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ABSTRACT

Assume that X and Y are vector spaces, K is a cone in
X and F:k-=2Y<{Pl is an additive set-valued function. We prove
that if for some x,erikK the set F(xo)has an extremal point,

then there exists an additive selection of F.

Theorems on the existence of selections having some
"nice" topological or algebraic properties play an important
role in the theory of set-valued functions and have numerous
applications. In the case of additive set-valued functions na-
tural and interesting is the question concerning the existence
of additive selections. There are some results relating to
this question. In [6] R3dstrom has proved that every additive
set-valued function F: (0,«)>CC(Y) (here CC(Y) denotes the fa-
mily of all non-empty, convex and compact subsets of Y), where
Y is a locally convex Hausdorff space, has an additive selec-
tion. In the proof of this theorem he used the technique of
support functions. Other constructions of additive selections
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one can find in a paper by Przes¥awski [5]. (for additive set-
-valued functions taking values in CC(Rn)) and in an earlier pa-
per by the author [4] (for additive set-valued functions F:
[0,»)+CC(Y), where ¥ is a Hilbert space). The selection in [5]
is defined by means of the so-called Steiner point whereas the
selection in [4] is determined by the greatest elements of the
values of F in the sense of a lexicographic order.

In the present paper we shall give another construc-
tion of additive selections. The method used makes it possible
to omit the assumption that values of F are convex and compact;
moreover, no topological structure of the space Y is required.

Let X and Y be arbitrary real vector spaces and assu=
me that K is a cone in X (i.e. K is a subset of X satisfying
the conditions K+KCK and tKCK for all te(0,=)). A set-valued
function F:K42Y\{¢} is said to be additive iff

F(x1+*2) =-F(x1)+F(x2) for all X4 x2€K.

Given a non—-empty set A(CX we denote by lin A the affine space
generated by A. We say that a point a€eX belongs to the relative
algebraic interior of A (and write a€riA) if for every xelin A
there exists an ¢>0 such that {tx+(1-t)a: te€(-¢,e) }CA. A point
a€A is said to be an extremal point of A if there are no two
different points a1,a2€A and no number t€(0,1) such that a =

= ta1+(1-t)a2. The set of all extremal points of A is denoted

~ by Exta.

The following theorem holds:

Theorem. Let X and Y be twe real vector spaces and
let K be a cone in X. Assume that F:K+2°~{f} ie an additive set-
-valued function, x°€riK and p€EExt F(xo). Then there exists ex-
actly one additive selection f£:K+Y of F such that f(xo) = p.

We shall start with the following lemma which is ba-
sic to the proof of our theorem.
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Lemma 1. Let A and B be subsets of a real vector spa-
ce. If pEExt(A+B), then there exist exactly omne point a€A and
exactly one point bEB such that a+b=p. Moreover, a€ExtA and
bEExtB.

This result was originally given by Minkowski [3] for
convex subsets of 3-dimensional space. For compact subsets of a

locally convex Hausdorff space it is proved in [2] by Husain and
Tweddle.

Proof. Let pE€Ext(A+B) and assume that p=a1+b1=a2+b2,
where ai,aZEA and b1,bZEB. Then

1 1
p = zlap*by) + zlayhy),

1+b2=a2+b1.

a1+b1=a2+b2, we obtain a,=a, and b

which implies that a Hence, in view of the equality

1=b2. Thus, there exist a
unique a€A and a unique bé€B such that p=a+b. We shall show that
a€ExtA and beExtB. For the indirect proof suppose that agExtaA.
Then there exist points a1,a2€A, a1¢a2, and a number te(0,1)
such that a = ta1+(1—t)a2. Hence p = t(a1+b)+(1—t)(a2+b), which
contradicts the fact that p€Ext(A+B). Therefore a€ExtA. An ana-
logous reasoning shows that b ExtB. ::

Lemma 2, Let A be a subset of a real veector space.
If A+A=A then ExtA({0}.

