Univ. u Novom Sadu Zb. Rad. Prirod.—Mat. Fak. Ser. Mat. 19,1,73—85 (1989) REVIEW OF RESEARCH FACULTY OF SCIENCE MATHEMATICS SERIES

DE HAAN'S CLASS OF DISTRIBUTIONS I

Bogoljub Stanković

Institute of Mathematics, University of Novi Sad Dr Ilije Djuričića 4,21000 Novi Sad, Yugoslavia

ABSTRACT

A class of distributions, named $\pi(G)$, is defined as a generalization of de Haan's π_g class of functions [2]. The properties and the characterisation of the class $\pi(G)$ are given. The applications of the class $\pi(G)$ are left for the second part which will be treated in the next paper.

INTRODUCTION

In a quite recently published book [1], the authors named the study of the existence of the limit

(1)
$$\frac{1}{x+\infty} \frac{f(\lambda x) - f(x)}{g(x)} = k(\lambda), \quad \lambda > 0,$$

AMS Mathematics Subject Classification (1980):46F05,26A12 Key words and phrases:Regular varying function,asymptotical behaviour of a distribution. with an f measurable and g positive function, as "de Haan's theory".

For a regular varying function g the class $\Pi_{\ g}$ is the class of measurable functions satisfying (1) with

$$k(\lambda) \equiv k_{\rho}(\lambda) = c \begin{cases} \log \lambda, & \rho = 0 \\ (\lambda^{\rho} - 1) / \rho, & \rho \neq 0 \end{cases}$$

for some constant c =0.

In his book [2] de Haan treated this class Π_g , but he elaborated in more detail a subclass of Π_g , namely, the class Π_g but with g as a slowly varying function and c=1. The class Π_g is a proper subclass of the famous Karamata class of regularly varying functions (see [3] and [5]) and has many applications (see [1] and [2]).

Our aim is to enlarge the class Π_g to distributions (generalized functions of L.Schwartz's type [4]) and to point at some applications of such an enlarged class.

1. THE CLASS π_{α} OF DISTRIBUTIONS

Writing $F(y)=f(e^{y})$, $G(y)=g(e^{y})$ and $K(y)=k(e^{y})$, yell, we obtain the "additive-argument version" of (1):

(2)
$$\lim_{h\to\infty} \frac{F(y+h)-F(h)}{G(h)} = K(y), y \in \mathbb{R}.$$

This version suits our aim better and has been frequently used in proving the properties of elements of the class Π_{α} .

DEFINITION 1. Let G be a positive and measurable function. A distribution $T \in \mathcal{V}^{*}(R)$ belongs to the class $\pi(G)$ if and only if for every $\phi \in \mathcal{V}(R)$ and every $\phi \in \mathcal{R}$

(3)
$$\lim_{h\to\infty} \langle \frac{T(x+y+h)-T(x+h)}{G(h)} , \phi(x) \rangle = \langle S(x,y), \phi(x) \rangle$$

where S(.,y) is a family of distributions which is not constant in the parameter y. If in our definition S(.,y) can be constant, then we have the class $\pi_{O}(G)$.

First, we notice that $\langle T(x+y), \varphi(x) \rangle = (T_* \oplus) (y) \in C^{\infty}(R)$, where $\varphi(x) = \varphi(-x)$ and the asterisk \star is the sign of the convolution. Now, (3) can be written in the from:

$$(4) \quad \lim_{h \to \infty} \frac{(\mathbf{T}_{\pm} \overset{\vee}{\phi}) (\mathbf{y} + \mathbf{h}) - (\mathbf{T}_{\pm} \overset{\vee}{\phi}) (\mathbf{h})}{G(\mathbf{h})} = (S(.,y) \overset{\vee}{\pm} \overset{\vee}{\phi}) (0).$$

If we denote by $F(y)=(T\star\phi)(y)$ and by $K(y)=(S(.,y)\star\star\phi)(0)$, relation (4) has just the form of (2). In such a way, we related the class $\pi(G)$ of distributions with the class π_g of functions and through relation (4) we can use all the results which concern the class π_g , in proving properties of the class $\pi(G)$.

