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Abgtract

Quasilinear singularly perturbed boundary value problems are solved
numericaily by using finite - difference schemes on special non-equidistant
meshes. The meshes are generated by sultable functlons which redistribute
equidistant points. Two simlilar approaches to mesh generation are compared.
"Uniform"” convergence s proved for two special types of problems. Numerical

results lilustrate efficlency of the methods.
1. Introduction

We consider the followlng singularly perturbed boundary value probiem:

(1.1) Tu:= ~eu” + (u)u’ + (x,u) =0, xe I = (0,1},
(1.2) Ru:=(u(0),u(1)) = (Uo'ux) ,
where ' = d/dx and € is u small parameter, ¢ € (0,1] (usually £ << 1). We

assume:
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{1.3) bec'® ., cec'(IxR,

(1.4} c“(x.u) 2c> , xel,ueR.

Then there exist numbers i, u, such that & > u and:
(1.5) o(x,u) sO0=c(x,u) , xel,
(1.6) 'usujsii,j=o,1,

and since the operator (T,R) is Iinverse monotone, theré exists a unique
solution U, to the problem (1.1), (1.2), see {10], {11}. Moreover, for
X € I we have

uc(x) € W:= ll._l_.al .
and

' . u € CS(I) .

It is well known (see [4], [14], for instance) that u, may have one or
more boundary or/and interior layers. Our aim is to solve (1.1), (1.2)
numerically by using finlte-difference schemes on special non-equidistant
meshes. The meshe& should be dense in the layers. On one hand this will give
us a high percentage of numerical values in the regions where uc changes
abruptly. On the other hand, we can prove a sort of uniform convergence
(il.e. convergence uniform in €) of the numerical solution towards u.
provided some additional informatlon about bahaviour of uc be avallable.

Let us give some further detalils about our results and let us introduce

some notation. First of all, we shall use (1.1) in the conservation form:

(1.7) Tu = - gu" + f(W)’ + c(x,u) =0

where
t‘u(u) = b{u) .
We shall consider two different, but similar, ways of introducing non-
~equidistant meshes. We refer to them as direct and indirect approaches. In

the direct approach we discretize (1.7) on some non-equidistant mesh Ih with *
the mesh points:

0=x<x<...<x=1, ne€N.
(] 1 n

We shall conslder meshes generated by sultable functions A, l.e.:
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(1.8) xl = R(tl) . ti= ih , I=0,1,...,n,
where h=1/n and A is sufficlently smooth function (at least from CI(I)L
whlch usually depends on € and satisfies

(1.9) A'(t) >0, tel; A(s)=s, s=0,1

In the Indirect approach we Introduce a new independent variable t by
x=A(t) and transform (1.7). Then the transformed problem is discretized on
equidistant mesh Th with mesh points tt' We use the notatlon (1.8) In this
approach as well and assume that A has the same properties as above.

Let
i=1,2,...,n,

"
L}

x
1

]

h

. (h‘ + h )72, i=1,2,...,n1,

1+1

and let LA AN etc. denote arbltrary mesh functions on Ih\40.1} (or

T,\0,1}) which will be ldentified with R""' - column vectors. Thus,

= T = = —
LA [wl'wé' wn_l] . (w‘. LA i=1,2,...,n-1).
By wi A we shall denote the numerlcal solutlon with components wE “which
approximate ue(xl). Let
u = [u(x), u(x) u (x.- )].r
€,h L A Y )

Let |-] and [-] denote usual vector (matrix) norms in RPIRmU Y.
[ 1

Define |-{ :
n-1

Iwhlh = E Bnlwnl = lH“ﬁ't '
1=1

where H ='dlag(ﬁl. Fz""' En-x)' The norm |-} is the standard L' discrete

norm on non-equidestant meshes, cf. [1l. The corresponding meilrix norm is:

(1.10) ~ 141, = Jran’"y,

where 4 € RV

In both approaches we prove
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=8 h,

(1.11) |vc'h —u‘:’hlh e

where Hc stands for any positive constant which 1s independent 91‘ h (but may
depend on €). We can prove (1.11) easily since we use stable discrete
operators (Engquist ~ Osher and Lax - Friedrichs schemes, in particular).
For instance, 1In the direct approach we prove the following stabllity
inequality:

(1.12) |wh - vh|h = c_!|I!'h|-'h ~T

hvhlh
where T is a discrete operator corresponding to T from (1.7), Th:Rn_l—>R"-l.
A similar result holds in the case of the indirect approach, as well.

