Univ. u Novom Sadu Zb. Rad. Prirod.—Mat. Fak. Ser. Mat. 19,1,51-64 (1989) REVIEW OF RESEARCH FACULTY OF SCIENCE MATHEMATICS SERIES

A UNIFORMLY CONVERGENT DISCRETIZATION METHOD FOR A SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM OF THE FOURTH ORDER

Hans-Görg Roos

Technische Universität Dresden, Sektion Mathematik
DDR-8027 Dresden

ABSTRACT

In this paper we consider problem (1) with a small parameter $\varepsilon>0$ and the basic assumption that a(x)>0. A numerical method of Petrov-Galerkin type is proposed and exponential splines as test-functions are used. Using the approach from [4] the linear convergence, uniform in ε , of the method is proved.

1. INTRODUCTION

 $\label{eq:weak_problem} \mbox{We consider the singulary perturbed boundary} \\ \mbox{value problem}$

AMS Mathematics Subject Classification (1980):65L10,

Key words and phrases:Singular perturbations,

Petrov-Galerkin method, exponential fitting

(1)
$$\varepsilon u^{(4)}(x) - (a(x)u'(x))' = f(x), u(0) = u'(0) = u'(1) = u'(1) = 0$$

with some small parameter $0<\epsilon<<1$. Let us suppose $a(x)>\alpha>0$, the functions a(x),f(x) are assumed to be smooth. Whereas in the literature a large number of results on second order problems exists (compare [1],[5] and the references cited therein) only few facts are known on fourth order equations. Having used a maximum principle argument, Shishkin [6] obtained some uniform with respect to the parameter ε convergence results for a problem which can be splitted immediately into a system of two second order equations. The difficulties connected with fourth order problems are due to the fact that in general a maximum principle does not hold. Our approach is based on ideas of 0'Riordan and Stynes [4] and does not use any maximum principle neither for the solvability of the discrete problem nor in the convergence proof.

It is well-known that in the case of second order equations

(2)
$$-\varepsilon u''(x)+c(x)u'(x)+d(x)u(x)=f(x)$$

the uniform convergence of the Il'in-scheme or the El-Mistikawy-Werle scheme at first was proved under the assumption $d(x)\equiv 0$. Analogously we hope that the more general problem

$$\varepsilon u^{(4)}$$
-(ax)u')'+b(x)u=f(x)

can be handled without complete exponential fitting discretizing the trem b(x)u completely analogously to f(x). Our discretization method is a Petrov-Galerkin method using exponential splines as test functions.

Let us denote by $\|\cdot\|_k$ the norm in the Sobolev space $\operatorname{H}^k(0,1)$ and by $\|\cdot\|_\infty$ the maximum norm. Let (.,.) denote the scalar product in $\operatorname{L}^2(0,1)$. set

$$U=\{v\in H^2(0,1) \text{ with } v(0)=v'(0)=v(1)=v'(1)\}.$$

A weak formulation of (1) is: Find ueU such that

(3)
$$a(u,v):=\varepsilon(u'',v'')+(au',v')=(f,v), \text{ for all } v \in U.$$

The bilinear form a(.,.) is continuous and coercive - therefore (3) admits a unique solution.

Setting v=u in (3) we obtain

(4)
$$\|u\|_{1} < \frac{1}{\alpha} \sqrt{3/2} \|f\|_{0}$$
.

yer functions. It holds [3]

Thus our problem (3) is in some sense ε -uniformly stable, the imbedding $H^1 \rightarrow C$ yields

too. Here and in the following we denote by K in general different constants which do not depend on ε . According to (4) a usual conform finite element method results in an ε -uniformly stable scheme (in the sense of (4) or (5)). But one con not expect uniform convergence because the solution of our original problem contains boundary la-

(6)
$$u(x,\varepsilon) = g(x,\varepsilon) + \varepsilon^{\frac{1}{2}} g_0(x,\varepsilon) \exp(-\sqrt{a(0)}x/\varepsilon^{\frac{1}{2}}) + \varepsilon^{\frac{1}{2}} g_1(x,\varepsilon) \exp(-\sqrt{a(1)}(1-x)/\varepsilon^{\frac{1}{2}})$$

where the functions g can be expanded in an asymptotic power series with respect to $\varepsilon^{1/2}$, further it is possible to differentiate (6). In particular, z(x)=g(x,0) solves the reduced problem

$$-(a(x)z')'=f(x), z(0)=z(1)=0.$$

From (6) we obtain the bounds

(7) (i)
$$\|u\|_{\infty} < K$$
, (ii) $\|u\|^{(1+k)}\|_{\infty} < K(\varepsilon^{-1/2})^{k}$ (\$=0,1,2,...)
(iii) $\|u\|_{k} < K \varepsilon^{-1/4} (\varepsilon^{-1/2})^{k-1}$ (\$=2,3,...).

