ON THE S-ASYMPTOTIC OF TEMPERED AND $\label{eq:Ki-distributions.part} \textbf{Ki-distributions.part} \textbf{ iii, structural theorems}$

Stevan Pilipović University of Novi Sad, Faculty of Science, Institute of Mathematics, Dr I. Djuričića 4, 21000 Novi Sad, Yugoslavia

ABSTRACT

Several structural properties of a distribution f which has the S-asymptotic behaviour are given.

1. It is said ([5]) that an $f \in \mathcal{V}'(\mathbb{R})$ has the S-asymptotic at ∞ with respect to a continuous and positive function c(h), $h \in (A,\infty)$, A>0, if for some $g \in \mathcal{V}'(\mathbb{R})$

(1)
$$\lim_{h\to\infty} \frac{f(x+h)}{c(h)}, \phi(x) > = \langle g(x), \phi(x) \rangle, \forall \phi \in \mathcal{D}.$$

In this case we write $f(x+h) \sim g(x)c(h)$, $h\rightarrow\infty$.

It is shown in [5] that g must be of the form

(2)
$$g(x) = C \exp(\alpha x), C \in \mathbb{R}, \alpha \in \mathbb{R}$$

and if in (2) C = 0 then c must be of the form

 $c(h) = \exp(\alpha h) L(\exp h), h>A,$

where L is a slowly varying function ([7]). With no loss of

AMS Mathematics Subject Classification (1980): 46F05

Key words and phrases: Structural theorems, tempered distributions, asymptotic behaviour.

generality, we shall always assume that L is continuous and different from zero in $(1,\infty)$. For the properties of the S-asymptotic behaviour of distributions we refer the reader to $\{2\}, \{3\}, \{4\}, \{5\}$ and $\{8\}$.

We shall give in this note several structural properties of an f which has the S-asymptotic.

2. THEOREM 1. Let $f \in L^1_{loc}$,

 $f(x) \sim \exp(\alpha x) L(\exp x)$, $x \rightarrow \infty$ (in the ordinary sense).

Then

f(x+h) ~ $\exp(\alpha x) \exp(\alpha h) L(\exp h)$ as $h \rightarrow \infty$.

PROOF. Since $L(\lambda h)/L(h)$ converges uniformly to 1 $(h\rightarrow \infty)$ on any interval $\{a,b\}\subset (0,\infty)([7])$ we have $(\phi\in \mathcal{D}, \text{ supp}\phi\subset \{a,b\})$

$$\int_{-\infty}^{\infty} \frac{f(x+h)\phi(x) dx}{\exp(\alpha h) L(\exp h)}$$

$$= \int_{a}^{b} \frac{f(x+h)\exp(\alpha x)\phi(x)}{\exp(\alpha (x+h)) L(\exp(x+h))} \frac{L(\exp x \exp h)}{L(\exp h)} dx$$

$$+ \int_{a}^{b} \exp(\alpha x)\phi(x) dx, \quad h \to \infty.$$

This proves the assertion.

THEOREM 2. Let $f(x+h) \sim 1 \cdot h^{\nu} L(h)$, $h \rightarrow \infty$, where $\nu > -1$. Let $g \in \mathcal{D}'$ and for some $m \in \mathbb{N}$, $g^{(m)} = f$. Then

(3)
$$g(x+h) \sim 1 \cdot h^{v+m} L(h), h \rightarrow \infty$$
.

PROOF. By the l'Hospital rule, we obtain

$$\lim_{h\to\infty} \frac{\langle g^{(m-1)}(x+h), \phi(x) \rangle}{\int_{1}^{h} t^{\nu}L(t)dt} \to \langle 1, \phi \rangle, \ \forall \phi \in \mathcal{D}.$$

From [7,Ch.2], it follows that

$$\int_{1}^{h} t^{\nu} L(t) dt \sim h^{\nu+1} L(h), h \rightarrow \infty.$$

So, the proof of the theorem follows by repeating the l'Hospital rule m-times.

Note that we can formulate and prove a similar assertion as in Theorem 2, for $v \le -1$, if we assume the supplement conditions which enable us the use of the 1'Hospital rule.

