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Abstract

The structural theorems for generallzed random processes from L(JR.Z)

and Y'* are given.

1. Introduction

In {11] Zemanjan Introduced the space A, the space of test functions
and Its dual spac; A’ . Using his ideas we_construct a scale of spaces Jn'
where k is an integer, whose elements have an orthonormal expansion. Next,
we define a generalized random process (g.r.p.) as a continuohs linear
mapping from Jk to Z - a separable Hilbert space of random variables with
finite second moments. We denote the space of all g.r.p. by L(Jk,Z). In
the definition of g.r.p. we foliow [4]. This deflinition is different from
the definjtlons given in {1,2,7,8,9,10]. In Section 3.2. we construct the
space Y-l, where k is an integer, a subspace of L(Jk,Z). Giving the
structural theorems for elements in Y * and L(Jk,Z),»we establish the

reiation between them.

Since elements from the spaces Al have orthonormal expansionsn this

enables us to give simpler structural theorems than in [4]}, where Sobolev
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‘spaces were observed. The proofs of Theorems 4.1. and 4.2. are glven
following [4]. The given structural theorems can be applied in sdlving
some classes of stochastic differential equations siailar as in [7].

2.Spnceslkamll;

2.1. We shall follow the notatlon as in [11, Ch. 9.]. Let I be an
open interval in the set of real numbers R, L°(I) the space of the
equivalence classes of square integrable functions with values In the set
of complex numbers €. The norm in Lz(I) is defined by

2 172
If], = U |£Ce)] dt]
1

Denote by C"(I) the set of infinitely differentiable (smooth) functions
and by N and N sets {0,1,2,...}, {1,2,...}, respectively.

Let R be a linear differential self-adjolnt operator of the form

, n,
R=eDo9...D0 90 , .
[} 1 v
where D=d/dx, nk. k=1,2,...,r, are non—negative Ilntegers 9k, k=0,1,...,»,

smooth complex functions with no zeros on I. Suppose that there exists a
sequence of real numbers {A , ne N } and a sequence {¢ , n € N } of

2 n [+] n ]
smooth functions in L°(I) such that |An| e for n3e and

ﬁn = Anin ne IIo .
Furthermore, suppose that {in. ne No} forms an orthonorsal system (o.n.s.)
in L%(1). We can enumerate A and ¢ so that |a | s |a | sa | =...
n n o 1 2
Put
{A if A=0

= n n nelN

A=
n

(]
1 if A=0
B

{X‘. n € N } is a non—decreasing sequence which tends to Infinity.

Denote
'l ), ke ",

where #’= J and J is the identity operator.

Now, we shall define the scale of spaces ‘t' k e "o' Our construction



A class of generalized random processes ... 205

o -

= 2 . = 2 =2k

Jk—{QEL(I).Q Y aw. I 1o % <-}, keN .
n=0 n=0

We see that 4 = L2(1). The space 4 15 the Hilbert space equipped with the

scalar product '

=
(O.&)|K = Z ab X%, .9 € Jk

and the norm i

1r2

Iel, = [..:io |3n|2 x:k] . ded

o ©
where ¢ = Z avw. ¥= Z bn*n-
. =o

n

L) 'l\-‘

Note that the orthonormal system In Jk is ¢ =

s .Jelo.

1

2. Put
n

S={¢=z anin: -ello, anec}.

n=0
The set S is dense In "n' k € Ilo. The operator . ne No is defined on S.

From the fact that the mapping ®: 5o Lz(l) is linear and continuous, it
follow that X", m s k can be extended llnearly and continucusly to the

«
space "x' Denote this extenslon by ., m=k Let ¢P= Z auine S and

¢=

n

ir~e

anwne "n' We have that Qp—) é p-ow In alk. so

eooe (el b (L) Lot

et ped n (1) and (K¢, v =<8 sf‘un), msk neN, vhere

o> = = j'¢(c) wlt)dt, ¢,9 € L2(1). Then ¥= %9, m = k.

1
Next, we shall define tha spaces J_k k € "o in the following formal

{ v v 2 «-2k
4 ={rff =nZo b¥. QZO b |* A% < -} . KeN.

The set "-n is a vector space (with operations defined in the usual way).
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We can define a scalar product and a norm on 1it.

o
Namely, let f=Zb¢, g=Zc¢, then
n nn
n=0 n=0
° - -2k
(f.g) = z be A

It is obvious that 4_. is a Hilbert space.

