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ABSTRACT

In this 8ap=r we consider problem (1) with a
small parameter e€>0 and the basic assumption that a{x)>0.

A numerical method of Petrov-Galerkin type is proposed and
exponential splines as test-functions are used. Using the
approach from [4] the linear convergence, uniform in ¢,

of the method is proved.

1. INTRODUCTION

We consider the singulary perturbed boundary
value problem
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(1) eu'™ (x)-(alx)u"(x)) "= £(x) ,uC0)=u"(0)=ul1)=u"(1)=0

with some small parameter 0<e<<l. Let us suppose a(x)>a>0,
the functions a(x),f(x) are assumed to be smooth.Whereas
in the literature a large number of results on second or-

der problems exists (compare [1],{5] and the references
cited therein) only few facts are known on fourth order
equations. Having used a maximum principle argument, Shi-
shkin [6] obtained some uniform with respect to the para-
meter € convergence results for a problem which can be
splitted immediately into a system of two second order
equations. The difficulties connected with fourth order
problems are due to the fact that in general a maximum
principle does not hold. Qur approach is based on ideas of
0“Riordan and Stynes [4] and does not use any maximum prin-
ciple neither for the solvability of the discrete problem nor
in the convergence pro6f.

It is well-known that in the case of second or-

der equations

(2> —eu"(x)+e(x)u”(x)+d(x)ulx)=f(x)

the uniform convergence of the I1”in-scheme or the El-Mis-

tikawy-Werle scheme at first was proved under the assump-

tion d(x)=0. Analogously we hope that the more general

problem
eu(u)-(ax)u’)’+b(x)u=f(x)

can be handled without comﬁiete exponential fitting discre-

tizing the trem b(x)u completely analogously to f(x),

Our discretization method is a Petrov-Galerkin méthod using

exponential splines as test functions.

Let us denote by H-ﬂk the norm in the Sobolev
space Hk(O,l) and by ll ‘i, the maximum norm. Let (.,.) deno-

te the scalar product in L2(0,1). set
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U=(ver%(0,1) with ¢(0)=v”(0)=v(1)=v"(1)}.

A weak formulation of (1) is: Find u€U such that
(3) alu,v):=ze@",v")+(au”,v7)=(£f,v), for all vey.

The bilinear form a(.,.) is continuous and coercive - the-
refore (3) admits a unique solution.

Setting v=u in (3) we obtain
1
) flull 4 < r V3/2Hfﬁo.

Thus our problem (3) is in some sense g-uniformly stable,

the imbedding HI+C yields

(5) Il il <Kl £l _

too. Here and in the following we denote by K in general
different constants which do not depend on g.

According to (4) a usual conform finite element method re-
sults in an e-uniformly stable scheme (in the sense of (i)
or (5)). But one con not expect uniform convergence because
the solution of our original problem contains boundary la-
yer functions. It holds [ 3]

1 1
(6) u(x,e)=g(x,e)+87go(x,e)exp(- Va(O)x/57)+

1 |
+67g1(x,e)exp(— Va(i)(l—x)/ei)

where the functions g can be expanded. in an asymptotic power

1/2

series with respect to ¢ , further it is possible to

differentiate (6). In particular, z(x)=g(x,0) solves the
reduced problem
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-(a(x)z”) =f(x), 2(0)=z(1)=0,.

From (6) we obtain the bounds

(1+5L)“

(1) (i) Hull <K, (iidlu ke Y ge0,1,2,..0

1/4 ~1/2 k-1

(iii)Hqu<K e ) (k=2,3,...). :
Thus, the standard error analysis for conform finite ele-

ment methods using piliecewise quadratic or piecewise cubic

Ci-splines would result in

7/4

Khe™ for quadratic Cl-splines

fu-u i, €
h' 2 2 -9/4

Khe for cubic Cl-splines

Of course, fur e<<1 this estimate is practically not appli-
cable and it is necessary to use special discretization

techniques.

2. The discrete problem

Let some nonequidistant grid be given, i.e.