The generalized form of Theorem 2 is the following one:

THEOREM 2'. Let $f(x+h) \sim (\exp \alpha x) \exp(\alpha h) L(\exp h)$, $h \rightarrow \infty$, and

 $x = \int \exp(\alpha h) L(\exp h) dh \rightarrow \infty$, as $x \rightarrow \infty$. Let $g \in \mathcal{P}'$ such that

 $g^{(m)}=f$ for some $m \in \mathbb{N}$. Then $h \qquad h_1$ $\sigma(x+h) \stackrel{S}{\sim} (\exp \alpha x) \int (\dots ((\int \exp(\alpha t) L(\exp t) dt) dh_1) \dots) \cdot dh_{m-1}, h+\infty.$

If we assume on L instead of continuity that is measurable the following theorem is of interest:

THEOREM 3. Let $\phi_0 \in C_0^{\infty}$ such that $\int \phi(t) dt=1$. If and

$$\lim_{h\to\infty} < \frac{f^{(1)}(x+h)}{\exp(\alpha h)L(h)}, \ \phi_{O}(x) > = (\alpha)^{1} < \exp(\alpha x), \ \phi_{O}(x) > ,$$

$$1 = 0, 1, \dots, m-1$$

and $f^{(m)}(x+h) \overset{s}{\sim} \overset{m}{\exp}(\alpha x) (\exp(\alpha h)) L(\exp h), h \rightarrow \infty,$ then $f(x+h) \overset{s}{\sim} \exp(\alpha x) (\exp(\alpha h)) L(\exp h), h \rightarrow \infty.$

PROOF. This asseartion was proved in [2] for m=1. By repeating the same arguments, the proof for m>1 follows. Here is the proof for m=1.

Any $\phi \in \mathcal{D}$ can be written in the form $\phi(x) = \phi_{O}(x) \int_{-\infty}^{\infty} \phi(x) dx + \tilde{\phi}(x), \text{where } \tilde{\phi} \in \mathcal{D} \text{ such that } \int_{-\infty}^{\infty} \tilde{\phi}(t) dt = 0.$ Obviously.

$$\overset{\sim}{\phi}(x) = (\int_{-\infty}^{\infty} \widetilde{\phi}(t) dt) \text{ where } x \to \int_{-\infty}^{\infty} \widetilde{\phi}(t) dt \in \mathcal{D}, x \in \mathbb{R}.$$

So, for any $\phi \in \mathcal{D}$ we have

$$\lim_{h \to \infty} \langle \frac{f(x+h)}{\exp(\alpha h) L(\exp h)}, \phi(x) \rangle =$$

$$= \lim_{h \to \infty} \langle \frac{f(x+h)}{\exp(\alpha h) L(\exp h)}, \phi_0(x) \rangle \int_{-\infty}^{\infty} \phi(x) dx +$$

$$+ \lim_{h \to \infty} \langle \frac{f(x+h)}{\exp(\alpha h) L(\exp h)}, (\int_{-\infty}^{\infty} \phi(t) dt)' \rangle.$$

Now, assumptions of the theorem imply the assertion.

3. For the main structural theorem we need the following lemma which was proved in [2]. For the sake of completeness, we shall give here the complete proof of it.

LEMMA 4. Let c(h), $h \in (0,\infty)$, be a real-valued positive locally integrable function such that for some $f \in D'$ the limit in (1) exists with $g \neq 0$. There exist $c \in C^{\infty}$ different from zero on IR, $\alpha \in IR$ and $A \in IR$, $A \neq 0$, such that

$$c(h)/\tilde{c}(x+h) \rightarrow A^{-1}exp(-\alpha x), h \rightarrow \infty,$$

in the sense of convergence in E.

PROOF. Let $c_0(x)=c(x)$ for x>1, $c_0(x)=1$ for $x\le 1$, and $\omega\in C_0^\infty$ such that

supp
$$\omega \subset [-1,1]$$
, $\omega(x)>0$ for $x \in (-1,1)$, and $\int_{-1}^{1} \omega(t) dt=1$.

We put $\tilde{c}(x)*(c_{O}(t)*\omega(t))(x)$, $x \in \mathbb{R}$. Obviously $\tilde{c} \in \mathbb{C}^{\infty}$. Since for some $\varepsilon \in (0,1)$,

$$\int_{-1}^{1} c_{O}(x-t)\omega(t)dt \geq \int_{-\epsilon}^{\epsilon} c_{O}(x-t)\omega(t)dt \geq \min\{\omega(t), |t| \leq \epsilon\}.$$

$$\int_{-\epsilon}^{\epsilon} c_{O}(x-t)dt > 0,$$

we obtain that $\tilde{c}(x) \neq 0$, $x \in \mathbb{R}$.