The inequality (1.11) shows the linear discrete Llconvergence of the
numerical solution to the exact solution. The convergence is by no means
uniform in €: a constant Hc is involved and even the norm ||h depends on €
if h"s depend on it (which is the case when the mesh Is dense in the layers
for mll values of c¢). We can’t avold both causes of the non - uniformity and
our alm 1s to use a special mesh (l.e. a special functlon A) to get

(1.13) I+

-u | s #h,
€,h e, hln

where by M we denote any positive constant which is independent of h and e.
Although we use ||h which depends on €, we shall refer to (1.13) as to the
uniform convergence. Of course, it is not easy to obtaln (1.13). We have to
prove that the norm ||h of the consistency error of the discrete operator
1s bounded by Mh. This can be done only if we have sufficlently sharp
estimates of the derlvatives of uc (which occur in the consistency error)
and If we use an appropriate function A which condenses the mesh in the
layers. Essentially, any part of A which maps the mesh points into a layer
behaves like inverse function of the corresponding boundary/interior layer
functlion. Then, such parts are smoothly connected by appropriate
polynomials.
let us now introduce some more notation. Let

e = I1,1,....117er™",

v = {whe Rn-ll ue S w = ﬁ'eh} .

The inequallity slgn in R""? should be understood componentWise.
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Finally, let g: R? - R, g € 010?3 . The following properties of g
will be of interest:

(1.14) gv(u.v) =02 g“(u,v) , u,ver,

(1.15) guu) =M(u) , uelW,

(1.18) |gu(u1,v) - gu(uz,v)l < G|ul - uz| »ou,u,v e WV,
(1.17) ~|gv(u,vl) - 3;(“-V2)| < G|v1 - v2| A Vv,

with some G = 0. The function g will be used for discretization of the
transport term in (1.7), e.g. in the direct approach:

(w0 (x) = [sutx, ). ulx)) - sutx). utx, )4,
cf. [11, [11-131.

The paper consists of 5 sections. After the Introduction, !n Section 2
we consider the approach of direct discretization. First we prove the
stability (1.12). This is a well known result for the class of schemes which
we consider (cf. [1]), but we give different and simpler proof which uses
the techniques of M - functions, see [3), ([11-13]. Then we consider the
consistency error and derive conditions on A which imply (1.13). However,
from these conditions it is not easy to see how to choose A. The indirect
approach, which u; consider in Section 3, glives more information about the
cholce of A. Section 3 contains the analysis of stability and consistency,
similar to Secilon 2. In Section 4 we consider two special typeE of problem
(1.1), (1.2), (a non~turning point problem and a boundary shock problem),
which enables us to prove (1.13). A closer attention is kept on the direct
approach, since these problems have already been solved numerically ln (23]
and [24) by the indirect approach. Finally, in Section 5 we present some
numerical results and give some concluding remeks.

The mesh generatlon methods which we consider here date from 1368, I[2].
I that paper the direct approach was introduced. The indirect approach was
considered in [8] and (8), for instance. Other papers which use generated
meshes are (7], [17-21], [25]. All of these papers deal with different types
of linear or sem!!!near singular perturbation problems.

In general, mesh construction methods can be devided into implicit and
explicit methods. In the expliclt methods the mesh 1s given in advance.

Trus, the methods which we use here belong to this clas=s. Another explicit
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method is the method of Ascher and Welss, see [26] for instance. The
implicit methods, on the other hand, glive as final numerical result both the
numerical solution and the mesh points. To this class belong simultaneous
methods, see [27], and alternate methods [6], [16].

2. The approach of direct discretization

Consider the followlng finite-dlfference operators on the mesh Ih :

h) .

th‘ =(h  z - 2hlzl + hlz“l)/(hlh“l X

141 1-1
D}’lz| = [3(21.1'21) - g(zl, zh_l)]/Tnl .

where {zl} is a mesh function on Ih and g has been introduced is Section 1.
Let T , T : R™™! -5 R™!, be given by:

Thw‘:= (Thwh)| = - thw| + thl + c(xl. wl) , I=1,2,...,n-1 ,

where LA and w should be replaced by Uo and Ul, respectively. Then the
discretization of the problem (1.7), (1.2) reads:

(2.1) Tw =0.
h

Theorem 2.1 Let (1.3), (without bu, c e C(R)), (1.4) and (1.14) hold. Then

there exists a unique solution wc N to the problem (2.1), and wc N € Hh.

