Univ. u Novom Sadu Zb.Rad. Prirod.-Mat.Fak. Ser.Mat. 19,2, 53-60 (1989) REVIEW OF RESEARCH FACULTY OF SCIENCE MATHEMATICS SERIES

COUNTING, GENERATION AND RECOGNITION OF S-SEQUENCES

Ratko Tošić and Ivica Bošnjak

Institute of Mathematics, Dr Ilije Duričića 4, 21000 Novi Sad, Yugoslavia

Abstract

. 15

S-words (also called S-sequences) are of importance in the theory of n-ary structures. In this paper it is proved that the number of different S-words of the length n is the (n-1)-th Catalan number. A simple way of generating all the different S-words of the length n is given. Also an algorithm is given for the recognition of S-words. The complexity of this algorithm is O(n), where n is the length of the word.

1. Some definitions and notation

The following scheme will be called the S-scheme:

0

11

221, 122

3321, 2331, 2222, 2222, 1332, 1233

It consists of the sequences (words) of non-negative integers generated in the following way. Let a be a word in the i-th row of the S-scheme. Replacing a number k of the word a by the subword (k+1)(k+1) (we denote such a replacement by $k \rightarrow (k+1)(k+1)$), we obtain a word in the (i+1)-th row of the S-scheme. Since the only word of the first row is 0, we conclude that all

AMS Mathematics Subject Classification: (1980): 05A15. Key words and phrases: S-word, Catalan numbers. the words of the *i*-th row have the same length *i*. In such a way each word of the *i*-th row produces *i* words of the (*i*+1)-th row. So, the number of words in the *i*-th row is *i*! They are not all different, however. For example, the word 2222 appears twice in the fourth row.

We call the words of the S-scheme S-words or S-sequences.

Let α be an integer. By replacing each number k in the S-scheme with $k+\alpha$, we obtain the so-called (S+ α)-scheme. For example,

2 33

443, 344

5543, 4553, 4444, 4444, 3554, 3455

is an (S+2)-scheme.

A word from the n-th row of the S-scheme has a length n. We also say that it is an S-(n) word.

In [1] some properties of S-words are examined. It is proved, for example, that in the n-th row of the S-scheme there are not two words $a = a_1 a_2 \dots a_n$ and $b = b_1 b_2 \dots b_n$ such that $a_i < b_i$ for each $i = 1, 2, \dots n$. The problem is posed by Cupona. The investigation of S-words was inspired by their applications in the theory of n-ary structures.

We define the weight w(a) of an S-word a=a ... a in the following way:

$$w(a) = \sum_{i=1}^{n} a_{i} .$$

In [1] it is also proved that for an S-(n) word the maximal weigth is

$$\binom{n+1}{2}-1$$

and the minimal weigth is

$$2(n-2) + n [\log n],$$

where $\log n = \log_2 n$ and [x] is the greatest integer $\leq x$.

We shall also use the following notation:

a - the length of the word a;

 x_k^a - the number of appearances of the number k in the word a;

 y_k^a - the number of applications of the replacement $k-1 \longrightarrow kk$ during the process of producing the word a.

2. Counting of S-(n) words

First, we shall prove an auxiliary statement.

Theorem 1. If a and b are two S-words such that $\|a\| < \|b\|$, then there is a non-negative integer k such that $x_k^a > x_k^b$.

Proof. For an arbitrary S-word c we have:

$$|c| = 1 + \sum_{i \ge 1} y_i^c$$

and

(1)
$$x_{j}^{c} = 2y_{j}^{c} - y_{j+1}^{c}$$
,

for j=1,2,...

If a < b, then

$$(2) \qquad \qquad \sum_{i \geq 1} y_i^a < \sum_{i \geq 1} y_i^b .$$

Suppose that, for each i, $y_i^a \ge y_i^b$.

Then,

$$\sum_{i\geq 1} y_i^a \geq \sum_{i\geq 1} y_i^b.$$

which is in contradiction with (2).

Hence, it follows that for some $k \ge 0$,

(3)
$$y_{k+1}^a < y_{k+1}^b$$
.