0=xo<x1<...<xN_1<xN=1.
The corresponding step sizes we donote by hi=xi-xi_1, the
mesh width by h = max h;. We define by A(x) a piecewise

1<i<N
constant approximation of a(x) with 3(x)=ai:=a(xi) for all

x€(xi_1,xi) and modify our original bilinear from due to
(8) alu,v)i=e(u",v")+(au”,v”).

Let some finite-dimensional spaces of the same dimension

Sh’Th with Sth, Tth be given. The discrete problem con-
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sists in the following: Find up, €S, such that

(9) E(uh,vh)=(T,vh) for all v, €Ty,

where T denotes a corresponding piecewise constant approxi-
mation to f. Now we introduce basic functions

qk(k=1,...,N—1) in T, <U by
(10) eqk‘“)—5¢;=n on (x;_,,x;) for i=1,2,...,N

2 .
¥,6C°[0,1] with supp Y= x ~2,xk+2]
wk(xk)=1.
Thus, the test functions Yy are exponential Cz—splines and

it is well known that - are uniquely determined (la-
¥k

ter we have to calculate them explicitely). Let us for a
moment choose Sh=Th and set

Z e

“Then the unique solvability of the continucus problem re-
sults in the unique solvability of the discrete problem,
therefore the corresponding system of linear equations for
the unknowns Vi admits a unique solution. First we are in-

tersted in computing approximations in the gridpoints. In
principle one could use

(11) uh(xk)=uk=wk(xk_1)vk_1+vk+dk(xk+1)vk+1

to calculate these approximations. But it is easier to de-
rive a linear system of equations for Uy itselves.
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According to the definition of our discrete problem the

function u, €5,<U (S}, arbitrary) satisfies
(12)  (-ep 3] u )=(E 9, ).

Taking into account the properties of our test functions
it holds

po

(13) -y, + 3W£ =¢, on [xi—l’xi]

i

with ci=0 for i<k-2, i»k+3.

Hence, (12) results in

i=k+2.k
(1s) ) ¢ Cu;-uy_ 4 )=df=(F,y ) (k=1,...,N-1)
i=k-1
ceae N=1_
(with cN+1-O). Whereas the system for Vi represents a seven

band matrix our system (14) for Up is pentadiagonal.

The system (14) does not depend on the special choice of
the space Sy» thus for Sh=Th we also obtain (14) and so

this system admits a unique solution, too.
Now let us set

=(ym 2_ -
t=(x xi_l)/hi,xi-ai/e,ui—hixi.

Then it is convinient to represent wk(x) on the interval

[x;_4>%;1 in the form [2]

k . X
M. sinhu. (1-t)
Xk =K - X i-1 i _
(15) si(x)-yi_l(l t)+yit + Az (31nhu. (1-t)) +

. 1
i

MF sinhyu.t

+ = )
17 sinﬁui 4

and ¥, Dbelongs to C2 iff
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ME =K —r? (i=1,...,N-1)

(16) pyMS_j+Cos+0;  IME+p; M =tf )

+1

. k_, k_ k
with Ti-(yi yi—i)/hi

o = 51nhui—ui N .. = u;coshy;-sinhy,
i~ . i’ i~ 2+ )
uiSthui ui51nhui

The differentiation results in

k k WS ik
Yi-¥s_ C =My
(17) K= i7i-1

= . +€. .
al i € %
1 1

Unfortunately, it is not so easy to calculate y?, ME exp-

licitely. In the case 2<k<N-2 it holds ME

2Pk +2, y§=0 for 4<k-2, »k+2 and yk=1, the five parameters

=0 for R k-2 and
M< oM<, MK K K satisfy (16) for i = k-2, k-1

k-1° "k k12 yk_1, yk+1 y ’ ’
k, k+1, k+2. A tedious but simple computation yields:

yi_l, y§+1 are the solutions of

1 1 1 1 kK 1,1 1
(18) [ + +(o, . +0 ) 1yp 4= =—I- + +
Prp1 Byaq  DByap  K+1Tk#27 o OB VRl it Ry T BT