Moreover, for any LA the stability inequality (1.12) holds.

Proof. Let T.’l(_k.'n) dengte the Frechet derlvitive of the - operator Th' The {-th
- -
column ({=1,2,...,n-1) of T;(wh) has the following non-zero elements:

Tlll(wh)l-l,l = -8/(h|h|—1) * gu(wh'wl—l)/hl—l '

Th(wh)l N = 25/(h1h|u

)+ [e, 00y - g, ] A et

s T B vy s

¢ = -
Th(w ) C/(hn .

hi+3,1

where we take formally: Th(wh)n,1 =0 and Th(wh)“'“_1 =0 .

Then because of "{1:14) T;(wh) is an L -"matrix and:
P
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(Fl-a/ﬁl)rrl.("h)l-l,l * Tllg(wh)l.l * (Elu/ﬁl)rt’:(wh)ln.l = Cu(xl'wl) ’

i=1,2,...,n-1,
hence '
. ~1,T
(HTh(wh)H ) e = ce, -
Thus T;(wh) is an M-matrix and

KT DD s 1,

i.e. (see (1.10)):

KT N, s e,

Thus 1‘h is a homeomorphism, [15], and because of
1 -1
LA A ITh(vh+s(wh-vh))ds (T‘hwh - Thvh)" .
we get (1.12). Finally, from (1.5), (1.6) we get:
T, (ue) 20 =T (ue) .,
hence w e W . o
€,h h

Now let us consider the conslstency error L 1=1,2,...,n-1, of the

operator Th:

~
[]

(Tuc)(xl) - Thut(xl) .

We have

.

r =r"+r
1 1

where

~
i

= ”(D;"c(’a) - u;(x‘)) s

r; = !'(uc)’(xl) - D;‘uc(xi) .

We shall use integral forms of r;' and r;, cf. [5]. Let us introduce some

notation:
x

bl
J(1, 1, k) =I (s—xJ)k"u;”(s)ds .

*
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o
1]

gu(uc(xl).uc(xl)) ,

n
]

g (v (x),u(x)) .

The following lemma is easy to prove:

Lemma 2.1 Let (1.3) and (1.15) holds. Then for i=1,2,...,n-1 we have:

" 5 41 _
rl = c(2h‘h’) J(i,1-1,3) + c(Zhl’l \

r
11

Ry Yo, i+1,3)

r - = -1 -1
;= gu'l[(h‘ h,Oen | BTG 1) 4 hl”J(l,Hl,Z)] +

+ gv"[(h‘- h“l)(Zh‘ﬁ‘)-lJ(l,1—1,1) + h:lJ(l,i.—l,z)] +

ue(x“l)
<57 (g, , - g(s.u(x)))ds +
uc(x‘)
uc(x‘{
.
+ I (g, , - g(ulx),9)ds
u {x )
54 1-1

Let us now consider the discretlzation mesh Ih

Addlitionally to (1,9) assume that
(2.2) A'(t) s M, tel,
and that A" be plecewise continuous in I and

(2.3) A"(t)] s &

in any subinterval of [ where A" is contlinuous. From (2.2)

(2.4) Heh s hx = A(tl) - A(tl_l) = Mh, i=1,2,...,

glven by (1.8].

we have
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and from (2.3):

(2.5) b= m | = At ) - 2at) + At )] s Hn°

i+1
i=1,2,...,n-1,

cf. [22, Theorem 8].

Theorem 2.2 Let (1.3), (1,4) and (1.14-17) hold and let the mesh lh be
gliven by (1.8), where A satisfles (1.9), (2.2), (2.3). Then the convergence
(1.11) holds. '

Proof. Since

r = Thwé" - Thuc(xl) , i=N2,...,m1 ,

the result follows from Theorem 2.1, Lemma 2.1 and (2.4), (2.5). ©

Finally, we shall give the theorem on the uniform convergence. The
proof is obvious.

Theorem 2.3 Let the conditions of Theorem 2.2 hold and let the following

inequalities be satisfied for 1=1,2,...,n-1 :

(2.6) eh "N |J(ii-1,3) | L eh T AL 141,3) | s mn®
(2.7) hl'll.l(‘j.i—l,l)] , h“l-1|J(1:j+1.1)| SN,

(2.8) (R /n) |91, 1-1,2) |, (B /b ) [J(1,141,2) | S BR° .