Thus, the standard error analysis for conform finite element methods using piecewise quadratic or piecewise cubic ${\ensuremath{\text{C}}}^1\!\!-\!\!\!$ splines would result in

$$\|\mathbf{u} - \mathbf{u}_h\|_2 \le \begin{cases} \text{Kh} \varepsilon^{-7/4} & \text{for quadratic } C^1\text{-splines} \\ \text{Kh}^2 \varepsilon^{-9/4} & \text{for cubic } C^1\text{-splines} \end{cases}$$

Of course, for ϵ <<1 this estimate is practically not applicable and it is necessary to use special discretization techniques.

The discrete problem

Let some nonequidistant grid be given, i.e.

$$0=x_0< x_1< ... < x_{N-1}< x_N=1$$
.

The corresponding step sizes we do note by $h_i = x_i - x_{i-1}$, the mesh width by $h = \max_{1 \le i \le N} h_i$. We define by $\overline{\mathbf{a}}(x)$ a piecewise constant approximation of $\mathbf{a}(x)$ with $\overline{\mathbf{a}}(x) = \mathbf{a}_i : = \mathbf{a}(x_i)$ for all $x \in (x_{i-1}, x_i)$ and modify our original bilinear from due to

(8)
$$\overline{a}(u,v):=\varepsilon(u'',v'')+(\overline{a}u',v')$$
.

Let some finite-dimensional spaces of the same dimension S_h, T_h with $S_h \subset U$, $T_h \subset U$ be given. The discrete problem con-

sists in the following: Find uheSh such that

(9)
$$\overline{a}(u_h, v_h) = (\overline{f}, v_h)$$
 for all $v_h \in T_h$,

where f denotes a corresponding piecewise constant approximation to f. Now we introduce basic functions

$$\psi_k$$
(k=1,...,N-1) in T_h =U by

(10)
$$\varepsilon \psi_k^{(4)} - \bar{a}\psi_k^{n} = 0$$
 on (x_{i-1}, x_i) for $i=1, 2, ..., N$

$$\psi_k \in \mathbb{C}^2[0, 1] \text{ with supp } \psi_k = [x_{k-2}, x_{k+2}]$$

$$\psi_k^{(x_k)} = 1.$$

Thus, the test functions ψ_k are exponential C^2 -splines and it is well known that ψ_k are uniquely determined (later we have to calculate them explicitely). Let us for a moment choose $S_h = T_h$ and set

$$u_h = \sum_{k=1}^{N-1} v_k \psi_k$$

Then the unique solvability of the continuous problem results in the unique solvability of the discrete problem, therefore the corresponding system of linear equations for the unknowns \mathbf{v}_k admits a unique solution. First we are intersted in computing approximations in the gridpoints. In principle one could use

(11)
$$u_h(x_k) = u_k = \psi_k(x_{k-1}) v_{k-1} + v_k + \psi_k(x_{k+1}) v_{k+1}$$

to calculate these approximations. But it is easier to derive a linear system of equations for u_k itselves.

According to the definition of our discrete problem the function $u_h \in S_h \subset U$ (S_h arbitrary) satisfies

(12)
$$(-\epsilon \psi_{k}^{"} + \overline{a} \psi_{k}^{'}, u_{h}^{'}) = (f, \psi_{k}).$$

Taking into account the properties of our test functions it holds

(13)
$$-\varepsilon \psi_k + \overline{a}\psi_k' = c_i^k \text{ on } [x_{i-1}, x_i]$$

with $c_i = 0$ for $i \le k-2$, $i \ge k+3$.

Hence, (12) results in

(14)
$$\sum_{i=k-1}^{i=k+2} c_i^k (u_i - u_{i-1}) = d_k^* = (\overline{f}, \psi_k) \quad (k=1, \dots, N-1)$$

(with c_{N+1}^{N-1} =0). Whereas the system for v_k represents a seven band matrix our system (14) for u_k is pentadiagonal. The system (14) does not depend on the special choice of the space S_h , thus for S_h = T_h we also obtain (14) and so this system admits a unique solution, too.