1 K 1 1
+{6 +q = -
-1 BTR T Vet T TRIRGT T Ry

1 1

$k % k - 1
PrYi+1 Y k—1‘2(E; i T *

k P41k 41

) + (ck+o

!
)(
k+1 pkh

with
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s . g, +q '

“ 2 Pk 1 k%41 1 1 1
PE = -? + —— [ + +(o +g )————F———]
ko hyyq Pra2 Myao P41 Riyo By kAL k27 by

+
* 2 kK 1 Ok %k+1,1 1 . 1
= -2 + [v—+ +(o, _4t0, ) ].
U Ry TP R P by By Uk-1KkT B _ghy

k k .
If'yk-i’ Y1 Aare known we obtain Mt by the formulas

\ ! . Kk 1 k
(19) 1) v"i-i’_r'pk_l 1 yi-v Meeq= PrsoPrez Yik+1

1 1.1 1 1 x
(ii) Mt= - = [+ + (g, _.+0.) ae
B N U S S T k-1""k" by 1B g Wic-1

For an equidistant grid and a(x)=a=const. the p; and ¢; are

constant and we get
(20) (1) yK_ =yK,,=p/(20)
(i1) ME_ =M, =1/(2h8), MS==1/(ha).

It is easy to see that for the order in h it holds

VK s ¥5,120(1), ME=0(RT2)  (Rek-1,k,k+1)
rre ding to the fact that the term a.( K % )/h, in
corresponding AL £
(17) genérates the discretization of =(au”)”and the trem

(M§_1-M§)/hi generates the discretization of eul™) (the

right-hand side of our discrete problem (14) admits the
order 0(h)).
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The basic functions wl(x)'and wN_l(x) contain the unknown

1 N-1

parameters M ,Ml,Mz,y2 (respectively MN 2, My N-1 N-1)

1° MN ? N-

- and we have to take into consideration the.boundary condi-
tions. We obtain A

g,+0

1 .1 pz 1 1*9 4 1 2¥93..1. 1 1
(21) p M ={ e + *- 1lyo=-(— + £=)-
1™ 'R, T 7, By T 7H, | Ry © By TPshg 27 "Ry " Ry
SE Nl T DR W - N N 9% 1 1 _ P11
b B, 170" p, 'R, "Ry T PRy Y2 TRy T B, By

If Mi,y% are known we get

1 1 1 1. 1 1.1 .1 Op*03 14
(22) M = y H M = - + ] y
2 " pghy 72 * 17 poRy P2 B E‘ by 1 72°

N-1

Substituting Mi:=M§:i (k=0,1,2),y%:=yN )’ By pqs

BNk Pre1i 7PNk

P41’ =Oy- the corresponding system for the basic function
wN_l(x) is generated. For an equidistant grid with a(x) a

it holds
(23) (i) y%:po/(zozapz)
(ii) MI=+2(a+p)/sh(-p?+20%)) M]=-(20+p)/ (h(20%-p?)),
M2za/(h(2a2- 7))
Eow, let us set

(24) a =Y d5,
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for the right-hand side of our discrete problem (14). We

have
X4 1
kK _ ¢ k _
a; = J  s{(x)dx=h; J s;(r)at
*i-1 o

and on such a way we get
k k k k
(25) dk- N yi+yi—1 N Mi+Mi_1 coshui-l _ 1)
i™ i 2 X2 H.sinhp. z0 0
i i i

Thus, all coefficients of our discrete problem (14) can be

computed using (17),(24),(25) and the formulas (18),(19),

(21), (22) for the yi Mt(l:k-l,k,k+1).
9

3. The uniform convergence of the method

Let us define the selfadjoint operator L on the function
space U by

(Lu,v)=(u, Lv):=a(u,v).
The solution of the problem
L Gj =‘6(x-xj ) Py

a Green function, is characterized by

(26) E(Gg,w")+(EG5,w’)=w(xj) for all xeU.