Let &
|3

be the dual space of Jk. k € No'

We have

Theorem 2.1. There is an isomelry belween spaces J; and ‘-n'

Proof. Let f € A;. Denote by b = (f,¢ ) =
n n

o
¢ =
n=39

(2.1)

It follows from [6] that

(2.2)

[
(r.¢) = Z

n=0

ab.
nn

0
Yo A% <a.
n=0 n n

f(wn) = <f.$n>. ned. and let

z anwn € Jk. Since f is linear and continuous, we have that

o0
So, there exists an element g € J_k such that g = anqﬁn. Conversely, If

n=0

[
we have g = Z bn\bn € J_k. such that relation (2.1) holds, then the mapping

n=0
]

e- 1

n=0

element by f. It is obvious that bn= (f,qpn), n e No'

. @
one-to-one wmapping f € Jt > nzobnqﬁn € A—n' where b = (f.vlﬁn).

Obviously,

this mapping Is linear,

Hence,

-]
ay - z aly, ¢ €4 , defines an element from A’ . Denote this
nn nZo nn ) -k k

we have a

neW .
0

Next, we shall prove that |f|;= |f|_k, where ]t’|"I is the dual norm in

A
Kk
We have

® _ © S 172 © i~ 1/2
el = | Tem 0= (L™ ] (] 1)

)] = Iel_ Iel,

ERREE L B
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m
Furthermore let ¢_ = Z b X-ka“e A‘. We have

nn

so that

m
2¢-2k
(f.¢n) ,\Zolb"l An n 2e-2y)1’? @ 2e-2x172
T o D I D TNl T W
m K b 25-2k <o
ZO lll n

It follows that [f[/= {r| .

We shall write X© Y to denote that a topologlcal vector space X can be
embedded ]linearly and continuously into a topological vector space Y.

One can prove easily that

d OGA G .. OdGa =151 O .4 O
k+1 k 1 0 -1

Letl

«©
4 =n
k=0

Ak={¢eL2(I): ¢=§ ay; Yk E

LN
1l
o -
Il'a
”x
\
ey
-
]
~1
o
a
L=
w
-
o~
o
N
P43
1
N
*
A
[——

Note that the space # is dense in Ak, k € No' because it contains the set
S which is dense in each Ak, k € No‘ So, Ak. k € No' is the completion of
A4 wilh respect to the norm ﬂ-"k. From Theorem 2.1. it follows that £ 1s
the dual of 4, 6. From 11, Lemma 9.3.3, p.316 1t follows that the spaces o
and &’ are identical to the spaces defined in 11, ch.9.3. and 9.6. and

denoted by the same letters.

Definition. An element from d_k (l.e. A;) is called a generalized function
of R-order k. An element from &' is called a generalized functlon of

R-finite order.

2.3, Let mk e N. InScctlon 2 2. we defined the mappings X:d > L3n),
m = k, We define the mappings (i’)':Lz(I)a ‘-x' m = k,in the following way
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(2.3) (®)£¢) = (£,K9), msk, ¢ed, f e L3(1)
o (]

If fel®(I)istheof forme =) by, ) [b |?s = we have
n=0 n=0

0
2.9) (9?')'!=z b A"y .
n n n
n=0
It is obvious that (¥*)* can be defined on A_p. p € N, in the same way as

0
in (2.3) and that (F)’': 4 > 4 . As 1t formally (¥")'f =Z b A"y .,
-p -p-m n=o n RN

.

fed , msk weshall denote ) by ¥, msk,

o= - = C_
Put A= {ne LI 0}, and A NO\A. It is easy to prove the

following representation theorem

o0
Theorem 2.2. Let f € 4 be of the form = Z by, and F = Z (b A %)y .
-k ¢ non n

R n
n=0 n€A

Then, we have that F € Lz(I) and
f=9¥"r+{bw
nEAnn
So

fed o3keN, 3F e L2(I). 3beC.n€A,f=i’kF+wa .
[r] n nAnn

3. Generalized random processes from L(Ak.Z), k € No'

3.1. Let (2,%,P) be a probabllity space. Denote by Z the space of all
the P-equivalence classes of complex random variables with finite second
momenta. Z is the Hilbert space with the scalar product and the norm

defined in the usual way. For £, 0 € Z,

(&), = EEn = J' £(w)n(w)dP(w) ,
0

_ 1/2
i lel, = &6,

We suppose that Z is separable, so there exists o.n.s {En, n e wo} and

Py =] .
foe € € Z we have £ = Z e+ c=(6€),, neN, Z |Cn|2< o.
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In the definition and assertion which are to foliow in Section 3.
and 4. we follow [4].

