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Abstract

Betti numbers are related to the topology of the manifold. The one-
dimensional Betti number is equal to the number of linearly independent
harmonic vector fields on the manifold. Every harmonic vector fleld is a
gradlent vector fleld. Using that fact, we are getting some results about

covariant derivative of a harmonlc vector field.
Introduction

Let us consider a transformation of the metric tensor on an n-dimensio-

nal Rlemannlan space M

(0.1) g =€ g,-

Then, the coefficlents of their Riemannian connections are related

(0.2) {pb=dp+np +ns -nlg

)

k
where { } are coefficients of the connection attached to metric g and { } -
coefficients of connection attached to the metric g. Ly is a gradient
vector field and n = 2%
J axJ
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Since this transformation is an "angle preserving" transformation, we
call it a conformal transformation.
Under a conformal transformation of the metric, the curvature tensor

will be transformed into

(0.3)
where

= _ 1 ] . J =
wlj vl"] LA AR AL v gy

but the tensor

t _ p 1 Lz _ sly Bl By
- Nt A (ak le 51R1u+ ngR ngRl)

(0.4) c
R 1 1
(n-1D(n-2) (ak &, algjk)
will be invariant.
Conversely, the tensor (0.4) will be an invariant of a transformation
(0.2) if and only if LN is a gradient vector field.

1f the vector LS in expression (0.2) satisfies the ccrdition
(0.5) an = +tpg

(p is an arbltrary function), the invariant tensor of such a transformation
will be
(0.8) EAE S L LR L

Ik1 1 m{n-1y ‘ k") 1°)x
Condition (0.5) is called a concircularity condition. Tensor (0.4} is called
the conformal curvature tensor. Tensor (0.8} is called the concircular
curvature tensor, because transformation (0.2) under condition (0.5) sends a
geodesic circle into a geodesic circle. The symbols V and V denote a
covariant differentiation with respect to connections { } and {—}.

A vector field is called a harmonic vector fleld if it satisfiles

{0.7) Vv -Vv =0
k1 Lok
and
(0.8) v =0; v o= g% .
E 3 &

It 1s well krown that the number of linearly independent harmonic vector

fields in the manifold is equal to its one-dimenslonal Betti number. If the
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one-dimensional Bettl number of the manifold 18 non-zero, then its Rlcci
curvature form cannot be a positive definite. If the Rlccl curvature form in
the direction of harmonic vector field vanishes, such a vector fleld is a

parallel vector field.

1. A concircular transformation of the Riemannian connection with a

harmonic generator

Suppose that the Riemannlan manifold M has non-zero one-dimensional
Bettl number and the vector fleld n is one of its harmonlc vector flelds.
Then, it is a gradient vector flield, and for the curvature tensor of the

connection (0.2),¢we will get the relation

(1.1 Rlel = Rl]kl * glkwlj - gllwkl * gjlwkl - gjkwll

which is, 1in fact, relatlon (0.3) after lowering the superscript 1.
Contracting (1.1) by g”, we get

11

I

(1.2) = R“‘ + (2v-n)\lJIlJ - g”w“g

Ik
Transvecting (1.2) by g'“l we, get
{1.3) R=1r+ 2(1-n)|[1kk,

From (1.1), (1.2) and (1.3) there ls the lnvariance of the tensor
D.4).

Now, the vector LA is harmonic and

1.4} ko gk = s =, 1 s _ n-2 s
(1.2} wk g \0” v n M+ 5w 5 M.
Thern
(1.5) R=R- (;r.'—l)(n—z)ugltE
and

B - _ - _ -]

(1.8) RJk = R;k (n 2)(Vk7[J rtknJ + mn g")

or
R = - (n- -2 o
RJk = R” (n 2)\(JmJ 5~ T ng .

Suppose, now, that the vector nl satisfles the concircularity condition
(0.5). Then,
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1 s
(1.7) ¥, = (p+5mm )g" .

k
where p is the arbitrary function from the concircularity condition (0.5).
Then,

“(1.8)

- n
lekl— Rlel + (20 + nsn )(glkglj - gllgkj)
B - - - a8
(1.9) RJk = RJk (n-1)(2p + n )ng
and
(1.10) R=R- n(n-1)(2p + n’n’)

As we have supposed earlier, the vector n is a harmonic vector field, and

according to (0.8) and (0.5)

nn
a
P =" n
and
2p + W = n2 n .
a n k-]
Then, (1.B) can be transformed into
(1.8") R = R + 20 g g - g 8)
1)kl 1)kl n 8 1k°1} 11°§” °
(1.9) can be transformed into
(1.9") R =R _ - (n=1)(n-2) nn'g |,
)k 1k n s 1k
and (1.10) can be transformed into
(1.10%) R=0- (n—1)(n—2)usn° .

As the generator of cennectlon (0.2) is a gradient z2nd catisfles the
concircularity condlition, then the conclrcular curvature tensor of
connection {0.2) has to be equal to the concircular curvature tensor of the
Levi-Civita connection.