Then the uniform convergence (1.13) holids.

The following well known schemes satisfy the conditions (1.14-17):
- the Lax ~ Friedrichs (LF) scheme:

g(u,v) = (1/2)(f(u) + £(v) + Kv-u)) ,
where B is such a number that

j{u)| =B, ueW.
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- the Engquist - Oscher (EO) scheme:

i

g(u,v) = I b (s)ds + I b’(s)ds )
0 0

where
b (s) = minf0,b(s)} , b (s) = max{0,b(s)} .
In particular, EO scheme satisfies (1.16), (1.17) since:
[b_(u) - b (u)| = [b(u) - bu)] .
jp_(v)) -~ b (v)]| = |b(v) - blv)],

Other properties can be checked easily.
i 3. The indirect approach

Let A € Cz(l) and let (1.8) and (1.9) hold throughout this section. Let

t and U be new variables Introduced by
x = A(t) ., u(t) = u(a(t)) .
Let p(t) = 1/A’(t). Then the problem (1.7), (1.2) ls transformed to:

(3.1) Fa:= -e(p()u’)’ + r(a)’ + A'(DcX(t), ) =0, tel,

(3.2) wo) = U, , u(1) = U,
Here ‘= dsdt. By ﬁs we shall denote the solution to (3.1), (3.2);
uc(t) = ue(x(t)).

To discretize (3.1), (3.2) we use the equidistant mesh Th. The

dlscretization reads:

~t

(3.3) wi= ~ el"w
h

A + D;‘wl + A'(t|)c(?\(tl),wl) =0,

1
1=1,2,...,n-1,

where

v, ) + e(t

t-1/2 1

Dlw = h""[p(t ,,,,,2)("“1"'1)] ’
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t =t % h/2, and D’ is the same as D’ from Section 2 in the case of
12172 1 h h

equidistant mesh. As before, LA and v in (3.3) should be replaced by Uo and

Ul, respectively.

Theorem 3.1 Let the conditions of Theorem 2.1 hold. Then there exisls a
unique solution LS to the problem (3.3) and We W€ W, Moreover, for any W

vh the following stabllity inequality holds:

n-1
, -1ys
(3.4) [ A (tl)iwl— v | s e lTh“L - 'Thvhl1 .

1=

Proof. lLet us brove (3.4). We set z,= wlA'(tl), ¥, = le'(tl), i=1,2,...n-1,

and introduce a new operator:

Thzl = Th(zl/A (tl)) , 1=1,2,...,n1

Then' the Frechet derivative of Th satisfles:
[(F(z N, s 1s¢c
hh 1 LI
see the proof of }heorem 2.1. Futhermore:

-1 4=
nzh - yhul =c, uThzh R h“l '

5l
«

and (3.4) is immediate. The inequalities

Th(ﬁeh) =0z Th(geh)

complete the proof. 0O

Let us now conslder the consistency error of the operator Th:

ro= (Tue)(tl) - Thuc(tl) , 1=:1,2,...,n-1 .

As before, we set:
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where
jnd TR s _ = ’
B oo [y - iy
r, = f(ue) (tl) - Dhue(tl) .
Additionally to (1.9) and (2.2) we shall assume that:

(3.5) jA"(t)| sH, ter,

and that A’’’ is plecewise continuous in I, in such a way that:

(3.86) Ae Cﬂ(tl_l,t) , i=1,2,...,n,
(3.7) (A7 ()] =, te (tl-x’tl)' i=1,2,...,n .
" Let
t
J
JCi, j. k) = I (s - tJ)*"ﬁL*’(s)ds
t
1
and let gu ) gv ' have the same meaning as in Section 1. We can easily

prove the following lemma, which corresponds to Lemma 2.1 in the direct

approach.

Lemma 3.1 Let (1.3), (1.15) and (3.6) holds. Then for 1=1,2,...,n-1 we

have:
P o= eh[((paé)"(o{) - (63)"(5)) /8 +
* (p(tl+1,2)ﬁé”(8:) - p(tt-xfz)aé”(a;))/4g] ’
where o, € e (t _..t) . o, 8 e(t t ),
and

r'' =g J(i,i¥1,2)/h + g J(i,i-1,2)/h +
1 u,l v, 1
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a (¢ ),
£ 143
-1 ~
+ h [ (g, - g(siit))ds +

u(ti)

u (t)

e 1

[ (g, - g gt 9)ds

a(t )

1-1

Theorem 3.2 Let (1.3), (1.4), (1.14-17), (3.6) and (3.7) hold. Then we have

the convergence (1.11).