Now let us set

$$t=(x-x_{i-1})/h_i, \lambda_i^2=a_i/\epsilon, \mu_i=h_i\lambda_i.$$

Then it is convinient to represent $\psi_k(x)$ on the interval $[x_{i-1}, x_i]$ in the form [2]

(15)
$$s_{i}^{k}(x)=y_{i-1}^{k}(1-t)+y_{i}^{k}t+\frac{M_{i-1}^{k}}{\lambda_{i}^{2}}(\frac{\sinh\mu_{i}(1-t)}{\sinh\mu_{i}}-(1-t))+\frac{M_{i}^{k}}{\lambda_{i}^{2}}(\frac{\sinh\mu_{i}t}{\sinh\mu_{i}}-t),$$

and ψ_k belongs to C^2 iff

(16)
$$\rho_{i}M_{i-1}^{k} + (\sigma_{i} + \sigma_{i+1})M_{i}^{k} + \rho_{i+1}M_{i+1}^{k} = \tau_{i+1}^{k} - \tau_{i}^{k}$$
 (i=1,...,N-1)
with $\tau_{i}^{k} = (y_{i}^{k} - y_{i-1}^{k})/h_{i}$

$$\rho_{\mathbf{i}} = \frac{\sinh \mu_{\mathbf{i}} - \mu_{\mathbf{i}}}{\mu_{\mathbf{i}}^2 \sinh \mu_{\mathbf{i}}} \ h_{\mathbf{i}}, \quad \sigma_{\mathbf{i}} = \frac{\mu_{\mathbf{i}} \cosh \mu_{\mathbf{i}} - \sinh \mu_{\mathbf{i}}}{\mu_{\mathbf{i}}^2 \sinh \mu_{\mathbf{i}}} \ .$$

The differentiation results in

(17)
$$c_{i}^{k} = a_{i} \frac{y_{i}^{k} - y_{i-1}^{k}}{h_{i}} + \epsilon \frac{M_{i-1}^{k} - M_{i}^{k}}{h_{i}}$$
.

Unfortunately, it is not so easy to calculate y_i^k , M_i^k explicitely. In the case 2 < k < N-2 it holds $M_k^k = 0$ for k < k-2 and k > k+2, $y_k^k = 0$ for k < k-2, k > k+2 and $y_k = 1$, the five parameters M_{k-1}^k , M_k^k , M_{k+1}^k , y_{k-1}^k , y_{k+1}^k satisfy (16) for i = k-2, k-1, k, k+1, k+2. A tedious but simple computation yields: y_{k-1}^k , y_{k+1}^k are the solutions of

$$(18) \quad \frac{1}{\rho_{k+1}} \left[\frac{1}{h_{k+1}} + \frac{1}{h_{k+2}} + (\sigma_{k+1} + \sigma_{k+2}) \right] \frac{1}{\rho_{k+2} h_{k+2}} y_{k+1}^{k} - \frac{1}{\rho_{k}} \left[\frac{1}{h_{k}} + \frac{1}{h_{k+1}} + \frac{1}{h_{k+1}} + (\sigma_{k+1} + \sigma_{k}) \right] y_{k+1}^{k} = \frac{1}{\rho_{k+1} h_{k+1}} - \frac{1}{\rho_{k} h_{k}}$$

$$p_{k}^{*}y_{k+1}^{k}+q_{k}^{*}y_{k-1}^{k}=2(\frac{1}{h_{k}}+\frac{1}{h_{k+1}})+(\sigma_{k}+\sigma_{k+1})(\frac{1}{\rho_{k}h_{k}}+\frac{1}{\rho_{k+1}h_{k+1}})$$

with

$$p_{k}^{\bullet} = \frac{2}{h_{k+1}} - 2 \frac{\rho_{k}}{\rho_{k+2}} \frac{1}{h_{k+2}} + \frac{\sigma_{k}^{+\sigma}_{k+1}}{\rho_{k+1}} \left[\frac{1}{h_{k+2}} + \frac{1}{h_{k+2}} + (\sigma_{k+1} + \sigma_{k+2}) \frac{1}{\rho_{k+2} h_{k+2}} \right]$$

$$q_{k}^{*} = \frac{2}{h_{k}} - 2 \frac{k}{\rho_{k-1}} \frac{1}{h_{k-1}} + \frac{\sigma_{k}^{+} \sigma_{k+1}}{\rho_{k}} \left[\frac{1}{h_{k}} + \frac{1}{h_{k-1}} + (\sigma_{k-1}^{+} \sigma_{k}) \frac{1}{\rho_{k-1} h_{k-1}} \right].$$