It holds GjGHSand Gjecz. Choosing for w some finite funcions

we obtain

(4)

_SCt= ; '
27) eGj an 0 on every subinterval (x;_;,x;).

Combining (26) and (27) we get that Gj satisfies the

following jump condition
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- . "o
: xiim u(eGj - an) xii?+0(eGj -dan)- éij'
xrx.

Thus, Gj is equivalently characterized by GjGCZID,ll,
G.(0)=65(0)=3:(1)6s(1)=0 a (27 28).
J( ) J( ) JJ( )GJ( ) and (27),(28)

Lemma 1:Gj belongs to the test space Ty
Proof: All functions in Ty can be represented as

N-1

= [« T
By k§1 Kk

New, we have to prove only that it is possible to fulfil
the jump condition (28) choosing the parameters a in an

adequate way. Let us choose €T From (10) it follows

b
N=1 N % .

Poae 10 e M- mue ax=o
k= i=1 X514

Integration by parts results in

N-1 N o o i N=1 NoX

) Oy _2 (0¢k-aK )Wlx. 2 g z f (ewk—awk)m dx=0,

= i=1 1—1 21 .

1*1
respectively
N-1
(29) kzl K z (859 )0(x;) + z o LCepl, @)+ (@Y 07 1=0.
= 1_

Let wm(m=1,..,N—1) te some basic function of T, with
wm(x£)=6£m.

Choosing ®=@, in (29) we get
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N-1
(30) smuj + k')‘-:1 ay [Ceyl,01) +(@y,07)1=0.

Now, one can choose dk in such a way that SmH-

]=-§mj~bcdiuse (30)

represents~-a linear system for the unknowns Oy which is equi-

valent to the system for the unknowns v, and therefore unique-

1y solvable. O

Lemma 2: For the error at tne grid points it holds
(31) ulx;)-u;=(u”,(3-a)6 )+ (£-%,6,),
Proof: Let us start with
lu(xi)—ui((u-uh)(x),6(x—xi))=((u—uh)(x),LGi)=E(u—uh,GiL
A splitting yields
u(xi)—ui=3(u,Gi)-E(uh,Gi)
=3 (u,6;)-alu,6;)+alu,6;)-a(uy ,6,)
=((3—a)u’,G£)+(f,Gi)—(T,Gi)
taking into consideration GieThT o
THEOREM 1: Let us assume
l'a-all <Kh,IT-£fl <kh.

Then, the above defined method converges uniformly with
regspect to € at the gridpoints and the following error esti-
mation holds '

(32) m?xlu(xi)-uil<Kh, : Cos

where K does not depend on ¢ ,h.
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Proof: Let us note that we have already proved
llull ,<K. Analogously, from (26) it follows WGiH1<K,HGin<K.
Now, the statement follows directly from (31).m

In order to approximate u(x) for all x we use the linear
interpolatz ®u, which satisfies (wuh)(xi)=ui.

Lemma 3: For the linear interpolate it holds

Hu—nuhﬂm<Kh

that means, u t8 approximated untformly with respect to €
in the L° -norm.

Proof: Let us fix some x€(x; ;,X;). Then we have
u(x)-nuh(x)=[u(x)-u(xi_i)+u(xi_1)-ui_1](x—xi_l)/(xi-xi_1)+
+luGoO-ulxg ) +ulxg)=ug Jx-x )7 (x5 _y-x; ).

Thus, from theorem 1 andlu”dl_%K the desired result follows.m
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REZIME

JEDAN UNIFORMNO KONVERGENTAN METOD DISKRETIZACIJE
ZA SINGULARNO PERTURBOVANI KONTURNI PROBLEM CETVRTOG REDA

U radu se posmatra problem (1) sa malim parametrom
€0 1 osnovnom pretpostavkom a(x)>0, PredloZen je numericki
poStupak Petrova-Galjerkina koji koristi eksponencijalne
splajnove kao test-funkcije. Koriscéenjem pristupa iz rada
[4] za postupak je dokazana linearna konvergencija, uniform-
na po e.
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