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Abstract

A numerical method for a singular perturbation problem with a turning
point is considered. The method uses non—equldlstaht discretization meshes.
The first order accuracy, uniform in the perturbation parameter is proved in

the discrete L1 norm.
1. Introduction

In this paper we consider a numerical method for the following
singularly perturbed boundary value problem with a turning point:

(1a) c2u" + xb(u)u'= fc(x). xel = [al),

(1v) u(a) = 4, u(1) =B

with a=0 or a=-1. By £ we denote the perturbation parameter: 0 < ¢ = 1
{usually € << 1). The functions b, fc and numbers A, B are given. Our baslic
agsumpt lons are:

(28) b, f e c(n.
(2b) B:= min X(x) > 0,
) x€l
(2¢) |t‘c(x)| = M |x] + I-‘c(x)), xe€l,
(2d) ()| s ®1 + (72 x| + ) F()), xel,
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where

x
Fu(x) = exp(-.[e(t)dtre®), o(x):= x(x).
o
Here and throughout the paper N denotes any positive constant, independent
of e. For simplicity, in the rest of the paper the dependence of t‘c and Ft
on € will not be denoted. Furthermore, we require:

6 b’(x) > -38/2, x € I.

We shall begin our investigation with the case a=0, which will be
considered in Section 2. In Section 3 we shall give necessary wmodificatlons
concerning the case a=-1. . v

Section 2 contains several parts. In the first part we investigate
problen (1) and we give estimates for the derivatives of its solution, u. We
use the assumption (2) to prove the appropriate estimates. For instance,
(2b,c) guarantee that u is bounded uniformly in €. Note that (2c,d) allow
the case f®0, for which the asymptotlic behaviour of the solutlon has usually
been lnvestlgated, [8]. Since u has an O(¢) boundary layer at x=0, a special
numerical method should be applied. We shall use finite-differenc schemes on
a speclial non-equidistant mesh which is dense in the layer. The mesh, Ih.
(with the mesh points 0=x°<x1<...<xn=1. n € N), is generated by a sultable
function A (1l.e. x = A(1ih), h=1/n). A depends on £ in such a way that the
smaller € becomes, the more the mesh is condensed in the layer. Essentially,
A is a certaln modification of the inverse of the boundary layer function.
The finite-difference discretization and its stability are discussed in the
second part of Section 2. The stability is proved in the discrete L' norm.
The assumption (3) is lmportant for our stability result. In the third part
of Sect!lon. 2 we deal with the -consistency error using the derivative
estimates from the first part and propertles of function A. In this part
constants M are independent of h as well. Our basic result is

(0 Iv,u, % b

Here and throughout the paper we use the following notation:
w=[w w,... v 1"er"?

n LTI AN is the numerical solution,

u = [u.(xl),u.(xz), v ,u.(xn_l)lre R™"! 1s the discretization of the continuous

solution,
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1
lzh'h'i T't Iztl' %= &5,

n-1

T
1'eR ,

El= (h1+ hhl)/z . ):1: X,~ X, _ . We can think of (2) as a first order con-
vergences uniform in € (which 1s the final aim of all numerical methods for
singular perturbation problems) even though |-|b depends on ¢ since h"s
depend on 1t. Still, |-} 1s the usual discrete L' norm on the non-
-equidistant mesh, cf. [1]. We énd Section 2 by presenting some numerical
results.

Up tll]l now, numerical methods for linear turning point problems have
usually been considered in the case when the left hand side of (1a) contains
the additional term d{x)u, where d(x)>0, x € I, or at least d(0)>0, see [3],
[4]1, 51, [7]1. In the first three of these papers equidistant
discretizations only are considered and upwind or exponentially fltted
schemes are used. Paper [7] uses mesh generation - the approach which we
shall apply here. This approach dates from 1969, (2], where & self-adjoint
singularly perturbed boundary value problem was conslidered, and it has been
modified and applied to other types of problems with a small parameter, see
[71, (9], ({101, [11], for instance. In [12], the authors deal with problems
of type (1), among others, Investigating the 111 conditioning of the
corresponding exponentially fitted discretization on the equidistant mesh.