PROPOSITION 1. If $TE\pi(G)$, then S(.,y) has the form $S(x,y)=k_0(e^Y)e^{\rho x}$, ρe^R .

Proof. For every zek we have:

$$\lim_{h\to\infty}\frac{G(z+h)}{G(h)}<\frac{T(x+y+(z+h))-T(x+(z+h))}{G(z+h)}\ ,\ \varphi(x)>$$

=
$$\lim_{h\to\infty} \frac{T(x+z+y+h)-T(x+z+h)}{G(h)}$$
, $\varphi(x)$.

It follows from Theorem 1.9., p.16 in [2] that there exists a $\rho \in \mathbb{R}$ such that:

(6)
$$\lim_{h\to\infty} \frac{G(z+h)}{G(h)} = e^{\rho z}, \quad z \in \mathbb{R}.$$

Relation (5) can be written now in the form:

(7)
$$e^{\rho \mathbf{Z}} \langle S(\mathbf{x}, \mathbf{y}), \phi(\mathbf{x}) \rangle = S(\mathbf{x} + \mathbf{z}, \mathbf{y}), \phi(\mathbf{x}) \rangle$$

Takin care of the existence of the derivative of a distribution, from relation (7) we can derive the following one: $\rho S(x,y) = D_X S(x,y), \text{ where } D_X S \text{ is the derivative in } x \text{ of the distribution } S(x,y) \text{ for every } y \in \mathbb{R}. \text{ The unique solution of this equation is } S(x,y) = e^{\rho X} C(y), \text{ where } C(y) \text{ is a family of constant distributions. From Theorem 1.9., p.16 in [2] and relation (4), it follows that <math>\langle S(x,y), \varphi(x) \rangle = k_{\rho}(e^{Y})$. Hence, $C(y) = c_1 k_{\rho}(e^{Y})$ and S(x,y) has the form $k_{\rho}(e^{Y})e^{\rho X}$.

REMARKS. 1) We can always suppose that G is a continuous function. Namely, if $Te\pi(G)$, then for a $\phi_O ev$

$$\lim_{h\to\infty} < \frac{\mathbf{T}(\mathbf{x}+\mathbf{y}+\mathbf{h})-\mathbf{T}(\mathbf{x}+\mathbf{h})}{\mathbf{G}(\mathbf{h})} \ , \phi_{o}(\mathbf{x})>=k_{\rho}(\mathbf{e}^{\mathbf{y}})<\mathbf{e}^{\rho\mathbf{x}}, \phi_{o}(\mathbf{x})>.$$

We can choose a y_0 such that $k_0(e^{y_0}) < e^{\rho x}$, $\phi_0(x) >= 1$. Since G(h) > 0, here exists a h_0 such that $< [T(x+y_0+h) - T(x+h)] \phi_0(x) > \equiv G_1(h) > 0$, has a function $G_1(h)$ can be enlarged for $h < h_0 : G_1(h) = G_1(h_0)$, $h < h_0$. The function G_1 is continuous, positive and

$$\lim_{h\to\infty} \langle \frac{T(x+y+h)-T(x+h)}{G_1(h)}, \phi(x) \rangle =$$

$$= \lim_{h \to \infty} < \frac{\text{T(x+y+h)-T(x+h)}}{\text{G(h)}}, \phi(x) > \lim_{h \to \infty} \frac{\text{G}_1(h)}{\text{G(h)}}.$$

Since $\lim_{h\to\infty} G_1(h)/G(h)=1$, we can always replace G by G_1 in (3).

2) We have seen that G from Definition 1 satisfies relation (6). Write $G(h)=e^{\rho h}L(h)$, then there exists the following limit: $\lim_{h\to\infty}L(x+h)/L(h)=1,x\in\mathbb{R}$, and $L(\ln y)$ is a slowly verying function [5]. Then, we can always suppose that G has the form $G(h)=e^{\rho h}L(h)$.

PROPOSTITION 2. The limit given by relation (3) is uniform in y on every compact set belonging to R.

Proof. This proposition follows directly from Theorem 3. 1.16., p.139 in [1], if we use form (4) of limit (3).