If $y_1^a < y_1^b$, then $x_0^a > x_0^b$. Otherwise, take the least such integer $k \ge 1$. Then,

$$y_{k}^{a} \geq y_{k}^{b}.$$

90

Now, from (1) it follows that

$$x_{k}^{a} = 2y_{k}^{a} - y_{k+1}^{a}$$
, $x_{k}^{b} = 2y_{k}^{b} - y_{k+1}^{b}$,

and taking into account (3) and (4) we obtain

$$x_{L}^{0} > x_{L}^{0}$$
.

Corollary. If $a = a_1 a_2 \dots a_n$ is an S-word, then for any $m = 1, 2, \dots, n-1$, $a' = a_1 a_2 \dots a_n$ is not an S-word.

Theorem 2. The number of different S-(n)words is

$$\frac{1}{n} \left(\begin{array}{c} 2n - 2 \\ n - 1 \end{array} \right) .$$

Proof. Denote the number of different S-(n) words by f(n). It is clear that at the same time f(n) is the number of different $(S+\alpha)-(n)$ words, for any integer α .

Let a be an arbitrary S-(n) word. This word can be represented as a concatenation of some two (S+1)-words b and c, i.e. a=bc. From the Corollary of Theorem 1, it follows that such a representation is unique. On the other hand, it is clear that the concatenation of any two (S+1)-words is an S-word.

Hence, it follows that the number f(n) satisfies the recurrence relation

$$f(n) = \sum_{k=1}^{n-1} f(k) f(n-k).$$

Since obviously f(1) = 1, the solution of this recurrence relation is the very well known series of Catalan numbers (see e.g. [2]), i.e.

(5)
$$f(n) = C_{n-1} = \frac{1}{n} \left(\frac{2n-2}{n-1} \right).$$

Now, we are going to determine the number of S-word of special types.

Theorem 3. The number of different S-(n)words of maximal weight is 2^{n-1} , for $n \ge 2$.

Proof. An S-(n) word has the maximal weight iff in the process of generation of this word we apply each replacement to the maximal number. This means that at the k-th step a number k-1 will be replaced be kk. In such a word, the maximal number always appears exactly twice in two adjacent places. Hence, there are two possibilities at each step, except at the first one when we have only one possibility: $0 \to 11$. It follows that in the n-th row of the S-scheme we obtain 2^{n-2} words of maximal weight. They are all different. Indeed, it is obvious for n=2. Suppose that it is true for n=k. In each S-(k) word the maximal element appears in exactly two adjacent places. Now, any two S-(k+1) words obtained from two different S-(k) words of maximal weight are obviously different. On the other hand, two S-(k+1) words of maximal weight obtained from the same S-(k) word of maximal weight differ in places in which the first maximal numbers appear. 0

Theorem 4. The number of different S-(n) words of minimal weighh is

$$\left[\begin{array}{c} 2 & [\log n] \\ n - 2 & [\log n] \end{array}\right],$$

for $n \ge 1$.

Proof. It is obvious that for $n=2^k$ ($k \in N$), the only S-(n) word of minimal weight is of the form

$$(6) kk...k.$$

So, the number of such words is

$$1 = \begin{bmatrix} 2^k \\ 2^{k-2^k} \end{bmatrix} = \begin{bmatrix} 2 & [\log n] \\ n-2 & [\log n] \end{bmatrix}.$$

Now, suppose that $n = 2^k r$, where $1 \le r < 2^k$. Then, any S-(n) word of minimal weight has $2^k - r$ letters (numbers) k and $2r = 2(n-2^k)$ letters (k+1). Such a word is obtained from word (6) using $r = n-2^k$ replacements of the form $k \to (k+1)(k+1)$. A choice of r letters k to be replaced can be made in

$$i^{k} \qquad \left[\begin{array}{c} 2^{k} \\ r \end{array} \right] = \left[\begin{array}{c} 2^{k} \\ n-2^{k} \end{array} \right] = \left[\begin{array}{c} 2 \left[\log n \right] \\ n-2 \left[\log n \right] \end{array} \right]$$

ways. Hence follows the statement. o

3. Recognition of S-words

The series 1, 1, 2, 5, 14, 42, 132,... i.e. $C_n = \frac{1}{n+1} \binom{2n}{n}$, for n=0,1,2,... occurs very often in counting problems. Some form of Catalan numbers appears every time we find a recurrence relationship of type (5). This series appears also as the solution of the following combinatorial problem [2].