Let K be a compact set in IR. There exists $\alpha \in IR$ such that for any $x \in K$ and $t \in [-1,1]$

$$c_{\alpha}(x+h-t)/c(h) \rightarrow \exp(\alpha(x-t)), h \rightarrow \infty, ([5, Theorem 3a)]).$$

Since the set $K_0 = \{x-t, x \in K, t \in \{-1,1\}\}\$ is a compact one, the last convergence is uniform on K_0 . Let us prove it.

Because in (1) $g\neq 0$, we obtain that for some $\phi \in C_0^{\infty}$, $m=\langle g, \phi \rangle \neq 0$. Let $y \in K_0$, $h>\max\{1,(1-\min\{t;t \in K_0\}\}\}$. We put

$$d_h(y) = c_0(h+y)/c(h); r_h(y) = \langle f(x+h+y)/c_0(h+y), \phi(x) \rangle;$$

.. We have

$$d_h(y) \rightarrow \exp(\alpha y), h \rightarrow \infty;$$

 $s_h(y) = \langle f(x+h+y)/c(h), \phi(x) \rangle.$

$$r_h(x) \rightarrow m \neq 0$$
, $h \rightarrow \infty$, uniformly on K_0 ;

 $r_h(y)d_h(y)=s_h(y)\rightarrow \langle g(x+y),\phi(x)\rangle = m \exp(\alpha y), h\rightarrow \infty,$ uniformly on K_0 because the set (x-y); $y\in K_0$ is bounded in D and the strong and weak convergence are equivalent in D.

Using the inequality

$$|d_h(y)r_h(y)-m \exp(\alpha y)| \ge |r_h(y)| |d_h(y)-\exp(\alpha y)| -$$

$$= \exp(\alpha y)|r_h(y)-m|,$$

one can easily prove that if $d_h(y)$ does not converge uniformly to $\exp(\alpha y)$ on K_0 , then $s_h(y)$ does not converge uniformly to $m \exp(\alpha y)$ on K_0 as $h \rightarrow \infty$. This is a contradiction. Thus we have proved that

$$c_{O}(x+h-t)/c(h) \rightarrow exp(\alpha(x-t)), h \rightarrow \infty$$

uniformly in $x \in K$, $t \in [-1,1]$. This implies that for a non-negative integer β

$$\tilde{c}^{(\beta)}(x+h)/c(h) = \int_{-1}^{1} (c_0(x+h-t)/c(h))\omega^{(\beta)}(t)dt$$

$$\downarrow \int_{-1}^{1} \exp\alpha(x-t)\omega^{(\beta)}(t)dt, h \to \infty,$$

uniformly on K, i.e.

$$\tilde{c}^{(\beta)}(x+h)/c(h) \rightarrow A(\alpha)^{\beta} \exp(\alpha x)$$
,

where
$$A = \int_{-1}^{1} \exp(-\alpha t) \omega(t) dt$$
, $h \to \infty$,

uniformly in x ∈ K. By the same arguments, one can prove that

$$c(h)/\tilde{c}(x+h) \rightarrow A^{-1}exp(-\alpha x), h \rightarrow \infty$$

uniformly on K.

Now, by induction, one can prove that for every non-negative integer

$$(c(h)/\tilde{c}(x+h))^{(\beta)} \rightarrow (A^{-1}\exp(-\alpha x))^{(\beta)}, h \rightarrow \infty,$$

uniformly on K.

THEOREM 5. Let $f(x+h)^5 \sim (\exp \alpha x) (\exp \alpha h) L(\exp h)$, $h \rightarrow \infty$, where α is different from 0. There is $m \in \mathbb{N}$ such that for every $m \geq m_0$ there are $g_{m,i} \in C(1,\infty)$, $i=0,1,\ldots,m$ such that

$$f(x) = \sum_{i=0}^{m} g_{m,i}^{(i)}(x), x \in (1,\infty),$$

and

$$g_{m,i}(x) \sim C_i x^m \exp(\alpha x) L(\exp x), x \rightarrow \infty$$

where C_i are suitable constants.

(C(1,∞) is the space of all the continuous functions on (1,∞).)