PROPOSITION 3. If f is a function belonging to the class Π_g , then $f(e^Y) = F(y)$ defines a regular distribution F, which belongs to the class $\pi(G)$.

Proof. If f belongs to the class Π_g , f is measurable and $F(y)=f(e^y)$ is measurable, as well. As a consequence of Theorem 3.1.16.,p. 139 in [1], it follows that f is locally bounded; then, the same property has F. F is locally integrable and defines a regular distribution \widetilde{F} . Now, for a $\phi \in V$, supp $\phi = [-r,r]$ and $y \in K$

$$\lim_{h\to\infty} \langle \frac{F(x+y+h)-F(x+h)}{G(h)}, \phi(x) \rangle =$$

$$= \lim_{h \to \infty} \int_{-r}^{r} \frac{F(x+y+h) - F(x+h)}{G(x+h)} \frac{G(x+h)}{G(h)} \varphi(x) dx.$$

We know (see [5]) that limit (6) is uniform in z on every compact set belonging to R. Taking care of Theorem 3.1.16 in [1], once again, we can apply Lebesgue's theorem to the last integral and we shall obtain for the sought limit

$$= \int_{-\mathbf{r}}^{\mathbf{r}} \mathbf{k}_{\rho}(e^{\mathbf{y}}) e^{\rho \mathbf{x}} \varphi(\mathbf{x}) d\mathbf{x}$$

which proves our proposition.

The next example shows that we can find a locally integrable function $h: R_+ \to R$ which does not belong to any class Π_g , but the regular distribution $\tilde{h}(e^X)$ belongs to a class $\pi(G)$. Such an example is the following:

$$h(x)=x \int_{0}^{x} g(\ln u) \frac{du}{u} + x g(\ln x), x>0,$$

g is continuous, $g(x) \le n$, $x \in J_n = (n - e^{-2n}, n + e^{-2n})$; g(x) = 0, $x \notin J_n = N$. Hence, $g \in L^1(-\infty, \infty)$. Now,

$$\frac{h(xt)-h(t)}{t} = x \int_{e^{\alpha}}^{xt} g(\ln u) \frac{du}{u} - \int_{e^{\alpha}}^{t} g(\ln u) \frac{du}{u} +$$

+
$$x g(ln x + ln t) - g(ln t)$$
, $x>0$

the two integrals have a limit when $t+\infty$, but $x \in \mathbb{R}$ g(ln x + 1 ln t)- g(ln t) oscillates between zero and infinity. On the contrary, the function

 $h\left(e^{X}\right)=F\left(x\right)=e^{X}\int_{\alpha}^{X}\quad g(v)\ dv\ +\ e^{X}\ g(x)=\frac{d}{dx}\ (e^{X}\int_{\alpha}^{X}\ g(v)\ dv)$ defines a regular distribution belonging to $\pi(e^{h})$. To show that, assume that $\phi \in \mathcal{V}$ and supp $\phi \in [-r,r]$. Then, for the distribution \tilde{F} , limit (3) is:

$$-\lim_{h\to\infty}\int_{-\mathbf{r}}^{\mathbf{r}}\left[e^{\mathbf{x}+\mathbf{y}}\int_{\alpha}^{\mathbf{x}+\mathbf{y}+\mathbf{h}}g(\mathbf{v})\ d\mathbf{v}-e^{\mathbf{x}}\int_{\alpha}^{\mathbf{x}+\mathbf{h}}g(\mathbf{v})\ d\mathbf{v}\right]\phi'(\mathbf{x})\ d\mathbf{x}$$

$$=\int_{\alpha}^{\infty}g(\mathbf{v})\ d\mathbf{v}\ (e^{\mathbf{y}}-1)\int_{-\mathbf{r}}^{\mathbf{r}}e^{\mathbf{x}}\phi(\mathbf{x})\ d\mathbf{x}\ ,\ \mathbf{y}\in\mathcal{R}.$$

Proposition 3 makes precise in what sense the class of distributions $\pi(G)$ enlarges the class of functions Π_g . A distribution which is not regular, but belongs to a $\pi(G)$ is $T(x)=x_+^{\lambda}$, $\neq -1,-2,\ldots,\lambda<-1$ (see [4]). In this case, for $\Psi \in \mathbb{R}^{d}$, supp $\varphi \in [-r,r], h>r+|y|$, limit (3) is:

$$\lim_{h\to\infty} \int_{-r}^{r} \frac{(x+y+h)^{\lambda} - (x+h)^{\lambda}}{h^{\lambda-1}} \varphi(x) dx = \lambda y \int_{-r}^{r} \varphi(x) dx.$$

Hence, the limit distribution $S(x,y)=\lambda y$.