Using the formulae (1.8°), (1.9') and (1.10°), we can express the

covarliant components of the conclircular curvature tensor Z

5 - n-2 s _ _ _R _ :
lekl ; Rlel M (g!kglj gllgkj) Elﬁ:ij-(glkglj gllgkj)

n-2 9 _ n-2 L] -
ML (gikg!j gi!gkj) N Z!Jkl +2 LT (glkglj gllgkj)
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As the concircular curvature tensor 1is invariant under concircular
transformations, we get

n-2 B
o et (glkglj - gllgij)

or, If we presume dim M > 2,
(1.11) . nn =0.
So, we have proved

Theorem 1. [f the one-dimenslonal Bettl number of the differentiable
manifold M of a positive definite metric ls non-zero, every harmonic vector
field can serve as a generator of a connection of type (0.2), but none of

these transformations lIs concircular.

Corollary 1. On an n-dimensional differentiable manifold M with a positive
definite metric and a positlve one-dimenslonal Betti number Bl, there does

not exlst any harmonlc vector fleld which satisfles conditlon (0.5).

Corollary 2. If a harmonic vector field on a differentiable manifold M
satisfies condition (0.5),its metric form cannot be a positive definite.
Such a space can be an Elnstein space If and only If such a harmonlc vector

fleld is a null-parailel vector field.

2. Properties of a seml-symmetric metric connection with a harmonic

generator
For a semi-symmetric metric connection

v 1 _ 1
A = {Jk} ML

there hold

Proposition 1. a) The conformal curvature tensor of connection (2.1) Is
equal to the conformal curvature tensor of the Levi-Civita connection.

b) If the vector L satisfles condltlon (0.5), the projective
curvature tensor of connection (2.1) Is equal to the projective curvature
tensor of the Levi-Civita connection and the conclircular curvalure tensor of
connection (2.1) is equal to the conclrcular curvature tensor of the
levi-Civita connection.

Siace, according to Corollary 1, no harmonic vector fleld can satisfy

condition (0.5), we have
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Corollary 3. On a dlfferentiable manifold M, with a posiltive definlte metric
form, if the vector n in expression (2.1) 1is harmonic, then connection
(2.1) has neither geodesic lines nor geodesic circles in common with the

Levi-Clivita connection.

3. Covariant derivative of a harmonic vector field

We have made it clear in 1. that the covariant derivative of a harmonic
vector fleld on a differentiable manifold cannot be of the form (0.5). Now,
we want to find, if it is possible, a totally general form of an expression
which could represent a covariant derivative of a harmonic vector fleid.

‘Nou, we know that if the vector nl is harmonic, the conclrcular
curvature tensor of connection (0.3) is not equal to the concircular

curvature tensor of the Levi-Civita connection. We shall consider the

tensor
.
(3.1) D =Z -2
13kl 1kl 1)kl
Transvecting (3.1) by gll. we get .
' 11 N -5 . R-R
(3.2) g Dl}kl = Djk = Rjk RJk - gJk

Using the formulae (1.5) and (1.6), we can easily get

- B s (n-1)(n-2) s
D}k =-(n 2)(anj "u"j LA )gjk t g gjk
And finally
_ _1 s - _l_
(3.3) anj = nknj 7 TN gJk =3 DJk

We can get even more properties. For example,
p*=F -RF -(R-R =0
s - L

Finally, we have the next

Proposition 2. A vector fleld n, is harmonic if and only if

K - plod
(3.4) g Vkvjnl RJn
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Now, we shall differentiate (3.3) one more time:

99rn =nVn +uVu-lg (uVu'+n°Vu)-LV'D =
k) k1) IR} n ik et I's n-

k 2 1)k
1 1 1 1
ThY n ™8y T 2 "kDIJ * TN T ™8k T 2 "JDu N
1 s 1 1 1 3
n gjk(nsnlu TR b+ % e ™ z " ls)
1 -
n-2 VIDJK N
= -1 21 -2 2
- 2nkulu_) n "k"gu n '"'Jgu n m’lgu * 2 ™ &y
4]
2 [ 1 1 1
YRy "t Dlag_]k T n2 "kDU " 2 "JDu ) VIDJk
After transvecting by g“‘. we get
(__n—l)(n—z) m. - -1- n Dk - L ‘"‘V D =R u‘
nz 1 n ki n-2 1)k 1)
Transvecting again by « , we get
(n-1}(n-2) =2 1 ab 1 J Ik _ 1)
(3.5) ——p——-_D mn T e V|D“ Run n

n

We have just proved

Theorem 2. On a Riemannian marifold with an indefinite Riccl form and a
positive definite metric, the covariant derivative of a harmonic vector
field is of the form (3.3). DJk is a non-zero symmetric tensor field which

is not proportional to the metric tensor and wich satisfles
(1) D=0
8

(2) (3.5), where n denotes n-ns
(3) (n-1)(n-2) 2 -1p 2o

2 n ab

1 J ik
- — <
. s " g V|D" 0

taj g“‘(leJll -v,D,) =0

§
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Rezime

NOTA O KOVARTJANTNIM IZVODIMA HARMONIJSKOG VEKTORSKOG POLJA
U RIMANOVOJ MNOGOSTRUKOSTI

U radu Je lzveden najopstijl oblik kovarl jantnog lzvoda harmonl jskog
vektorskog polja. Dokazano je da harmonl jskl vektor ne moze zadovol jitl
uslov koncirkularnostl ako Je metrika pozltlvno definitna. Ako Je metrlka
indefinitna, potprostor generlsan harmonl jskim vektorima je Ajnstajnov ako i

samo ako Je svakl harmoni jskl vektor nula-paralelno vektorsko pol je.
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