PROOF. The function $c(h) = \exp(\alpha h) L(\exp h)$, h>A, satisfies the conditions of Lemma 4. Let $\tilde{c} \in C^{\infty}$ correspond to this function.

From [6, T.I., p.72, Théorème X] we obtain

$$\lim_{h\to\infty}<\frac{f\left(x+h\right)}{\tilde{c}\left(x+h\right)},\;\phi(x)>=\lim_{h\to\infty}<\frac{f\left(x+h\right)}{c\left(h\right)},\;\frac{c\left(h\right)}{\tilde{c}\left(x+h\right)}\;\phi\left(x\right)>=$$

$$=<1,\phi(x)>, \forall \phi \in \mathcal{D}.$$

Let $\theta \in C^{\infty}$, $\theta(x)=0$ for x<0 and $\theta(x)=1$ for x>1. We have

$$\frac{0 (\cdot + h) f (\cdot + h)}{\tilde{c} (\cdot + h)} \rightarrow 1 \text{ in } \mathcal{D}' \text{ as } h \rightarrow \infty.$$

Thus, $\{\frac{\theta(\cdot+h)f(\cdot+h)}{\tilde{c}(\cdot+h)}, h>0\}$ is a bounded subset of \mathcal{D}' . This implies that this set is bounded in S'. By the Banach-Steinhaus Theorem we obtain

$$\frac{\theta(\cdot+h) f(\cdot+h)}{\tilde{c}(\cdot+h)} \to 1 \text{ in } S' \text{ as } h \to \infty, \text{ i.e.}$$

$$\lim_{h\to\infty}<\frac{(\theta\,f/\tilde{c})\;(x+h)}{d\;(h)},\;\;\phi(x)>\;=\;<1\,,\phi>\;,\;\;\forall\phi\in S\;,$$

where d(h)=1,h>A. Since the S-asymptotic in S'_+ with v>-1 (in our case d(h)=h V ,h>A, v=0) implies the quasiasymptotic of $\theta f/\tilde{c}$, the structural theorem [1, Theorem I] implies that there is m_0 such that for every $m>m_0$ there is $F_m\in C(-\infty,\infty)$ such that

$$(0f/\tilde{c})(x) = F^{(m)}(x), x \in \mathbb{R}$$
, and

$$F_m(x) \sim x^m$$
 as $x \to \infty$.

Thus, we obtain

$$f(x) = \tilde{c}(x) F_m^{(m)}(x), x \in (1,\infty).$$

The Leibniz formula implies

$$f(x) = \sum_{i=0}^{m} {m \choose i} (-1)^{i} (\tilde{c}^{(i)}(x) F_{m}(x))^{(m-i)}, x \in (1,\infty).$$

Since

$$\frac{\tilde{c}^{(1)}(x+h)}{c(h)} \to A(\alpha)^{1}e^{-x}, h \to \infty \quad (x \in \mathbb{R}),$$

we obtain

$$\tilde{c}^{(i)}(h) \sim A(\alpha)^{(i)}c(h), h \rightarrow \infty.$$

This implies the proof.

Now, observe the case $\alpha=0$.

THEOREM 6. Let $f(x+h) \sim 1 \cdot h^{V}L(h)$ with v>-1. Then there is $m \in IN$ such that for every m>m there is $F_m \in C(1,\infty)$ such that

$$f = F_m^{(m)}$$

and

$$F_m(x) \sim x^{m+\nu} L(x), x \rightarrow \infty.$$

PROOF. For v>-1 the S-asymptotic of 0f (6 is defined in the preceding proof) implies the quasiasymptotic of this distribution with respect to $h^{\nu}L(h)$. Now, [1, Theorem T] implies the assertion.

THEOREM 7. Let $f(x+h) \sim 1 \ h^{V}L(h)$, where v<-1. Then there is $m \in IN_{O}$ such that for every $m>m_{O}$ there are $f_{m,i} \in C(1,\infty)$ and $A_{m,i}\neq 0$, $i=0,\ldots,m$, such that

$$f_{m,i}(x) \sim A_{m,i}x^{m+\nu-i}L(x), i=0,1,...,m$$

and

$$f(x) = \sum_{i=0}^{m} f_{m,i}^{(m-i)}(x), x \in (1,\infty).$$

PROOF. Take k>0 such that k+v>-1. With θ as in the preceding proof, we have

$$(1+(x+h)^2)^{k/2}0(x+h)f(x+h) \approx 1 h^{k+\nu}L(h), h \to \infty.$$

By the same arguments as in the preceding proof, we have that there is m_O such that for every m>m_O there is an $F \in C(-\infty,\infty)$, supp $F \subset [0,\infty)$