Proof. Assume that p€ExtA. Since A=A+A+A, there exist
points a1,a2,a3€A such that p = a1+a2+a3. Obviously, we can
write p = a1+(a2+a3)=(a1+a2)+a3, where a,+a,€A and a +aj€A.
Hence, in view of.Lemma 1, a1=a1+a2, i.e. a2=0. In an analogous
way one can show that a1=0 and a3=0. Consequently p=0, which

was to be proved. ::

Proof of Theorem. Let U.=Kn(xo-—x). If ueU, then X —u€eu
and, by the additivity of F, F(x ) = F(u)+F(xo—u). Then on acco-
unt of Lemma 1, there exist a unique point pueF(u) and a unique
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point p  _ €F(x -u) such that
o

* =

(*) P =p, * Pxo_u-
Define a function fQ:U+Y putting fo(u):=pu, u€u. Of course,
fo(u)€F(u) for all u€y. We shall show that fo is additive on U,
that is fo(u+v) = fo(u)+f°(y) provided u,v€U and u+v€U. Since
pEF(xo) = F(u)+F(v)+F(x°-u-v), there exist points a€F(u), bEF(v)
and cEF(xo-u—v) such that p=a+b+c. By the unigueness of the re-
presentation (*), we infer that a=p, s because a€F(u) and
b+c€F(v)+F(xo-u—v) = F(xo-u). Similarly b=pv, because b€F (v)

and a+c€F(xo-v). Since a+b€F(u+v) and cEF(xo—u-v), we have also

a+b=p Hence, using the definition of fQ, we obtain

u+v’

fo(“+V)=pu+v=a+b=pu+pv=fo(u)+fo(V)’

which was to be shown. Now, by a theorem of Dhombres and Ger
[1)], there exists an additive function £:K+Y such that f|U=fo.
We shall show that f is a selection of F. To this aim fix an
x€K. Since xoeriK<and x+xo€K, there exists an ¢>0 such that
t(x+x°)+(1-t)xo€K for every te€(-¢,e). Taking a natural number

n > %, we get
- Lixex )+ (1 + hyx _ex
n o n o’

whence Ee xo-K. Consegquently, %e U, because %:—e K, too. Now we
have

£(x) = nf(@) = nf BenPr R FS +...+v &) = F(x)

which means that f is a selection of F.

Notice that this selection passes through the point

p. Indeed, if 0O€K, then x €U and f(x°)=pxo, where px°+p°=p.
Since p_€Ext F(0) and, in view of Lemma 2, Ext F(0)C{0}, we have

have p_ =0. Thus P, =p- If O0¢K, then taking a point u€U.and
o
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using (*), we obtain

f(xo)=f(u)+f(xo—u)=fo(u)+fo(xo-u)=pu+pxo_u=p7

Now, assume that g:K+Y is another additive selection of F such
that g(x°)=p. Then, for every u€U we have g(u)€F (u), g(xo-u)e
€F(x -u) and g(u)+g(x°-u)=g(x°)=p. Hence g(u)=pu=f(u), because
the representation (*) is unique. If x is an arbitrary element
of K, we can find, as was noticed above, a natural number n
such that %E U. Then

= X, - X -
g(x) = ng(-r—l) = nf(E) = f(X)'

which shows that the selection f is unique. This completes the
proof.

Remarks {. This theorem generalizes the theorem of
Radstrdm mentioned at the beginning, because every compact set
in a locally convex Hausdorff space has an extremal point.

2. The assumption that x°€riK is essential
for the existence of the additive selection., For example the
set-valued function F:[O,m)#ZR defined by

5{0} , x=20
F(x): =
]k(olx)an x > 0,

where Q denotes the set of all rational numbers, is additive
and O€Ext F(0). Nevertheless, F does not admit any additive
selection.

3. If peExt F(xo) or if pg¢Ext F(xo) but
X €rikK, then there may exist more additive selections passing
through p. Consider, for instance, the set-valued functions
F,:R>28 and F,:[0,2)>2" defined by
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‘

‘. R y x >0
F1(x): = R, X€ER and Fz(x): =] .
{0} , x

"
o

0f course F1 and F2 are additive and functions of the form

fc(x):=cx, x€ER  (resp. x€[0,~)), where ¢ is a real constant,
are their additive selections such that fc(0)=0.
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REZIME

ADITIVNE SELEKCIJE ADITIVNIH SKUPOVNIH FUNKCIJA

Pretpostavimo da su X i Y vektorski prostori, K konus

u X i F:K+2Y<{@} aditivna skupovna funkcija. Dokazano je da ako
za neko x €riK skup F(xo) ima ekstremalnu taCku, tada postoji

aditivna selekcija of F.
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