2. Case a=0.

Throughout this Section we shall consider problem (1) with a=0,
assuming that (2) holds.
2.1 Analysis of the Continuous Problem

For the proof of the following lemma we do not need the assumption

(2d):

Lemma 1. Problem (1) has a unique solution u € C’3(I) which 1s bounded
uniformly in e:
ju(x)| <M, xel

Proof. Consider the operators
(5) Lu:= -€%u” - xx(x)u’ , Ru:= (u(0), u(1)).

Since (L,R) 1s inverse monotone,uniqueness of the solution is guaranteed.
Existence and boundedness uniform in € follow because there exist unifomly
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bounded upper and lower solutions to the problem (1). To show that use
wx) = M (2-x) + HzF(x)

with appropriate constants "1’ "z (independent of € ), such that

w0) = 4|, (1) z |B| and

(8) L(x) = M xb(x) + Mc'(x) Ax) = [f(0)].

The inequality in (6) can be achlieved because of (2b,c). To see this, note
that there exists a number 3 € (0,1] (independent of €), such that
c'(x) 29 >0 for x € [0,8). Then, iIf O = x £ 8 use

Lwx) z Hlpx + Hzﬂ‘(x) x |f(x)].
On the other hand, If 3 s x s 1 :

Lw(x) = Hlﬁx + Hac’(x) Ax) z |f(x)].

Hence, the upper solution is v(x) and the lowe one 1s -v(x). O
(n -1
Lemma 2. |u '(0)| s ¥ , i=1,2.

Proof. In the case =2, the proof follows from (1a). For i=1 rewrite (1a) in

the form

c2u" + (cu)'= f + c'u

and integrate this equation from 0 to x,, where x_ € (0,€) 1s such a point
that u’(x,) = (u(e) - u(0))/c (hence |u’(x,)| s Me). o

Lomma 3. [u'(x)| s M1 + (xe 2+ ¢!y %), x e I.
Proof. For the technique cf. [6]. Rewrite (1la) as follows:
e2(u'/F)*= f/F

and express u’ by integration. Then because of (2c) and Lemma 2 we have:

lu'(x)| = S + e "),

where

S = e""f (t + F(t)) (F(x)/F(t))dt.

o
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Since
t
I sb(s)ds = B(tz-xz)/z ,0stsx

x

it follows
X

S s xe 2F(x) + c""j' t exp(0.56(t2-x*)/€%)dt s xc 2F(x) + M . o

0
Losma 4. [xu"(x)| = M1 + e-lexp(-ﬂxz/(k:z))) , x&I .

Proof. Differentiate (1a) and obtain
cz(u“/f-")’ = (f'-c’'u’)/F .

Then because of (2d) and Lemmas 2 and 3:

X
“ -2 2 -4 -3 -2
Ju'(x)| = e I(F(X)/F(t))dt +(x'e + x )F(x) + € "Ax)) .

0

Since

.4 x
xe 2 I (F(x)/F(t))dt s xc 2 I exp(0.58(t-x)x/¢2)dt s M ,
[+] [+]

and
xkl:-(k+l)F'(X) < Hc-lex;(-ﬁxz/(452)) . k=1.2.é ,

the lemma is proved. O

Using previous lemmas, we can obtaih the following estimates which will
be used in 2.3 in the analysis of the consistency error.