PROPOSITION 4. A distribution TeD' belongs to the class $\pi(G)$ if and only if for every interval $I_{\frac{1}{2}}=[-r,r]$ there exist numerical functions $F_1, i=1,2,\ldots,m$, continuous on $[-r,\infty)$, such that for every i, $i=1,2,\ldots,m$, the limit:

$$\lim_{h \to \infty} \frac{F_{1}(y+h) - F_{1}(h)}{G(h)} = k_{1,\rho}(e^{Y}), k_{1,\rho}(e^{Y}) = c_{1} \frac{e^{\rho Y} - 1}{\rho}$$

is uniform for xel_r , when $h \rightarrow \infty$. The restriction of the distribution T on $[-r, \infty)$ can be given in the form

(8)
$$T = \sum_{i=1}^{m} D^{i} F_{i}.$$

By D we denote the derivative in the sense of distributions.

<u>Proof.</u> First, we shall prove that the conditions are sufficient. Suppose that T is given by the sum (8), then limit (3) is:

$$\lim_{h \to \infty} \sum_{i=1}^{m} (-1)^{j_{i}} \int_{-r}^{r} \frac{F_{i}(x+y+h) - F_{i}(x+h)}{G(h)} \varphi^{(j_{i})}(x) dx =$$

$$= \sum_{i=1}^{m} (-1)^{j_{i}} \int_{-r}^{r} k_{i',\rho}(e^{y}) e^{\rho x} \varphi^{(j_{i})}(x) dx$$

$$= \int_{-r}^{r} k_{\rho}(e^{y}) e^{\rho x} \varphi(x) dx.$$

It follows that $Te\pi(G)$.

Suppose, now, that $Te\pi(G)$. Then, the set of distributions $H\equiv \{T(x+y+h)-T(x+h)/G(h),h\in [r,\infty),y\in [-r_1,r_1]\}$ is bounded in V. From a part of the proof of Theorem XXII, p. 51 in [4] or from a lemma proved in [6], p. 130 follows

LEMMA 1. If $t \in \pi(G)$, then for an interval $I_r = [-r,r]$ and a Ω , which is a relatively compact open neighbourhood of zero in R, there exists a m > 0, such that for every $\varphi, \psi \in \mathcal{EV}_{\Omega}^m$ the function $(T*\varphi*\psi)$ (x) is continuous for $x \in [-r,\infty)$ and

$$\lim_{h\to\infty} \left[\frac{T(t+y+h)-T(t+h)}{G(h)} *\phi(t)*\psi(t) \right](x) =$$

$$= k_{\rho}(e^{Y}) \left[e^{\rho t} *\phi(t)*\psi(t) \right](x) ;$$

this limit is uniform in xeI, yeI, , r'eR.

To bring to an end the proof of Proposition 4, let us take relation (VI, 6; 23) from [4]

(9)
$$T=\Delta^{2k} \star (\psi_{E} \star \gamma_{E} \star T) - 2\Delta^{k} \star (\gamma_{E} \star \xi \star T) + (\xi \star \xi \star T)$$

where E is a solution of the iterated Laplace equation $\Delta^k \text{E=}\delta \text{; } \nu, \xi \text{e} \nu_\Omega \text{. We have only to choose the number } k \text{ large enough so that } \gamma \text{E belongs to } \nu_R^m \text{ . If we denote by } \\ F_1 = \gamma \text{E} \star \gamma \text{E} \star \text{T}, \quad F_2 = \gamma \text{E} \star \xi \star \text{T} \quad \text{and by } F_3 = \xi \star \xi \star \text{T}, \quad \text{all the functions} \\ F_1, \quad i = 1, 2, 3, \quad \text{are of the from } F_1 = \text{T} \star \phi_1 \star \psi_1, \quad \text{where } \phi_1, \psi_1 \in \mathcal{V}_\Omega^m \text{ , } i = 1, 2, 3.$

