Univ. u Novom Sadu Zb. Rad. Prirod.—Mat. Fak. Ser. Mat. 19,1,109—117 (1989) REVIEW OF RESEARCH FACULTY OF SCIENCE MATHEMATICS SERIES

A NOTE ON α -REGULARITY AND COMPACTNESS

Ilija Kovačević

SE Institute for Applied Fundamental Disciplines, Faculty of Technical Sciences, Veljka Vlahovića 3, 21000 Novi Sad, Yugoslavia

ABSTRACT:

The aim of the paper is to study some properties of α -nearly compact (nearly compact), α -almost compact (almost compact) and compact sets (spaces) in topological spaces which are not Hausdorff or regular (almost regular). Some results concerning compactnessu are generalized.

1. PRELIMINARIES

Throughout the present paper, spaces will always mean topological spaces on which no sparation axioms are unless explicitly stated.

A subset of a spece X is regularly open (regularly closed) iff it is an interior (closure) of some closed (open) set or equivalently iff it is an interior (closure)

AMS Mathematics Subject Classification (1980): 54D10, 54D30 Key words and phrases: a-nearly compact, a almost compact, a-regular, a-almost regular, a-Hausdorff.

sure) of its own closure (interior), [1]. A space X is nearly compact iff every regularly open cover has a finite subcovering, [5].

A space X is almost compact iff for every open cover $\{U_i: i\in I\}$ there exists a finite subfamily I_o of I such that $X=U\{\overline{U}_i: i\in I_o\}$, [4].

A subset A of a space X is said to be α -nearly compact (N-closed) iff for every regularly open cover $u=\{u_i:i\in I\}$ of A there exists a finite subset I_O of I such that ACU $\{u_i:i\in I_O\}$, [6].

A subset A of a space X is said to be α -almost compact (H-closed) iff for every open cover $U = \{U_i : i \in I\}$ of A there exists a finite subset I_o of I such that $A \subset U\{\overline{U}_i : i \in I_o\}$, [4].

A subset A of a space X is α -Hausdorff iff any two points a,b of a space X, where as A and bex-A, there are disjoint open sets U and V containing a and b respectively, [3].

A subset A of a space X is α -regular (α -almost regular) iff for any ponit aCA and any open (regularly open) set U containing a there exists an open set V such that aeVaVaU or equivalently, for any closed (regularly closed) set F and any point xeA such that xeX\F, there exist disjoint open neighbourhoods of x and F respectively, [3], ([2]).

A space X is almost regular iff for any regularly closed set F and any point $x \notin F$, there exist disjoint open sets containing F and x respectively, [7].

2. SOME RESULTS

Theorem 2.1. If A is an α -regular and compact subset of a space X, then \overline{A} is compact.

Proof. Let

 $u = \{u_i : i \in I\}$

be any open covering of A. For each xCA, there exists an

open set $\mathbf{U}_{\mathbf{x}}$ containing \mathbf{x} . There exists an open set $\mathbf{V}_{\mathbf{x}}$ such that

$$x \subset V_x \subset V_x \subset V_x$$
.

Let

$$V = \{V_x : x \in A\}.$$

There exists a finite points x_1, x_2, \dots, x_n in A such that

$$Ae \bigcup_{i=1}^{n} V_{x_i}$$

Thus we have

Hence A is compact.

Theorem 2.2. If A is an α -almost regular and α -nearly compact subset of a space X, then X is α -nearly compact.

<u>Proof.</u> It is similar to the proof of Theorem 2.1. The closure of an α -regular and compact (α -almost regular and α -nearly compact) subset is not always α -regular (α -almost regular). The following example serves the purpose. Example 2.1. Let

$$X=\{a,b,c,a_{i}:i=1,2,...\}$$

Let

Let each point a be isolated. Let a point c be isolated. Let the fundamental system of neighbourhoods of a be the set

$$\{v^{n}(a): n=1,2,...\}$$

where

$$v^{n}(a) = \{a, a_{i} : i > n \}.$$

Let the fundamental system of neighbourhoods of b be the set

$$\{u^{n}(b):n=1,2,...\},\$$

where

$$u^{n}(b)=v^{n}(a) \cup \{b,c\}.$$

The set A is α-regular and compact.

$$\overline{A} = \{a,b,a_i: i=1,2,...\}$$

is compact, but is not α -almost regular (hence \overline{A} is not α -regular) (for any regularly open neighbourhood $V^n(a)$ of \overline{A} of \overline{A} of \overline{A} \overline{A} of \overline{A} \overline{A}

The closure of a regular and compact subset is not always compact, as we can see from the following example.

Example 2.2. Let

$$X = \{a, a_i : i = 1, 2, ...\}$$

Let a point a be isolated. For each $\mathbf{a_i}$ let the fundamental system of neighbourhoods be the set

The set

$$A=\{a\}$$

is regular and compact, but $\overline{A}=x$ is not compact (A is not α -regular).

The following example shows that there is a dense α -regular (α -almost regular) and compact (α -nearly compact) subset of a space X, which is not regular (almost regular)

Example 2.3. Let X be a space in example 2.1. Let

$$A = \{b,c,a_i: i=1,2,...\}$$

A is a dense α -regular and compact subset of a spece X. X is not almost regular (regular) at a, hence X is not almost regular (regular).