Theorem 1. For x € I we have

(7a) [(cw)*(0) | = M1+e™ (1)),
(7b) (0| s K1e  H (D)
(7<) lu(x)| s X |x| + ®0) .
(7d) [(ew)’ ()] s M,

where y(x) = exp(-|x|/¢€) .
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Proof. Note that for any ¢>0 independent of &£ it holds that

exp(-o-xalez) s M y(x) .
Then the inequalities (7a) and (7d) follow easlly from Lemmas 3 and 4, while
(7c) follows directly from (1a). Finally, differentiate (1a) and use
Lemmas 3 and 4 to obtaln (7b). O

2.2 The Discretization and Its Stability

Note that

Iz, 1, = 1z, )
where H= diag(h , h,,... En_l)eli"q'“'I and |-|, 1s the usual vector nora in
R""!. The corresponding matrix norm is:

-1
IAhIh = IHAhH I1 b
n-1,n-1

where Ah is a matrix in R

space.
The discrete operator on the mesh Ih is:

and ||1 18 the usual matrix norm in that

2 { ] - , ’
Lhzl.- -£ thl Dhc(xl)zl+ c (xl)zi
and it corresponds to L from (5) which is rewritten in the conservative form
2

Lu = -e“u" - (cu)’'+ c'u .
Here
thl= (hl+lzl-1_ 2hlzl+ hizua)/(hlhinhl) '
and
Dl'lzl= (zl+l-zl)/hl !

cf. [1]. Thus, the discrete problem reads:

(8) Lhwl= —f(xl) , 1=1,2,...n-1 ,

w=A, w=B.
) n
Rewrite (8) in the matrix form:
(9) Ahwh = dh ’

where d=[d ,d,...d 1T
h 1 2

€eR™ | d=f(x), 1=2,3,...n2 ,
n=-1 1 1

= 2 T _ 2 - ~
d1_ f(xl) + € 'V(h1h1) . dn_ia f(xn_l) + € B/(hnhn-1) + _c(xn)B/h“_1 ,

and Ah is the corresponding tridiagonal matrix.
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Now we shall prove stability of the discrete problem (9) 1n the norm
I'Ih'
Theorem 2. Let b € C'(I) , c’(x) 27 >0, xe I, and let (2b) hold.

Then:
-1
(10) |Ah |h s M.

Proof. Because of the upwind scheme 1t ls easy to see that Ah is an L-matrix
(the diegonal elements are positive and the off diagonal elements are
hon—negative.) Furthermore:
-1, T
(IMhH ) ehz e,

where e = 11,1,...,11"&™!

follows. O

. Thus Ah is an M-matrix (4;‘z0) and the result

However, we can show that the first condition of Theorem 2 can be
weakened and replaced by (3), provided that h=1/n be sufficiently small (but
independent of £). For that purpose we have to specify our discretization
mesh. Let us define the mesh generating function a:

w(t):= Qet/(g-t) , t € [0,al

(11) a(t) =
w(t) , t e [, h 1]

Here « € (0,1) is an arbitrary parameter (independent of &),

(12) q=a + e

and w(t) is a third order polynomial, such that A € CZ(I) and w(1)=1. The _
parameter Q should be positive and chosen in such a- way that j,'u”_’t_ﬁl
(a simple analysis shows that Qe(0,1/2] would sufficgr_.‘for all aﬂd,_l] and.
@ € (0,1)). This implies e o

.(k)(t) 2 .(k)

(@ =o™(@) >0, teletl,
firstly for k=2 and then for k=1. Obviously: N

o¥N(t) >0, k=0,1,..., ¢ s [0,al ,
and taking (12) into account:

(13a) 0<a’™(t) sH, k=1,2, t eI

Furthermore, note the inequality:
(13b) exp(-u(t)/e) = M exp(-M/(q-t)) , t € (0,q) ,

which will be used in Section 2.3.
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The mesh points are given by

(14) x = A(tl) , tl=1h , 1=0,1,...,n .
There are other possible choices of function A, cf. [9], but because of
simplicity, (1) is the only form which we shall consider here.

Theorem 3. Let b € CI(I) and let (2b) and (3) hold. Then the discretization
matrix Ah on the mesh (14), (11), with sufficiently small h and Q,
independent of €, satisfies (10).