Definition. Random process &(t) on I is a family {€(t), t € 1} of random

varlables from Z.

Denote by L(X,Y) a vector space of all the linear and contonuous mapplngs

from a topologlical vector space X to a topological space Y.

Definiton. Generalized random process on 4 is an element from L(d,Z).
Denote 4= L(4,Z), and by (€,¢) the value of £ € 4 at ¢ € 4. A sequence

{&n.n € N} converges to £ e 4' if for each ¢ ed lim (€n,¢) = (€,4) in Z.
n-3o
We can define the operator #on the space ry in the followlng way

(Fe.9) = (6.7¢), keN

0 -

Denote A:= L(JK.Z). The norm on A; 1s deflned in the following way
»
fnf_; = sw {E(n.¢)lz. ped, 3] = 1} .

The space J: 1s completa becauge Z is complete. The relation J;= J_kﬁa J:
holds, and for f € A_k we have |f|zk= |f|_k= |£]7. Since for n2 m 2z 0 we
have 4 & 4 and |¢] s |¢] ., 1t follows that 4 & 4. Also, 4< 4, and
n m m n = n, . k
every convergent sequence in 4 is convergent in Jk, so cha 4 . Therefore,

the spaces A; satisfy:

wan'sdod ... Lol
0 1 k
and méreovgr
* hd *
4=U Ak. {in the set theoretical sense)
k=0

Definition. An elgment from 4:- L(Jk.z) 1s called the generallzed réndom

process of R-order k.

3.2. Denote by Y’ a space of random processes on I of the form

n(t,w) =
n

i~

a(wyp (t), a(w) eZ tel.
n n n

Obviously S c Yo,
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Lemam 3.1. Y° Is a subspace of A:. k € INo'

m m
o0
Proof. et n € Y be of the form 1 HZO an(u)wn. For ¢ € dk, ¢ = Z:o bnv/n

n
we have

m » n
(n, ) =‘[ ..Zoa"(wm"m] =nZ° a (w)(y ,¢) =HZ°an(w)b
so (n,¢) € Z, for every ¢ € -dk. Linearly is obvious.

[
To check continuity, let ¢n.¢ € Ak' n € N be of the form ¢n= Z b:‘wl .
1=1

4 (]
¢ = Zb ¥ , and let ¢ converge to ¢ ind , i.e.
15 (3 } n Kk

o
Z 6" - b |2 3% 50, now
1 ! 1
i=0
Therefore,

(n¢ - ¢) =

n
al(m)(bl bl) 30, nHow

Rt

in Z.
Dencte by Y™ the space obltalned by completing ¥® in J; wlth respect
to the norm Hl:k )

Lemma 3.2. 4__ Is a subspace of Y.
o0
Proof. let f e d_k be of the form f =Zan¢n and nms ¥® of the form

n=0
n

n = z ay, ae€C, neN._ We shall show that the sequence m convergence
m n=0 nn n o m

to £ in Y'*.
. , ™ 22k}’ 2
A L RN Y [T EETREE

Theorem 3.1. Y * is a proper subspace of J:, k € INO.
Proof.Let {€ , ne N } and {;{} , nel }beo.ns. tnZand 4 respectively.
n " [} n [+] k

m
Let ¢ = Z c ¥ cn5:$n. Defline an element n.e L(Ak.Z) by
n=0 ]

]
(3.1) (n.¢) = Z(J:nmk £ -
n=0

The mapping is well defined since
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o0 -]
. 2 — [2+2k
@ o =) |G *=] 512 <a,
n=0 n=0
where
. v -] E.. i:k = =k
(¢'¢)k = [T ’ Z ann]k = ~k = CnAn °
A n=0 A
n n
Linearly is obvious and if ¢_+ ¢ in Jk, then

|2i:"->0. R,

I -0 =T | -c

n
n=0
e . L]
so that n 1s continuous and n € Jk .

The mapplings ¢- (ﬁn.¢) n e No. are linear and contlnuous, with norms equal

to 1, so there exist f e l_k, n e No.(Theoren 2.1.) such that |f;|_k=1 and

B .#)=(f.¢) . nel,
and
- [
i (n.#) =] (.98, .