If y_{k-1}^k , y_{k+1}^k are known we obtain $M_{\boldsymbol{\ell}}^k$ by the formulas

(19) (i)
$$M_{k-1}^k = \frac{1}{\rho_{k-1}h_{k-1}} y_{k-1}^k$$
, $M_{k+1}^k = \frac{1}{\rho_{k+2}h_{k+2}} y_{k+1}^k$

(ii)
$$M_k^k = \frac{1}{\rho_k h_k} - \frac{1}{\rho_k} \left[\frac{1}{h_k} + \frac{1}{h_{k-1}} + (\sigma_{k-1} + \sigma_k) \frac{1}{\rho_{k-1} h_{k-1}} \right] y_{k-1}^k$$

For an equidistant grid and a(x)=a=const. the $\rho_{\hat{1}}$ and $\sigma_{\hat{1}}$ are constant and we get

(20) (i)
$$y_{k-1}^{k} = y_{k+1}^{k} = \rho/(2\sigma)$$

(ii)
$$M_{k-1}^k = M_{k+1}^k = 1/(2h\sigma)$$
, $M_k^k = -1/(h\sigma)$.

It is easy to see that for the order in h it holds

$$y_{k-1}^{k}$$
, $y_{k+1}^{k}=0(1)$, $M_{\ell}^{k}=0(h^{-2})$ (\(\ell_{k}-1,k,k+1)\)

corresponding to the fact that the term $a_i(y_i^k-y_{i-1}^k)/h_i$ in (17) generates the discretization of -(au')'and the trem $(M_{i-1}^k-M_i^k)/h_i$ generates the discretization of $\epsilon u^{(4)}$ (the right-hand side of our discrete problem (14) admits the order 0(h)).

The basic functions $\psi_1(x)$ and $\psi_{N-1}(x)$ contain the unknown parameters $M_0^1, M_1^1, M_2^1, y_2^1$ (respectively $M_{N-2}^{N-1}, M_{N-1}^{N-1}, M_N^{N-1}, y_{N-2}^{N-1}$) and we have to take into consideration the boundary conditions. We obtain

$$(21) \ \rho_1 M_0^1 - \{\frac{1}{h_2} - \frac{\rho_2}{\rho_3} \frac{1}{h_3} + \frac{\sigma_1^{+}\sigma_2}{\rho_2} [\frac{1}{h_2} + \frac{1}{h_3} + \frac{\sigma_2^{+}\sigma_3}{\rho_3 h_3}]\} y_2^1 = -(\frac{1}{h_1} + \frac{1}{h_2}) - \frac{\sigma_1^{+}\sigma_2}{\rho_2} \frac{1}{h_2} \sigma_1 M_0^1 - \frac{\rho_1}{\rho_2} [\frac{1}{h_2} + \frac{1}{h_3} + \frac{\sigma_2^{+}\sigma_3}{\rho_3 h_3}] y_2^1 = \frac{1}{h_1} - \frac{\rho_1}{\rho_2} \frac{1}{h_2} .$$

If M_0^1, y_2^1 are known we get

(22)
$$M_2^1 = \frac{1}{\rho_3 h_3} y_2^1$$
; $M_1^1 = \frac{1}{\rho_2 h_2} - \frac{1}{\rho_2} \left[-\frac{1}{h_2^2} + \frac{1}{h_3} + \frac{\sigma_2 + \sigma_3}{\rho_3 h_3} \right] y_2^1$.