T
n-ll

n-1

Proof. Let ¢h=[1+xi, 1"2""' 1+x € R

have:

Then for 1=1,2,..., nm1 we

((BA B ") e ) = (14x)c'(x)) + (h /B )e(x)=:5s, .
Let 8 and y have the same meaning as in the proof of Lemma 1.
Then if xlsa :
sl z2y>0.
Now let xl>6-. We shall prove

(15) s, = 11> 0,

for some 7, independent of € and h, and the proof 'will- be completed.
Rewrite s| in the form:

s=s -
1 1 Py»

where
si= (1+x )c’(x) + «(x)) ,
p,= ((h ,-h)/(h  +h)) (x,) >0 .

Note that by (3) there exists a constant g > 0 (independent of ¢£), such that
b’(x) = p-38/2. Then:

s;2 p(1ex)x, + (B/2)(—31?+x‘+2) > w(1+8)8 .
Next we shall show that
(18) p,s Mh

and (15) will follow provided that h be sufficliently seall. Let us first
note that '

x(t)= aa( t-¢)37+ az( t-¢)2+ ai(t-a) ta
where
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2/3 1/3

a =o(e)=Que = , a =w(a)=Qge » a=w"(a)/2=Qq ,
a, ~(1-( 1-0)?-g(1-0)e' P-ac?’?)) /(1-0)° .

Then it 1s easy to see that there exist sufficlently small parameter Q@ and
sufficlently small constant & > O (both independent of €), such that

n{atm) = A(a+tm) s 3§ < = A(ti) .
This implies tl>a+l and tl_lu+l. if h is small enough. Then because of
(132) we have ’

p,s M BEAT(E A2m(E )

and (16) follows from (13a) and A'(tl_i)tx(aﬂl))ZQqn . o0

Remark. The requirement in Theorem 3 that the parameter Q should be

sufficlently small is neeeded to make the coefficient a =Qu 23 sufficiently

small. However, if £ is small enough, there is nc need for such a constraint

on the parameter Q.
2.3 The Convergence Result

Let us consider the consistency error

r = Lhu(x‘)—(l,u)(Ax‘) , i=1,2,...,m1.

We have -
r= r: tr,
ry = e(ut(x)-Diu(x)) . ] = g(x)-DKx) .
where g(x):= o(x)u(x) . Let r= [rl,rz.....rn_llre R™ ! . Then we have:

Theorem 4. Let (2) hold. Let discrete operator Lh be given on the mesh (14),
(11). Then |rh|hs Mh .

Proof‘ . We shall prove
(17a) |rl| < Nh ,

» 2
(17v) huulrll s Mh® ,

and the result will follow. The following estimates hold:

(182) |r7] = me®n ) .

nxlu’”(v:)l ' cr;' € (xl-l;xl’l
77| s 26° max |u(n)] .

sy Sx
xl-l 1+1
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lep| = (Chy ~h)An+hy D) [g'(o)) | + G /m, ,

’; € (xl'xl+1) '

where
xl#l

(19) e=[ (x,,-0lg@ ).
P 4

1
To prove (17b) it is sufficient to show

(20) G = m?
since from (7d) and (13a) we have

h|+l((hl+

Let us prove (17a) and (20). We shall use the technique which is
essentially the one from (21, cf. (71, (81, [10], [11]. The proof is devided
into three steps:

(/AR sh ) |g(e?)| s Kb -h) s M.

2"t _ sa-3n,

Fa-3n<ct <ald

1° From (18a), (13) and (7b) we have:
|r;'| s Mn(1+c”} y(xl_l)) s Mh(1+c "y M(a -
Similarly, from (19), (7a) and (13) it follows

1/3)) < Mh .

G s WP (1+e7! Ax)) = me .

L .
2" In this case we have a-t, 2 (a -t . )/3 and thus g¢-t > (q-t _ )/3.
Now (18a), (13) and (7b) give

e | = Mm(1e(a-t,, )72 w(ACt, 1)) s mn .
In the same way:
6,3 M(13(g-t, )" ANML D)) 5w .