Proof. From (3.4) it follows:

n-1

. , - -1 g~

Z A (t|)|w£,I S ACRTIERCA [ RN A
1=1 .

Multiply this Inequallity by h, use ﬁc(tl) = uc(xl) and
, = 3
| ha (tl) - hl| =< Mh
(which is valld because of (3.8), (3.7)), and obtain
2
fw —u [ sMh+Mh
€,h €,h"h €

(since [w‘:’l - uc(xl)l s M . n
Finally we can prove:

Theorem 3.3 Let the conditions of Theorem 3.2 hold and let the following

inequalities be satisfied:

(3.8) ele’™ ()| s M, k=0,1,2,
(3.9) ﬁ;k)(t)| s N, k=1,2,3,
where t € (tI ,tl), i=1,2,....n . Then the uniform convergence (1.13)

i -1
holds.



A184 Relja Vulanovic

From this theorem we can conclude how to choose A. This can be used in
the direct approach as well

Let S denote a layer of uc. Very often u; behaves in the following way:
ue(x) ~ vc(x) , X €S,
where Ve Is the corresponding layer function. If we take
ACt) = v;l(t) for teA (s,

then (3.9) follows for k=1 and x € S. With such a cholce of A we can expect
that (3.9) holds for k=2,3 as well. On the other hand, outside of layers we
need (2.2), (3.5), (3.7), and in these parts A can be a sultable polynomial.

4. Two special problens

4.1 A non-turning point problem

In this sectlon we shall consider the problem (1.1), (1.2) In the case

when
(4.1) -b(u) =b, >0, uelW.

The proof of the following theorem can be found in [23], cf. [5].

Theorem 4.1. Let (1.3), (1.4) and (4.1) hold. Then for x € I we have:
'l

(4.2) |u::k)(x)| < M(1 + e'kvt(x)), k=0,1,2.3 ,

vc(x) = exp(—bux/t) .

Thus, in this case u_ has a boundary layer at x=0. let us apply the
direct approach. First we have to choose A according to (4.2}). In view of

the discussion at the end of Section 3, we take:

wt) , t e [0,a] ,

(4.3) A(t) = i
m(t):= 8( t-a)’+ w'(a)(t-0)?/2 + w () (t-a) + (a), tela, 1],

where a« € (0,1) is given, & is determined from n(1)=1, and w(t) corresponds.
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to the inverse oP”vr(x). Essentialiy the following type of function was
introduced in [2]:

w(t) = wl(t):= - Beln(1 - t/¥) = Beln(l + t/(y-t)),

where 8 is a positive parameter and

Similar logarithmic functions were used in [7-8]. However, 1t was shown in
[17) that for this type of layer a certailn approxlmation to Ux(t) would

suffice, e.g.:
(4.4) wt) = wz(t):= Be t/Ay - t) .

For the reasons of simpllcity, we shall conslider here functions of wz(t) -
type only. Functions of this type were used in [17-25].
It is obvious that A e CZ(I). From now on we shall assume that the

parameter B8 in (4.4) is glven in such a way that

d=0.

1t is easy to see that such a posltive B8, independent of €, exists. Thls

lmplies:
0 <A™, k=1,2, terI.
Moreover, because of Lhe special choice of 7 we have
A M) s M, k=12, tel,
hence the conditions (2.2}, (2.3) are satisfled.

Note the following property of A, which we shall use later
exp{-b_A(t)/e) = M exp(~-M/(7-t)), t € (0,a) .
Theorem 4.2 Let (1.3), (1,4), (4.1), (4.1), (1.14-17) hold and let the mesh
Ih be given by (1.8}, (4.3), (4.4). If
(4.6) nzmlne,

with an approprlale constant m > 0, Independent of h and €, then we have
€1.13).
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Proof. According to Theorem 2.3 we only have to prove (2.6-8). For lnstance,
iet us prove the First inequality from (2.8). The other lnequalities can
be proved analously. We shall use the standard technique from [2], [17-21],
[23-25], which consists of the followlng three steps (for i=1,2,...,n-1):

‘ 1° ¢ za -e? '

2 t sa - 3h,

3" « -3het  <a-ef?.