Substituting $M_k^1 := M_{N-k}^{N-1}$ (k=0,1,2), $y_2^1 := y_{N-2}^{N-1}$, $h_{k+1} := h_{N-k}$, $\rho_{k+1} := \rho_{N-k}$,

 $ho_{k+1}:=\sigma_{N-k}$ the corresponding system for the basic function $\psi_{N-1}(x)$ is generated. For an equidistant grid with a(x) a it holds

(23) (i)
$$y_2^1 = \rho \sigma / (2\sigma^2 - \rho^2)$$

(ii) $M_0^1 = +2(\sigma + \rho) / (h(-\rho^2 + 2\sigma^2)), M_1^1 = -(2\sigma + \rho) / (h(2\sigma^2 - \rho^2)),$
 $M_1^2 = \sigma / (h(2\sigma^2 - \rho^2))$

Now, let us set

(24)
$$d_{k}^{*} = \sum_{i=k-1}^{i=k+2} d_{i}^{k} f_{i}$$

for the right-hand side of our discrete problem (14). We have

$$d_{i}^{k} = \int_{x_{i-1}}^{x_{i}} s_{i}^{k}(x) dx = h_{i} \int_{0}^{1} s_{i}(t) dt$$

and on such a way we get

(25)
$$d_{\hat{i}}^{k} = h_{\hat{i}} \frac{y_{\hat{i}}^{k} + y_{\hat{i}-1}^{k}}{2} + \frac{y_{\hat{i}}^{k} + y_{\hat{i}-1}^{k}}{\chi_{\hat{i}}^{2}} (\frac{\cosh \mu_{\hat{i}}^{-1}}{\mu_{\hat{i}} \sinh \mu_{\hat{i}}} - \frac{1}{2})$$
.

Thus, all coefficients of our discrete problem (14) can be computed using (17),(24),(25) and the formulas (18),(19),

(21), (22) for the
$$y_{\ell}^{k}$$
, $M_{\ell}^{k}(\ell=k-1,k,k+1)$.

3. The uniform convergence of the method

Let us define the selfadjoint operator L on the function space U by

The solution of the problem

L
$$G_i = \delta(x-x_i)$$
,

a Green function, is characterized by

(26)
$$\epsilon(G_j^*, w^*) + (\overline{a}G_j^*, w^*) = w(x_j)$$
 for all xeU.

It holds $G_j \in H^3$ and $G_j \in C^2$. Choosing for w some finite functions we obtain

(27)
$$\varepsilon G_{i}^{(4)} - \overline{a} G_{i}^{"} = 0$$
 on every subinterval (x_{i-1}, x_{i}) .

Combining (26) and (27) we get that G_j satisfies the following jump condition

(28)
$$S_{\mathbf{i}}G_{\mathbf{j}} := \lim_{\mathbf{x} \to \mathbf{x}_{\mathbf{i}} = 0} (\varepsilon G_{\mathbf{j}}'' - \overline{a}G_{\mathbf{j}}') - \lim_{\mathbf{x} \to \mathbf{x}_{\mathbf{i}} + 0} (\varepsilon G_{\mathbf{j}}'' - \delta \overline{a}G_{\mathbf{j}}') = -\delta_{\mathbf{i}\mathbf{j}}.$$

Thus, G_j is equivalently characterized by $G_j \in \mathbb{C}^2[0,1]$,

$$G_{j}(0)=G_{j}(0)=G_{j}(1)G_{j}(1)=0$$
 and (27),(28).

Lemma 1:G, belongs to the test space Th.

 $\underline{\text{Proof}}$: All functions in $T_{\hat{h}}$ can be represented as

$$H_{h} = \sum_{k=1}^{N-1} \alpha_{k} \psi_{k}.$$

New, we have to prove only that it is possible to fulfil the jump condition (28) choosing the parameters α_k in an adequate way. Let us choose $\varphi \in T_h$. From (10) it follows

$$\sum_{k=1}^{N-1} \alpha_k \sum_{i=1}^{N} \sum_{x_{i-1}}^{x_i} (\epsilon \psi_k^{(4)} - \overline{a} \psi_k^{"}) \phi dx = 0.$$

Integration by parts results in

$$\sum_{k=1}^{N-1} \alpha_k \sum_{i=1}^{N} (\sigma \psi_k'' - \overline{a_k}') \varphi \Big|_{x_{i-1}}^{x_i} \sum_{k=1}^{N-1} \alpha_k \sum_{i=1}^{N} \sum_{x_{i-1}}^{x_i} (\varepsilon \psi_k''' - \overline{a_k}) \varphi' dx = 0,$$

respectively

(29)
$$\sum_{k=1}^{N-1} \alpha_k \sum_{i=1}^{N} (S_i \psi_k) \phi(x_i) + \sum_{k=1}^{N} \alpha_k [(\varepsilon \psi_k'', \phi'') + (\overline{a} \psi_k', \phi')] = 0.$$