3° Now c'/<3h. e use (18b) and (7c) to obtain

1+1

|ry] s MACE ) + WACE, D)) 5 MA@ + WA (t, ) + ¥(Ma-3K)) < Hh.
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On the other hand

x
1+1
G = u]' (x,, -0+ y(D)dx ,

X
1

and after integration:

G s M h+ hy(x)) s M hi+ hp(M(a-3h))) s Mh° . O

Thus, combining Theorems 2 and 3 with Theorem 4, we can get the

corresponding convergence results:

Theorem 5. Let u be the solution to the contimious problem (1) and let (2)
ard c’(x)zy>0, x € I , hold. Let LA be the solution to the discrete problem
(8) on the mesh (14), (11). Then we have:

21 Iv,-u 1,5 M .

Theorem B. Let u be the solution to the contimious problem (1) and let (2)
and (3) hold. Let LA be the solution to the discrete problem (8) on the mesh
(14), (11) with sufficiently small h and Q, independent of €. Then (21)
holds.

2.4 Numerical Results

We shall present results concerning the following test problem:

-c%u" - 2xu’'= 2exp((x/€))2 , w(0)=1 , u(1)= exp(-1/¢%) ,

whose solution is known: u(x) = ex)(-(x/c)z) . Table 1 contains the results
obtained by using the mesh generating function (11) with peremeters Q=1,
«=0.5 . By changing these parameters we can change the density of the mesh
in the layer. In this case the percentage of the mesh points which 1lile
within the layer varies from about 25% to about 35% (it changes slightly
when & and n change).



22 : " Vulanovi¢, R.

TABLE 1.

€ n 50 100 200

1.-2 E 1.47-2  7.54-3  3.82-3

E, 2.08-4 1.06-4 5.40-5

1.-3 E 1.72-2  8.94-3  4.54-3

E, 2465 1.26-5 6.42-6

1..4 E 1.88-2 9.79-3  4.98-3

E 2876 1.386 7.047

We use the following notation:
E= lw,ul, . E= I, l, .

and, as usual, 1.-2 means 10 etc.

Table 1 shows more than our theory gives: the first order pointwise
convergence uniform in € can be observed, and the error Eh decreases when ¢
does. However, we can't expect this in general. Some other problems, which
we have tested, show the first order L' coffvergence uniform in € only, which
coincide with our theory.

3. The Case a=-1

Now I=[-1,1]. First we shall show that Theorem 1 holds in this case as
well. The only difference is in the proof of Lemma 1, where the function
v(x) should teke the form: - ’

(x)=N (2-p(x)) + K, F(x) ,
vwhere p(x) is a Cz(I)-function. having the following properties: p(x)=|x|,

x € IN[-8,8] ; p"(x) >0, xp’(x) 20, x € (-8,8).
Next, the discretization mesh (14) should be used with

l=-1+1h, i=0,1,...,n, h=2/n , 2k , k € N .-

The mesh generating function coincides on [0,1] with A from (11), and for t
€ [-1,0] we take A(t)= -A(-t). Thus, A" is discontinuous at t=0, but this
will not affect the proof of Theorem 4 since the two mesh steps In vicinity
of x=0 are equidistant. At the mesh points xl , i=1,2,...,k-1 , the scheme
Lh should be used with
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YR

Bz, = (z,-z 1

-1
Finally, Theorem 2 can be proved analogously, thus Theorem § follows

too.

Remark. This paver contains the results of the first stage of investigations
of the problems of type (1). We expect to improve these results in
forthcoming papers.
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Rezime

O NUMERICKOM RESAVANJU PROBLEMA SA POVRATNOM TACKOM

Posmatra se numericki metod za singularni perturbacioni problem sa
povratnom tackom. Metod koristi neekvidistantne mreze disktetizacije. U
diskretnoj normi Lt Je dokazen prvi red tecnosti, uniforman po
perturbacionom parametru.
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