By properties of the convolution we have:

$$\frac{F_{1}(y+h)-F_{1}(h)}{G(h)} = \left[\left(\frac{T(x+y+h)-T(x+h)}{G(h)} \right) * \varphi_{1}(x) * \psi_{1}(x) \right] (0)$$

and by Lemma 1 it follows that

$$\lim_{h \to \infty} \frac{F_{i}(y+h) - F_{i}(h)}{G(h)} = k_{\rho}(e^{y}) [e^{x} * \phi_{i}(x) * \psi_{i}(x)](0)$$
$$= k_{i,\rho}(e^{y}).$$

uniformly in yeI, .

Proposition 4 characterizes the class $\pi(G)$ as the class of distributions T given by the sum of functions F_i , $F_i(\ln y) \in \Pi_q$, where $g(t)=G(\ln t)$.

PROPOSITION 5. If $TE\pi(G)$ and UEE, then $T*UE\pi_O(G)$ if, in addition, $(U*e^{\rho X})(0)\neq 0$, then $T*UE\pi(G)$, as well.

<u>Proof.</u> If $Te\pi(G)$, then (T(x+y+h)-T(x+h))/G(h) converges in \mathcal{V} for every yeR. The convolution T*U, for a fixed U, is a continuous mapping $:\mathcal{V} \hookrightarrow \mathcal{V}$. By the properties of the convolution, we have:

$$\frac{(\mathbf{T} \star \mathbf{U}) (\mathbf{t} + \mathbf{y} + \mathbf{h}) - (\mathbf{T} \star \mathbf{U}) (\mathbf{t} + \mathbf{h})}{G(\mathbf{h})} = \left[\left\{ \frac{\mathbf{T} (\mathbf{x} + \mathbf{y} + \mathbf{h}) - \mathbf{T} (\mathbf{x} + \mathbf{h})}{G(\mathbf{h})} \right\} \star \mathbf{U}(\mathbf{x}) \right] (\mathbf{t})$$

and this converges for every y€R to:

$$k_{\rho}(e^{Y})(e^{\rho x} * U(x))(t) = (e^{\rho x} * U(x))(0)e^{\rho t}k_{\rho}(e^{Y})$$
.

COROLLARY. If $Te\pi(G)$, $\rho\neq 0$, then for every ke N, $D^kTe\pi(G)$, as well. It follows from the facts that $D^kT=\delta^{(k)}*T$ and $\delta^{(k)}*e^{\rho \cdot x}\neq 0$. This property of the class $\pi(G)$ is very important for applications to differential equations and to other convolution equations.

2. SOME COMMENTS

1. One can ask the question why we started from the "additive-argument version" in defining the class $\pi(G)$? To answer this question, we have to remark that the membership to the class Π_g is a local property in the sense: If $f_1(t) = f_2(t)$, $t > t_0$ and if $f_1 \in \Pi_g$, then $f_2 \in \Pi_g$, as well. We have looked to find such a generalization of Π_g to keep that very natural property. The next proposition makes precise that the class $\pi(G)$ satisfies such a demand.

PROPOSITION 6. If for two distributions T_1 and T_2 we have $T_1 = T_2$ over an open interval (α, ∞) and T_1 belongs to $\pi(G)$, then T_2 belongs to $\pi(G)$, as well.

Proof. For a Φ we have $\langle T_1(x+y+h), \phi(x) \rangle = \langle T_1(x), \phi(x-y-h) \rangle$. Denote by $\psi(x) = \phi(x-y-h) \in \mathcal{D}$. If the supp $\phi \in [-r,r]$, then the supp $\psi \in [-r+y+h, r+y+h]$. We can find h_0 such that $-r-|y|+h>\alpha$, $h>h_0$. For such a $h_0< T_1(x+z+h)$, $\phi(x)>=\langle T_2(x+z+h), \phi(x) \rangle$ when $|z| \leq |y|$, $h>h_0$. Now, it is easy to prove that $T_2\notin \pi(G)$.