Let n be an arbitrary element from ¥° of the form

a
a(t,w) =) d (W) § (e) .
) n=0
For t € I, fixed, we have

n(t,w) =

]
n=

. g;(t) En(u) ,
where

g;(t) = (n(t,w), En(u))Z , NE€ No'
We shall prove
b2 2
(3.2) g (£)]|7dt < » .
nZD '[ n
We have that

2 e - 2
[ nce,o 2 at = [ [f [ Zo d () § ()% aP (w) ] dt s
1 a "

1

s | {J’ [ ‘Zj<d|(w) ¥, (1) 3 () wj(t)]dP(u)}«t -
1 Q L Rt
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=lz)s

J-"‘s“’ ¥, (Oat J-dl(w)dj(w)dP(u) =
1 Q

e 1 2
=} Sl Wl <=
n=0 A

Furthermore, since

o«
2 2
J;Z; lg_(¢)|%at = I Intt,w) ] dt < =,
1 1

and according Lebesgue’s theorem

w w
nzo ! lg () |%at = !n=20|gn(t)|zdt <w,

(3.1) follows.

'

2 2
Hence, |g (t)]2= [lg ()[%ats 0, n » = Stnce |r ] =1 and |g,|_,slg ] > ©.

1
we have

In - nI_: = sup {j(n - n,¢)|: Leed, ol =1}=

=swp { ] |(r -g.0|" sed, |o| =1}z
n=0

> lim sup {I(fn - gn.¢)|2, ¢ € ‘i' |¢|.s 1} =
n -0

= lnsup {|(f .9)|° - 2|(r 01| |(g.9)| + |(g.®)|° oed, o] =1}z
n-300

2 —
z lim “fnl_Il - 2|fn|_.|gn|_.} = 1.
n X0
o -k -k »
Since Y 1is dense in Y =, we have that for any neY ', [n —nl_lz 1. It
follows that the element n., defined In (3.1) does not belong to Y-h. so
Y™ is the proper subspace of J:.
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4. Structural theorems

4.1. Definiton. Let {f , n € N } and {9 ., n €N } be sequences from &' and
' © n [4) n [4]

Z respectively.Then Z f ®9n is a generalized random proces in o defined
n
nx0

by

Y , = lim . . 4,
[n);or“®e“ ¢] lin J (£.8) 8, Ve

m3y0 n=0
provided that the limit on the right-hand side exists in Z for each ¢ € 4.

Linearity s obvious and continuity follows form the Banach Steinhaus

theorem, so that our definitlon 1s correct.

Theorem 4.1. Let 7 e-d and {ﬁn, ne No} be o.n.s in Z. Then 0 belongs to
J:, k € No If and only If n is expressible in the form

(4.1) 1=} r @¢ .

n=0
%here fne J_k. ne N0 and for every ¢ € lk
T 2
(4.2) I e e)®<m.

n=0

Proof. Let n e J:. Then the mappings ¢ » ((n.¢).€n)z are in 4'= 4 for

. -k
every Ene Z, ne No' So, there exist fne l_k, ne No such that

((n,¢),€), = (f .¢), Vped, neN .

(0.8) = § ((n,6).6).6 = [ ) (1, @6,).4] Vo .
n=0

n=0

So (4.1) follows.
Further, we have

o o0
> s =) (g ) |P=7 J(r 0%, vped
n=0 n=0 -
which proves (4.2).

Conversely, let 9 =
n

o«
£, £ ed . Y 9o pea.

n=0

ire

Since n € 4 we have
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w
(n¢) =] (r .9 ez Ve
n=0
Conslder the sequence

mn
n. = Z fn®€n )
n=0
It is easy to prove that n, is a Cauchy sequence in J:. Namely, 1t 1is
obvious that ne€ .l:, m e "o' and for ¢ € Jl and 1 > k.
1

1, 8) - (o2 =) U . #)*<e, 1k> k(e

n=k+1l
Since -4: is complete, the sequence m_ converges in -l: to an element n,€ -4:.

m
Let n,= nZ(,["@E“' We shall show tuat n,= M-

L ]
Since 7n - no in Jk, for every n € No' we have

0'= lim ((no - ".’¢)'€n)z = ]lim [((no,ﬂ,f;'n)z- ((n_.#).En)z] =
a0 =)0
= ((n0,¢).5n)z - ((n.¢).€“)z = (fn,¢) - (fn¢).
So we have

(('?nm) =(f.¢), VneN and V¢ed.