Let $\phi_m(m=1,...,N-1)$ be some basic function of T_h with

$$\varphi_{\mathbf{m}}(\mathbf{x}_{\ell}) = \delta_{\ell \mathbf{m}}$$

Choosing $\phi = \phi_m$ in (29) we get

(30)
$$S_m H_j + \sum_{k=1}^{N-1} \alpha_k [(\epsilon \psi_k'', \phi_m'') + (\overline{a} \psi_k', \phi_m')] = 0.$$

Now, one can choose α_k in such a way that $S_m H_j = -\delta_{mj}$ because (30) represents a linear system for the unknowns α_k which is equivalent to the system for the unknowns v_k and therefore uniquely solvable.

Lemma 2: For the error at the grid points it holds

(31)
$$u(x_i)-u_i=(u',(\bar{a}-a)G_i')+(f-\bar{f},G_i),$$

Proof: Let us start with

$$u(x_i)-u_i((u-u_h)(x),\delta(x-x_i))=((u-u_h)(x),LG_i)=\overline{a}(u-u_h,G_i).$$

A splitting yields

$$u(x_i)-u_i=\overline{a}(u,G_i)-\overline{a}(u_h,G_i)$$

$$=\overline{a}(u,G_i)-a(u,G_i)+a(u,G_i)-\overline{a}(u_h,G_i)$$

$$=((\overline{a}-a)u',G_i')+(f,G_i)-(\overline{f},G_i)$$

taking into consideration $G_{\mathbf{i}} \in T_{\mathbf{h}^{\mathrm{T}}} =$

THEOREM 1: Let us assume

Then, the above defined method converges uniformly with respect to ϵ at the gridpoints and the following error estimation holds

(32)
$$\max_{i} |u(x_i) - u_i| \leq Kh,$$

where K does not depend on E, h.

Proof: Let us note that we have already proved ||u|| 4K. Analogously, from (26) it follows ||G;|| 4K, ||G;|| K. Now, the statement follows directly from (31).a In order to approximate u(x) for all x we use the linear interpolate muh which satisfies (muh)(x;)=u;.

> Lemma 3: For the linear interpolate it holds $\|\mathbf{u} - \pi \mathbf{u}_{\mathbf{h}}\|_{\infty} \leq Kh$

that means, u is approximated uniformly with respect to ε in the L^{∞} -norm.

<u>Proof</u>: Let us fix some $x \in (x_{i-1}, x_i)$. Then we have $u(x)-\pi u_h(x)=[u(x)-u(x_{i-1})+u(x_{i-1})-u_{i-1}](x-x_{i-1})/(x_i-x_{i-1})+u(x_i-x_{i-1})$ $+[u(x)-u(x_i)+u(x_i)-u_i](x-x_i)/(x_{i-1}-x_i).$

Thus, from theorem 1 and ul sk the desired result follows. a

REFERENCES

- [1] Doolan, E., Miller, J., Schilders, W.: Uniform numerical methods for problems with initial and boundary layers. Dublin 1980.
- [2] HeB, W., Schmidt, J.W.: Convexity preserving interpolation with splines. Computing 36(1986), 335-342.
- [3] O'Malley, R. W.: Introducation to singular perturbations. Academic press 1974.
- [4] O'Riordan, E., Stynes, M.: An analysis of a superconvergence result for a singularly perturbed boundary value problem. Math.of Computation, 46(186), 81-92.

- [5] Roos, H.-G.: Some new results on the numerical solution of singularly perturbed boundary value problems.

 Preprint Technische Universität Dresden, 07-13(1986).
- [6] Shishin, G.I.: A difference scheme for an ordinary differential equation of the fourth order with a small parameter at the highest derivative. Differential equations (in Russian), 21(1985),1734-1742.

REZIME

JEDAN UNIFORMNO KONVERGENTAN METOD DISKRETIZACIJE ZA SINGULARNO PERTURBOVANI KONTURNI PROBLEM ČETVRTOG REDA

U radu se posmatra problem (1) sa malim parametrom $\varepsilon>0$ i osnovnom pretpostavkom a(x)>0. Predložen je numerički postupak Petrova-Galjerkina koji koristi eksponencijalne splajnove kao test-funkcije. Korišćenjem pristupa iz rada [4] za postupak je dokazana linearna konvergencija, uniformna po ε .

Received by the editors June 22, 1987.