of ESD
matroids on 2k elements is 2k'(this is the number of non-iso-
morphic SD cyclic chains ([2])). This bound seems to be very
crude (e.g, for n=4 we have that 16<<256).

c) "Standard" permutation

We point out that more than half (exactly 129) of
the ESD matroids on 8 elements in our list are represented
with the help of the same "electrical"” permutation s.p.=ah-
bg~cf-de (let us call the permutation s.p. "standard"). We
used s.p. whenever possible.

EXAMPLE. The families of cyclic flats, which cor-
respond to SD matroids (on 8 elements) numerated from 123 to
176. inclusive - are subfamilies of

abcd,abef,abgh,aceqg,acfh,adeh,adfg

F= {efgh,cdgh,cdef,bdfh,bdeg,bcfg,bceh}
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The "standard" permutation s.p. maps the sets
within four complementary pairs of F to each other, while it
fixes each of the sets in the complementary pairs P1={abgh,
cdefl, P2={acfh,bdeg} and P3={adeh,bcfg}. Since an "electric-
al" permutation should map a family of cyclic flats to the
family of their complements, it immediately follows that s.p.
is an "electrical®™ permutation for 46 of the considered 54
matroids. These 46 matroids satisfy the condition that their
families of cyclic flats include either none of both of the
sets in the family P;, for each i€{1,2,3}.

d) Suitable matroid representations

When dealing with SD matroids on 8 elements, nume-
rated from 177 to 266 inclusive, we represented them by means
of marked D-graphs ([3]):

The vertices of a D-graph associated to an SD mat-
roid M - are the cyclic flats of M, all of cardinality 4. Two
vertices X and Y of a D~graph are adjacent iff |XnYl|=1., If
Xny={a}, then it is natural to denote the edge {X,Y} by "a".
A D-graph becomes marked when we introduce the following bi-
nary relation r on the set of its edges:

For two edges x=X,NX, and y=YlﬁY2 r(x,y)<=>
X = W\(YIUYZ).

The lattice of cyclic flats turned out to be a con-
siderably suitable matroid representation in non-paving cases .

e) Compulsory transpositions

An important shortcut for checking electrical self-
-duality in many cases is to primarily detect “"compulsory"
transpositions, which are due to special positions of some
elements in the ground-sets of M and M*. Suitable matroid
representations help in recognizing them., These transpositions
considerably reduce the number of possibilities which should
be checked.
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EXAMPLE l.Let M denote the 37th SD matroid on 8
elements. The cyclic flats of M are:

ab,cde,cfg,abdh(2) ,abcdeh,abcfg,cdefg.
Their complements are the cyclic flats of M*:
£g,deh, abh, cefg (2) ,cdefgh,abfgh,abdeh.

It is obvious that any permutation mapping M onto
M* must map c=cdeficfg onto h=dehflabh and ab onto fg. It fol-
lows that ~ch-~ and -de- are compulsory transpositions in each
"electrical" permutation. We can easily conclude and verify
that the only two "electrical" permutations are:

af-bg-ch-de and ag-bf-ch-de.

EXAMPLE 2. Consider the cyclic flats of M and M*,
where M denotes the 185th Sp matroid on 8 elements:

M: aefg,befh,abecd,cegh,adfh
M*: bcdh,acdg,efgh,abdf,aceqg.

Let us denote by 1,2,3,4,5, in this order, the cor-
responding vertices of the associated D-graphs. It is easy to
check that the edges of these graphs are 13,23,34 and 45 in
both cases. The l-element intersections, which correspond to
these edges are:

a,b,c,h respectively for M and
h,q9,£,b respectively for M*.

Since each of the edges 34 and 45 has a special po-
sition in the D-graphs, we immediately have that -cf-- and
-bh- are compulsory transpositions with any “electrical" per-
mutation. The edges 13 and 23 are "in isomorphic positions®
(more precisely, in the same orbit of the automorphism group
of the edge-set). Thus it is possible to map edge 13 with h
onto edge 23 with M* and conversely. It is now easy to derive
that ag-bh-cf-de is the only "electrical™ permutation.
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f) NESD-matroids

We shall give explicit proofs for the non-existence
of an "electrical®” permutation for each NESD matroid M in our
list. In most cases, the idea was to find-a set X of odd car-
dinality, such that X is invariant under any permutation p,
which maps M onto M*, It is then obvious that such a permuta-
tion cannot be a cpodt.

The proofs follow the corresponding ordinal numbers
of NESD matroids in our list of SD matroids on 8 elements.

52: X cde. This 1s the only cyclic 3-flat both in M an M*.

62: X a (or X = fgh). The cyclic 3-flats are abc,ade,fgh
with M and abd,ace,fgh with M*. The element a 4is, in
both cases, the only common element for some two of these
flats.

78: X = g. This element belongs (both with M and with M¥*) to
the intersection of two cyclic S5-flats, but not to a
cyclic 3-flat,.

122: X = abc. The proof is obvious.

181: The D-graphs associated with M, respectively M*, contain
a quadrangle with the edges a,b,h,g. In addition, the
first of these D-graphs has the isolated edge e, while
the second has the isolated edge £f. It follows that
-ef- and -cd- are the compulsory transpositions. Thus
there are three candidates for an "electrical" permuta-
tion: Pys Py and P3s which include the transpositions
ag-bh, ah-bg and ab-gh, respectively.

Consider the cyclic flat abcd of M. We have that
pl(abcd)=p2(abcd)=cdgh and p3(abcd)=abcd, but none of the
sets cdgh and abcd is a cyclic flat of M* o

192{ X = h. This is the common first element
of the only pair of edges related by r, both in M and
in M*, Namely, the marked D-graph, associated with M,
respectively M*, is a 3-path which has
- the edges a,b,h with r(h,a), respectively
the edges d,g,h with r(h,d).
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194: The marked D-graph differs from the 3-path associated
with the 192th sp matroid solely in that one isolated
edge (e) is added. Such an alteration does not influence
the previous proof.