Theorem 2.3. Every $\alpha\text{-regular}$ $\alpha\text{-almost}$ compact is compact.

be any open cover of an α -regular α -almost compact subset A. For each xeA there exists an i(x)eI such that xeU_{1(x)}. There exists an open set V_x such that

xev_xc
$$\overline{v}_{x}$$
c $v_{i(x)}$.

Let

$$V = \{V_x : x \in A\}.$$

Since V is an open cover of A, there exists a finite subfamily

$$\{v_{x_{j}}: j=1, 2, ..., n\}$$

such that

$$A \subset \bigcup_{j=1}^{n} \overline{V}_{x_{j}}.$$

Then,

$$\{U_{i(x_i)}: j=1,2,...,n\}$$

is a finite subcover of U, hence A is compact.

I. Kovačević

 $\mbox{ Theorem 2.4. Every α-almost regular α-almost } \\ \mbox{compact is α-nearly compact.}$

Proof. It is similar to the proof of Theorem
2.3.

 $\underline{\text{Proof}}$. Every $\alpha\text{-nearly compact is }\alpha\text{-almost compact.}$

Theorem 2.5. If in a space X there exists a dense α -regular (α -almost regular) compact (α -nearly compact), then X is compact (nearly compact).

<u>Proof.</u> The closure of o-regular compact (o-almost regular o-nearly compact) is compact (o-nearly compact).

Theorem 2.6. Let A be any dense α -regular subset of a space X such that every open cover of A is an open cover of X. X is almost compact iff it is compact.

Proof. If X is compact, then X is almost compact
(every compact is almost compact). Let X be almost compact.
Let

be any open covering of X. For each point xeA there exists i(x)eI such that $xeU_{i(x)}$. Since A is α -regular, there exists an open set V_x such that

$$xev_x \subset \overline{V}_x \subset u_{i(x)}$$
.

Let

$$V = \{V_x : x \in A\}$$
.

V is an open cover of A i.e. of X. Since X is almost compact there exists a finite subfamily

such that

$$x = \bigcup_{j=1}^{n} \overline{V}_{x_{j}}$$

Then,

$$\{v_{i(x_{j})}: j=1,2,...,n\}$$

is a finite subcovering of U, hence X is compact. (A is compact).

Theorem 2.7. Let A be any dense α -almost regular subset of a space X such that every regularly open cover of A is a regularly open cover of X. X is almost compact iff it is nearly compact.

<u>Proof.</u> It is similar to the proof of Theorem 2.6. In Theorem 2.6. we assumed that every open cover of a dense α-regular subset is an open cover of X. This assumption cannot be dropped, as can be seen from the following example.

Example 2.4. Let

$$X=\{a_{ij},a_{i},a:i,j=1,2,...\}$$

Let each point a_{ij} be isolated. Let the fundamental system of neighbourhoods of a_i be the set

$$\{u^{n}(a_{i}): n=1,2,...\},\$$

where

$$U^{n}(a_{i}) = \{a_{i}, a_{ij} : j > n\}.$$

Let the fundamental system of neighbourhoods of a be the set

$$\{v^n(a): n=1,2,...\},$$

where

$$V^{n}(a) = \{a, a_{ij} : i > n, j > n\}.$$

X is a Hausdorff space which is not regular at a point a,
hence X is not compact (every Hausdorff compact is regular).
X is almost compact.
Let

$$A=\{a_{i,i},a_{i}\}$$
.

A is an open α -regular subset of X. A is a dense subset. A is not compact (A=X is not compact). We know that every regular almost compact is compact.

as in Theorem 2.7., which is not almost regular.

Example 2.3. shows that there exists a space with properties as in Theorem 2.6., which is not regular.

This example shows that there exists a pace with properties

REFERENCES

- [1] S.P.Arya, A note on nearly paracompact spaces, Matematički vesnik 8(23) 1971., 113-115.
- [2] I. Kovačević, On nearly and almost paracompacteness Ann.

 De L'Soc. Sci. Bruxelles T 102(1988) 27-40.
- [3] I.Kovačević, Subsets and paracompactness, Zbornik radova Prirodno-matematičkog fakulteta, Univerziteta u Novom Sadu, Ser. Math. 14(2) 1989, 74-87.

- [4] M.K.Singal and A.R.Singal, On almost m-compact, spaces,
 Ann. De La Soc. Sci. De Bruxelles 82, 1968., 233-242.
- [5] M.K.Singal and A.Mathur, On nearly compact spaces, Boll. Un.Mat.Ital. (4)6,1969., 702-710.
- [6] M. K. Singal And A. Mathur, On nearly compact spaces--II, Boll. Un.Mat.Ital.(4) 9, 1974., 670-678.
- [7] M. K. Singal and S. P. Arya, On nearly paracompact spaces, Matematički vesnik 6 (21) 1969., 3-16.

REZIME

¬ REGULARNOST I KOMPAKTABILNOST

U radu se ispituju neke osobine α -regularnih odnosno α -skoro regularnih skupova povezanih sa kompaktnoš-ću. Dokazuje se ekvivalentnost skore kompaktnosti sa kompaktnošću (blizu kompaktnošću) u prostorima koji nisu regularni (skoro regularni).

Received by the editors November 24, 1987.