$$F_m(x) \sim x^{v+k+m}L(x), x \rightarrow \infty$$

and

$$(1+x^2)^{k/2}\theta(x)f(x) = F_m^{(m)}(x), x \in \mathbb{R}.$$

Thus, for $x \in (1, \infty)$ we have

$$f(x) = \sum_{i=0}^{m} {m \choose i} (-1)^{i} \left(\frac{1}{(1+x^{2})^{k/2}} \right)^{(i)} F_{m}(x)^{(m-1)}$$

The proof follows from the fact that

$$\left(\frac{1}{(1+x^2)^{k/2}}\right)^{(1)} \sim c_1 x^{-k-1}, x \to \infty,$$

where $C_1 \neq 0$ are suitable constants, i=0,...,m.

The more difficult problem is the following one.

Let $f(x+h) \sim g(x)c(h)$, $h \rightarrow \infty$, $g \neq 0$. There is a question whether f'(x) has the S-asymptotic with the limit $g_1 \neq 0$ with respect to some $c_1(h)$. In many special cases, the answer can be given easily, but for example, if $c(h)=h^{\nu}$, we do not know any satisfactory answer.

The same problem in "classical" analysis is even more difficult. Namely, for an $f \in C^1$, it can happen that f has the S-asymptotic behaviour with respect to some c(h) but f' does not have the ordinary asymptotic behaviour with respect to c(h). This is shown by the following example.

Suppose that $F \in L^1$, $F \ge 0$ and that for some sequence (ε_1) , $\varepsilon_1 > 0$ and (x_1) , $x_{1+1} > x_1 > i$, $F(x) = \exp(\exp x_1)$, $x \in (x_1 - \varepsilon_1, x_1 + \varepsilon_1)$, $i \in IN$. Let $G(x) = \underset{-\infty}{\overset{X}{\sum}} F(t) dt$. We have

(exp tG (t)) (x+h)
$$\sim$$
 A exp x exp h as $h \rightarrow \infty$,

where

$$\lambda = \int_{-\infty}^{\infty} F(t) dt.$$

This implies that

(exp tG (t))'(x+h) ~ A exp x exp h as
$$h \rightarrow \infty$$
.

Obviously, $(\exp x (G(x))'$ does not have the ordinary asymptotic behaviour as the function $\exp x$ when $x \to \infty$.

Let us note that the distribution .

$$f(x) = x^2 + x \sin x, x \in \mathbb{R}$$

satisfies the relation

$$f(x+h) \sim 1 h^2$$
 as $h \rightarrow \infty$,

but its derivative does not have the S-asymptotic behaviour with the limit distribution different from 0.

REFERENCES

- [1] Дрожжинов, .Н., Завьялов,Б.И., Нвазиасимптотина обошенных функции и тауберовы теоремы в комплексной области, Матем. Сб., 102 (1977), 372-390.
- [2] Filipović, S., On the Behaviour of Distributions at Infinity, Proc. Conf. Math. Anal., Szyrk., 1985. (to appear).
- [3] Pilipović, S., Remarks on Supports of Distributions, Gl. Math., 22(42) (1987), 375-380.
- [4] Pilipović, S., On the S-asymptotics of Tempered and K₁--Distributions, Parts I and II, Rev. Res. Sci. Math. Univ. Novi Sad, 15, 47-58, 59-67.
- [5] Pilipović, S., Stanković, B., S-asymptotic of Schwartz Distributions, Pliska (to appear).
- [6] Schwartz, L., Théorie des Distributions, Hermann, Paris, T.I. (1957), T.II (1957).
- [7] Seneta, E., Regularly Varying Functions, Lect. Not. Math. 508, Springer, Berlin-Heidelberg-New York, 1976.
- [8] Stanković, B., Applications of the S-asymptotic, Rev.Res. Sci. Math. Univ. Novi Sad, 15, 1-9.

REZIME

O S-ASIMPTOTICI TEMPERIRANIH I K_1^* -DISTRIBUCIJA. DEO III, STRUKTURNE TEOREME

Dato je nekoliko strukturnih osobina distribucije f koja ima S-asimptotsko ponašanje.

Received by the editors June 1,1986.