198: X = g. The marked D-graphs associated with M and M* are
5-paths, which (in order) have the edges a,b,h,q,d, res-
pectively c,f,d,g9,h. The ordered pairs of edges, related
by r, are (4,h), (h,a), {(g,b) in the first case and
(h,d), (d,c), (g,f) in the second one. The element g
is in both cases the first element of the pair, which is
disjoint with the other two pairs.

236: The marked D-graph is the same one as with the 181th gp
matroid.

257: The marked D-graph is the same one as with the 192th gp
matroid.

g) Augmentations

Let two families F1 and F2 of cyclic flats be given,
which correspond to the matroids Ml and M2, respectively. In
addition, let us suppose that Fl is a proper subfamily of F2
and that M, is ESD with an "electrical" permutation p. In
many cases, it is possible to show that p maps the family
FZ\F1 onto the family of complementary sets. This implies
that p 41is an "electrical" permutaticn for Mz: that is, M2

is also ESD.

EXAMPLE. The 28th sp matrocid M, on 8 elements 1is
ESD with p=ah-bg-cd-ef. The 27th sp matroid M, is obtained
from M, by the addition of cyclic flats egh and cdegh. Since
p({egg,cdegh})={abf,abcdf}={W\egh,W\cdegh}, it fellows that
M, is also ESD with p.

h) A shortcut for testing cpodts

Suppose that a paving SD matroid M on 8 elements
(the ordinal numbers 123 through 266 in our list) is represent-
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ed by means of its cyclic 4-flats F and let a cpodt p be given.
Let "k(F)" denote the number of transpositions of p, both the
elements of which are included in F. We shall suggest the fol-
lowing quick test to determine whether p 1is “electrical”

for M:

If k(F) = 0, then ignore F.

If k(F) = 1, then check whether M contains the
cyclic flat wWw~p(F).
If k(F) = 2, then check whether M contains the

cyclic flat W~F.
(Note also that K(F)=2 implies p(F)=F.)

The negative answer in any of the last two cases
means that p 1is not "electrical". The affirmative answer
means that the flat W~p(F), respectively W™F, should be re-
moved from further consideration.

JUSTIFICATION. We should check that p maps the
family of cyclic flats onto the family of their complements.
If k(F)=0, then the mapping is direct: p(F)=W~F. If k(F)€{1,2},
then the cyclic flats F and Wp(F) may transpose their roles,
since

Whp(Wp(F)) = W(Ww~p(p(F))) = F

EXAMPLE. The cyclic 4-flats of the 232th sp matroid
M on 8 elements are

abcd,cdgh,adeh,bcfg,aefg,befh,abgh,cdef.

Given p=ag-bh-ce-df, the values of k(F) with the
cited eight flats of M are 0,0,0,0,1,1,2,2 respectively. In
order to show that p 1s "electrical", it suffices to check
that W~p(aefg)=W~acdg=befh is a cyclic 4-flat and to observe
that the cyclic 4-flats abgh and cdef are mutually complement-
ary.

REMARK. A general test to show that a cpodt p 1is
"electrical” can be organised as follows:
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For each cyclic flat F of a matroid M and for the
corresponding cyclic flat p(F) of the dual matroid M* (were
M*=M), and also for each transposition -xy- of the permuta-
tion p, one of the following four combinations of the condi-
tions (of 16 possibilities in all) should hold:

1) x€F, y€F, x€p(F), y€p(F)
2) x€F, y¢F, xé¢p(F), yeEp(F)
3) x¢F, y€F, x€p(F), yép(F)
4) x¢F, y¢F, x4p(F), yé€p(F)

(the elements x and y are placed either in none, or in
both, or opposite to the flats F and p(F)).

This 1s easily derived by the use of

y = pi(x), x = p(y) and p(p(F)) = F.

i) The number of “electrical" permutations

Except for the ESD matroids on <6 elements, we have
not counted the "electrical" permutations; it was enough to
find one (when it exists) for our purposes. However, their
enumeration is a question of a particular interest. We shall
just make a couple of general remarks:

There are (2n)!/(2"n!) cpodts on a (2n)-set. We de-
note this number by "f(n)"; the first four values of f are
1,3,15,105. The number f(n) is the smallest upper bound for
the number of "electrical" permutations, which is effectively
reached with uniform SD matroids (we conjecture them to be
the only examples of this type for n>3).

Compulsory submaps play a substantial role in the
enumeration.They generalise the idea of compulsory transposi-
tions.

EXAMPLE. Suppose that a k-set X has the property
that its image Y=p(X) is uniquely determined, under any per-
mutation p such that p(M)=M*. If ¥YNX=§, then the number of
"electrical candidates" reduces to k! f(2n-2k). In the oppo-
site situation, when ¥Y=X (then k must be even, otherwise M
M is NESD), the upper bound is f(k)f(2n-k).
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REZIME

0 ELEKTRIENOJ SAMODUALNOSTI “MALIH"
SAMODUALNIH MATROIDA

U ovom radu su, uz pomoé kataloga [4], odredjeni svi
neizomorfni elektrino samodualni matroidi (u smislu rada
[5]) na nosa%ima od najviSe 8 elemenata. Medju 266 samodual-
nih matroida na 8 elemenata samo 10 nisu elektri&no samodual-
ni. Dato je i viZe metoda za proveru elektri¥ne samodualnosti
sarodualnih matroida; vedina tih ratroida mo¥%e se vrimeniti

i na veéir nosadima.
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