]
It follows that n.= %, n 9 n In J'andn is of the form 'n={! ®E .
0 » k n=Qn n

Theorem 4.2. Let ned and k € N . Then n belongs to Y™® If and only if

it can be represented in the form

L]
(4.3) n=) 1 @®F .
n=0
v 2
where !ne J_k and ‘for every ¢ € Ak, Z |(!n.¢)| < w, and the sequence
n=0
a
(4.4) nogzrn®ﬁn .
n=0

‘ls a Cauchy sequence in Y™ ®.

Proof. Let m be in Y ®. From Theorem 3.1. Y "c J:. so according to Theorem

[ o«
2
4.1. 9 = Z !n® En where [ne -4_. and n;[([n,ﬂl < w for every ¢ € "u' To

n=0
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prove that {n v mEN } is the Cauchy sequence In Y™ we shall show that
n € Y , m € No, flrst Slnce the set S 1s dense in A , 1t follows that
For every f € 4 . ne No. there exlsts a sequence {fn. 1e No} in S such
that Jf'- £ | 50, o m

n ni-k
Define

»m

=Z e, ieN ; meN.

L n 'n
For every i,m € No' ﬂ: is in Y because f:. n,i € No are in S.
Furthermore,

£ 20 1am
n'-k

1,2 _ , T 1 2 B
Inn - "-I—k N I Z (fn - [n)enl—k =z If -
n=0

n
n=0

So, for every m € W, 1sin y*

Next, we shall prove that {nn. m € ND} is a Cauchy sequence in y K
Since 7 is in Y ¥, there exists a sequence {9 , J € No} in Y such that
In - ejl:k+ 0, J >« Each 8 can be represented in the form 6 = z g

n=0
J=
vwhere f (BJ.En)z are all in S. Since {ﬁn. n e No} is the complete o.n.s.

in Z and GJ is 1in Y* we have
. 2 S )2
(4.5) [ fo, I at =MZ° i) ‘
1

For arbltrary m and J there holds

L] L]
In-ad, sih-el +1le, -l -

We have

(4.8) IBJ- nl'a = sup {

"MB

fee) - f ,¢)| ped, ol s 1}.

i
[l - 2 +) [l ped, ol 1}-

n=m+1

02
(4.7) |9)—n-|_k= sup{

"Ml

= sup{ Z |({’ - f ¢)| ¢ e Jk, |¢|ks 1 } +

+ sup{; |(fJ ¢)| ¢ € L2(n, |¢|os 1} s
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A

w o
sof $1e)-rpolt sen =i}l 10r -
n=0 n=m+1

o
"2 12
IGJ - "H-u * X '[n"o'
n=m+}

So, from (4.6) and (4.7) it follows that
) . . . o 3,2 172
-l s n-el, + {Hn -el, +n_ZH (T }

Slnce 9J+ M 1n Y'k. for arbltrary € > 0 there exlst J0=J0(c) such that
-
In - OJ“-k s e/3 fog every J = J .
Furthermore, from (4.5) 1t follows that there exists mo= mO(J) such

that Z “[Juz < 3:2/9, for ali m=Z m_ . Hence, for every J2 J and m2m
nese1 n'Q [4] 0 B [+]

R c e? 3621172
jn - n-u_k s 5+ { 5* —§—} =g .

Since £ was arbitrary, it follows that the sequence {n., m € No} converges

to n In Y'k, which means that it i1s the Cauchy sequence.

Conversly, let n and LR be defined as in (4.3), (4.4). We shall show
that % 1s in Y ®. Since {n . me No} is a Cauchy sequence In Y, It
m

converges to an element; denote it by Ny in Y_k‘ We have that

wel fes. 1= e wm oa-f e

s0,

o
]

1im ((n0 - n.¢).En)z = lm [((no- ¢).En)z - ((n-- ¢).En)z] =

"m-300 m-m

((ny~ 92,6 ), - ((n - ¢).€), = (£,4) - (£ .4), Vne My €4

We have (f:.¢) = (fn.¢), Vn € No. Vo € Jk, l.e. =, which means 7

Is in Y -3
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Rezime

JEDNA KLASA UOPSTENIH SLUCAJNIH PROCESA SA VREDNCSTIMA U L?(0)

Date su strukturne teoreme za uopsStene slutajne procese kojl pripadaju

prostorima L(Ak,Z), Vol
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