Thus, since hI E hlu, i=1,2,...n~1 , we have to prove
x
1
" 2
(4.7) vis (h, /n) [ Gsmx ) |uz(s) |ds s mi
X
" 1=1,2,...n-1

Because of (4.2) we have

vsHne (1 s e v (At D)) .

We shall use thls inequality in steps 1° and 2° .

In the step 1° it holds that
vsHl (1+ e v (Ma ')
1+1 [

and (4.7) follows from (2.4) and (4.5).

In the step 2° we use (4.5) and

h < Mhe(y ~ tx )-2 .

-2
Lot ) © = Mhe(7y tl

+1 -1

z (a ~ tl_l)/:l. and (4.7) is proved agaln.

(since in this case a - t
X 141

Flnally, in the step 3° we have

vsKn +h elv(x ))s

1+1 1+1 -1

1

= M(h® + he” v (M« -3h))) =

s M(h® + he”! exp(-Mnm)) ,

3

and (4.7) follows because of (4.6) and ¢/ < 3hn . o
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Let us now consider the indirect approach. Besides (1.9), the function
A should satisfy (2.2), (3.5-7). Because of that we take A from (4.3) with

(4.8) W(t) = v (1):= fet/a + et

- 1),
where
« = j/n for some J e{1,2,...n-1},
so that (3.6) holds. Again, the positive parameter B should be chosen so
that & = 0. The same functlon A was used in [23], [24].

Theorem 4.3 Let (1.3), (1.4), (4.1}, (1.14-17) hold and let the mesh Ih be
glven by (1.8), (4.3), (4.8). Then we have (1.13).

Proof. Because of Theorem 3.3 it is sufficient to prove (3.6) and (3.9). But
these two lnequalities have already been proved in [23]. ©

Let us mention that a more general problem has been considered in (23]
- the case when b = b(x,u), and that the linear convergence uniform in ¢ has

been proved In the equidistant norm |-|h = hl-ll.

4.2 A boundary shock problem

Let us now consider the case when
Hu) =u b’(u) , ofx,u) =u c’(x.u)
b Eb(u) zb, >0, ueW,

c = c’(x.u) zc, 20, xel, uelVW,
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u=0, U >{bc’+ b - by .

These conditions together with (1.3) and (1.4) guarantee the following

estimates of the derlvatives of the exact solutlon:

!u(k)(;)' s W1+ c"exp(-mal/c)) » xe€l, k=3,2,3,

€

with a positive constent m_ independent of £. For the oroof see [24), where
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the indirect approach was used. Here the solution behaves In the same way as
in the case of the non-turning point problem, thus the same functions A can

be used, and the results analogous to Theorem 4.2 and 4.3 can be proved.
5. Concluding remarks and numerical results

Let us consider the problem from [14], (23]:
P1. - eu” - exp(uu’ + ((n/2)sin(nx/2))exp(2u) = O,

u(0) = u(1) =0,
the solution of which is given by
u(x) =y (x) + 0e) ,
where

yc(x) = - In{(1 + cos(nx/2)) (1 - (1/2) exp(-x/(2¢)))]
We shall compare our numerical results with yc(x) . Let

. E =}y

E, = Iy h €,h 'e.hlh :

- w l
o €, h €,h"

We shall use the function A from (4.3) with (4.4) and (4.8) ih the direct
and indirect approaches, respectively. In both approaches we take

a =05, B=1'

getting 24 - 33 % of the mesh points in the layer, (in dependence of £). The
effect of changing @ and B can be seen in [17], [23], [25], for instance.
Both EO and LF schemes will be used, the latter with