We define an C-sequence as a sequence of integers $c_1 c_2 \dots c_n$, such that

$$1 \le c_1 \le c_2 \le \ldots \le c_n$$

and

(8)
$$c_1 \le 1, c_2 \le 2, \ldots, c_n \le n$$
.

It is very well known that the number of C-sequences of length n is

$$C_{\mathbf{n}} = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix} .$$

Now, we are going to establish a bijection between the set of all S-(n+1) words and the set of all the G-sequences of length n.

Let $c = c_1 c_2 \dots c_n$ be a *C*-sequence. Then, starting form the S-word 0, we can generate an S-word $a = a_1 a_2 \dots a_{n+1}$ in n steps as follows. The *i*-th step consists in replacing the c_1 -th letter of the S-word. Condition (8) guaranties the possibility of corresponding replacements.

Example. The S-word corresponding to the C-sequence c=113346 is generated in the following way:

<u>0</u>

11

221

2222

22332

223442

2234433 .

In the above example we first replace the first letter 0 by $11^{\circ}(c_1=1)$, then the first letter 1 of word 11 by 22 $(c_2=1)$, in the third step we replace the third letter 1 of word 221 by 22 obtaining the S-word 2222 etc.

The letters of a C-word can be considered as the sequence of instruction for the generation of the corresponding S-word. Instruction c_i means that the i-th replacement is applied to the i-th letter of the S-word.

We say that in this way an S-word is generated from left to right.

It is clear that different S-words correspond to different C-sequences. Since the number of different S-(n+1) words is the same (C_n) as the number of different C-sequences of length n, it follows that each S-word can be generated from left to right uniquely.

This unique way of generation enables us to consturct an algorithm for recognizing any S-(n) word in at most n-1 steps.

The recognition algorithm for S-words

Let $a=a_1a_2...a_n$ be a sequence of non-negative integers $(n \ge 2)$. Starting from the S-word 0, we first apply a_1 replacements of the first letter. In this way we obtain an S-word $a'=a_1a_2'...a_{a_1+1}'$.

If a'=a, we conclude that a is an S-word. If $a_1+1>n$ or $a_1+1=n$ and $a'\neq a$, then a is not an S-word.

If $n > a_1 + 1$, we look for the first i such that $a_1 * a_1'$. Such an i exists according to the Corollary of Theorem 1.

Now, if $a_i' > a_i$, this means that a is not an S-word. If $a_i' < a_i$, we apply $a_i - a_i'$ times the replacement of the *i*-th letter. In this way, we obtain a new S-word

$$a'' = a_1 a_2 \dots a_1 a''_{1+1} \dots a''_{a_1+a_1-a'_1}$$

If, continuing in this way, after n-1 replacements we obtain the word a, this means that a is an S-word. Otherwise, after at most n-1 steps, we obtain a word $b = b_1 b_2 \dots b_m$, such that either

m < n and b is a prefix of a

or

for some $j \in \{1, 2, ..., m\}$, $a_i = b_i$ if i < j and $a_j < b_j$.

In that case we conclude that a is not an S-word.

References

- 1. A. Samardžijski, R. Tosic, S. Markovski: Slobodni (1,2)-grupoidi
- D.I.A. Cohen: Basic techniques of combinatorial theory, John Wiley and Sons 1978.

Rezime

PREBROJANJE, GENERISANJE I PREPOZNAVANJE S-REČI

S-reči (S-nizovi) nalaze primenu u teoriji n-arnih struktura. U ovom radu dokazano je da je broj različitih S-reči dužine n jednak (n-1)-om broju Katalana. Dat je jedan postupak za generisanje svih različitih S-reči dužine n. Dat je, takođe, jedan algoritam složenosti O(n) za prepoznavanje S-reči dužine n.

Received by the editors December 23, 1987.