The opposite of the asertion of Proposition 6 is not true. That follows from

PROPOSITION 7. Suppose that G is of the form G(x)=L(x) (see remarks after Proposition 1) and that

$$\lim_{h\to\infty} \frac{T_1(x+h)-T_2(x+h)}{G(h)} = U \text{ in } v^*,$$

where U is a constant distribution. If $T_1e_{\pi}(G)$, then $T_2e_{\pi}(G)$, as well.

Proof. For x,y belonging to compact sets in R
we have the following relation:

$$\frac{T_{2}(x+y+h)-T_{2}(x+h)}{G(h)} = \frac{T_{2}(x+y+h)-T_{1}(x+y+h)}{G(h)} - \frac{G(y+h)}{G(h)} +$$

$$+\frac{T_1(x+h)-T_2(x+h)}{G(h)}+\frac{T_1(x+y+h)-T_1(x+h)}{G(h)}$$
.

The assertion of Proposition 7 follows directly from this relation.

REFERENCES

- [1] Bingham, N.H., Goldie, C.M. and Teugels, J.L., Regular variation, Combridge University Press, 1989.
- [2] Geluk, J.L. and de Haan, L., Regular variation, extensions and Tauberian theorems, CWI Tract 40, CWI Amsterdam, 1987.
- [3] Karamata, J., Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4, (1930), 35-53.
- [4] Schwartz, L., Théorie des distributions, T II, Hermann, Paris, 1951.
- [5] Seneta, E., Regularly Varying Functions, Springer Verlag, Berlin, 1976.
- [6] Stanković, B., A structural theorem for distributions having S-asymptotic, Publ. Inst. Math. (Beograd) (N.S.), T. 45 (59), (1989), 129-132.

REZIME

DE HAAN-OVA KLASA DISTRIBUCIJA

De Haan [2] je definisao i izučavao klasu Π_g funkcija koje predstavljaju striktnu potklasu Karamatinih regularno promenljivih funkcija [3]. Posebno se bavio klasom Π_g kada je g sporo promenljiva funkcija. Ta klasa ima veliku primenu u raznim oblastima matematike i u raznim oblastima njene primene (vidi[1] i [2]).

U ovom radu definisana je klasa distribucija $\pi(G)$ na sledeći način:

DEFINICIJA 1. Neka je G pozitivna i merljiva funkcija Distribucija TeV pripada klasi $\pi(G)$ tada i samo tada ako za svako φeV i svako y e R postoji granica definisana relacijom (3), gde je $S(\cdot,y)$ familija konstantnih distribucija, $S(\cdot,y)$ različita od konstante dok y prolazi skupom R.

Dokazane su razne osobine klase $\pi(G)$. Tako je pokazano da je $S(x,y)=c(e^{\rho y}-1)e^{\rho x}$, $\rho \in \mathbb{R}$; da svaka funkcija $f \in \Pi_g$ definiše regularnu distribuciju $\widetilde{F}(y)=f(e^y)$ koja pripada klasi $\pi(G)$, $G(y)=g(e^y)$. Lokalno integrabilna funkcija f ne mora pripadati klasi Π_g ako $\widetilde{F}(y)=f(e^y)$ pripada klasi $\pi(G)$. Okarakterisana je klasa $\pi(G)$ kao skup distribucija $T=\sum\limits_{i < m} D^i F_i$ gde $F_i(\ln y) \in \Pi_g$, $g(h)=G(\ln h)$. Konvolucija sa i $m \in \mathbb{R}$ preslikava $\pi(G)$ u $\pi(G)$ ako $(U \star e^{\rho x})$ $(0) \neq 0$. To je važna osobina za primenu jer $\delta^{(k)} \in \mathbb{R}$, pa izvodi preslikavaju $\pi(G)$ u $\pi(G)$ ako je $\rho \neq 0$. Najzad je pokazano da pripadanje klasi $\pi(G)$ je lokalna osobina.

Received by Editors October 3, 1989.