TABLE 5.1 P1, direct approach, ED scheme

n € 1072 107 107"
E, 8.27-2 8.49-2 8.56-2

50 E, . 5.87-2 5.78-2 5.79-2
E 4.42-2 4.48-2 4.49-2

100 E, 3.04-2 3.06-2 3.08-2
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TABLE 5.2 P1, direct approach, LF scheme

n P 1072 1078 107"
E_ 8.82-2 0.104 0.105
' 50 E 5.89-2 5.99-2 6.00-2
E_ 5.41-2 5.66-2 5.60-2
100 E 3.10-2 3.11-2 3.12-2
i
TABLE 5.3 P1, indirect approach, EO scheme
n € 1073 1078 1078
E_ 8.88-2 8.83-2 8.89-2
50 E 5.99-2 6.03-2 6.03-2
" 4.78-2 4.64-2 4.67-2
100 . 3.22-2 3.19-2 3.20-2
TABLE 5.4 P1, indlrect approach, LF scheme
n c 1073 107 107®
E_ 0.108 0.107 0.108
50 E, 6.23-2 6.26-2 6.26-2
E, 5.91-2 5.72-2 5.78-2
100 E 3.28-2 3.25-2 3.25-2

The numerical results show more than

our theory gives:

the pointwise

convergence uniform in € can be observed. We can see that there is no big
difference between the results of Tables 4.1-4. chever,rthe direct approach
glves somewhat better result. This confirms that the conditlon (4.6) of
Theorem 4.2 is not essent!z] for the proof of {1.3). 1t is lntroduced for
" technical reasons only - in the step 2° of the proof. (Note that the proof

of Theorem 4.2 could be simpler - because of f£.6) we could use two steps
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only: 1° t‘_l =z« - 3h and 2° t|-1 s a - 3h. By the proof which 1s given
here we want to show that the condition (4.6) is needed in the step 3° only).

On the other hand, EO scheme 1is better than LF, which 1is not
surprising, since in this case EO scheme reduces to the standard upwind
scheme which is here more natural than LF scheme.

Similar conclusions hold in the case of the boundary shock problem, cf.
[24]. ’

Comparing the two approaches we éan conclude that the proofs of the
uniform convergence are simpler and easler in the case of the indirect
approach. In particular, there is no need for some artifical conditions of
(4.6) - type. However, the direct approach seems simpler for <coding and it
uses simpler functions A. We 1lllustarte thls by the functlons which should
be used In the case of two boundary layers:

1
uz(t) . t e [0,a]
(5.1) Aa(t) = nl(t) . t € la,1/2] )
1-a(1-¢8), te l1r2,1]
where « € (0,1/2) and nl(t) is a third order polynomial, such that

A€c®0,172] and m(1/2) = 1/2 . 1t holds that A € C' (0,11 and A" 1s
discontinuous at t=1/2, but the direct approach allows this since (2.3)
holds for t € I\{1/2}. In the indirect approach wét) should be replaced by
”3(t)' and we should use a more complicated polynomial, which connects wa(t)
and 1 - wa(l-t) in such a way that (3.5-7) hold.

Similar facts hold in the case of function
wz(t) . t € [0,a]
Aa(t) = nl(t) , t e la ,1] .
-A-t) , te [-1,0]
which should be used when the interval is [-1,1] and there is an interlor
layer at x=0 .

Let us use the function (5.1) to solve the following problem by the

direct approach:

r2. -su" +uu +u+s{x) =0, u(0) = Uo. u(l) = U,
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where s(x) and Uo’ U‘ are given so that the solution reads:

uc(x) = —exp{-x/e) + exp((x-1)/¢)

In Table 5.5 we give the results obtained by EO scheme for « =0.25 and B=1.

Let Em and Eh be as before, except that here we take uc instead of yc. Note

that here the error Eh decreases together with €.

TABLE 5.5 P2, direct approach, EO scheme n=100

€ 10 10 10
Em 1.12-2 3.68-2 4.16-2
Eh 1.32~3 9.33-5 6.21-6

Of course, in general it is not easy to know in advance where the

layers are. In the case when locations of the layers are not known, one

should apply a stable equidistant scheme to locate the layers. After that, a

suitable mesh generaling function could be introduced.
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Rezime

METODI GENERISANJA MREZA ZA NUMERICKO RESAVANJE KVAZILINEARNIH SINGULARNIH
PERTURBACIONIH PROBLEMA

+ Kvazilinearni singularno perturbovani konturni probleml se resavaju
numeri¢ki korisc¢enj:m diferencnih &ema na specijalnim neekvidistantnim
mre2ama. Mre2e su generisane pogodnim funkcijama koJe prerasporeduju
ekvidistantne tacke. Dva slié¢na pristupa generisanju mreza su uporedena.
"Uniformna” konzcrgenclja Je dokazana za dva specijalna tipa problema.

]
Numerie¢ki rezultati ilustruJu efikasnost metoda.
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