Univ. u Novom Sadu

Zb.Rad. Prirod.-Mat.Fak.

Ser.Mat. 19,2, 219-232 (1989)

REVIEW OF RESEARCH FACULTY OF SCIENCE MATHEMATICS SERIES

CONVERGENCE OF A SEQUENCE OF GENERALIZED RANDOM PROCESSES ON THE ZEMANIAN SPACE 4

Zagorka Crvenković

Institute of Mathematics, University of Novi Sad, Dr Ilije Duričića 4, 21000 Novi Sad, Yugoslavia

Abstract

Different types of convergences of a sequence of generalized random processes on the Zemanian space # are defined and compared.

1. Introduction

Generalized random processes (g.r.p.) were defined by several authors [1,2,4,5,7,8,9,10,11,12]. Different types of convergences of a sequence of g.r.p.—s were introduced and investigated in [4]. In [1,2,4,5,7,10,11,12] spaces $\mathcal D$ and $K\{M_p\}$ were taken to be the spaces of test functions and in [8,9] the Zemanian space M. In [1,4,5,7,8,9,10,12] the representation theorems for a g.r.p. were obtained.

For a space of test functions we take the space A, whose elements have an orthogonal expansion. The space A and its dual space A' were introduced in [13]. Our construction of the spaces A and A' is different from [13], and the details are given in [8].

In [4] the representation theorems for a sequence of g.r.p. on $K\{N_p\}$ converging almost surely, in probability and mean (K') were obtained. Following [4], in [9] representation theorems for a sequence of g.r.p.-s on converging almost surely (A') are obtained.

AMS Mathematics Subject Classification (1980): 60H

Keywords: Generalized random process, convergence in mean, convergence in probability

220 Z. Crvenković

In Sections 2., 3. we shall give the basic definitions and properties of space A and of a g.r.p. on A. In Section 4. we shall define various types of convergences of a sequence of g.r.p.-s and give representation theorems for sequence of g.r.p.-s converging in probability and mean (A').

2. Spaces & and &'

We shall use the notation from [13]. Let I be an open interval of the real line R and $L^2(I)$ be the spaces of the equivalence classes of square integrable functions with values in the set of complex numbers, C, with the usual norm. Denote by $C^\infty(I)$ the set of infinitely differentiable (smooth) functions, by N the set $\{1,2,\ldots\}$ and let $\mathbb{N}=\mathbb{N}\cup\{0\}$. Let \mathcal{R} be a linear differential self-adjoint operator of the form

$$\mathcal{R} = \Theta_0 D^{n_1} \Theta_1 \dots D^{n_{\nu}} \Theta_{\nu},$$

such that

$$\mathcal{R} = \vec{\theta}_{\nu}(-D)^{n_{\nu}} \dots (-D)^{n_{2}} \vec{\theta}_{1}(-D)^{n_{1}} \vec{\theta}_{0} ,$$

where D=d/dx, $n_k \in \mathbb{N}_0$, $k=1,2,\ldots,\nu$, θ_k , $k=0,1,\ldots,\nu$, are smooth functions without zeros on I, and $\bar{\theta}_k$ are complex conjugates of θ_k , $k=0,1,\ldots,\nu$, we suppose that there exist a sequence of real numbers $\{\lambda_n, n \in \mathbb{N}_0\}$, and a sequence of smooth functions $\{\psi_n, n \in \mathbb{N}_0\}$ such that $\mathcal{R}\psi_n = \lambda_n\psi_n$, $n \in \mathbb{N}_0$. Furthermore, suppose that the sequence $\{\lambda_n, n \in \mathbb{N}_0\}$ monotonically tends to infinity and that $\{\psi_n, n \in \mathbb{N}_0\}$ forms a complete orthonormal system in $L^2(I)$. We can enumerate the sequences $\{\lambda_n, n \in \mathbb{N}_0\}$ and $\{\psi_n, n \in \mathbb{N}_0\}$, so that $|\lambda_0| \leq |\lambda_1| \leq |\lambda_2| \leq \ldots$. Put $\tilde{\lambda}_n = \lambda_n$ if $\lambda_n \neq 0$ and $\tilde{\lambda}_n = 1$, if $\lambda_n = 0$, $n \in \mathbb{N}_0$. The sequence $\{\tilde{\lambda}_n, n \in \mathbb{N}_0\}$ is nondecreasing and $|\tilde{\lambda}_n| \to \infty$. Let $\mathcal{R}^{k+1} = \mathcal{R}(\mathcal{R}^k)$, $k \in \mathbb{N}_0$, where $\mathcal{R}^0 = \mathcal{J}$, \mathcal{J} is the identity operator. In [8], the scale of spaces \mathcal{A}_k , $k \in \mathbb{N}_0$ is defined in the following way:

$$d_{k} = \left\{ \phi \in L^{2}(I) \colon \phi = \sum_{n=0}^{\infty} a_{n} \psi_{n}, \|\phi\|_{k} = \sum_{n=0}^{\infty} |a_{n}|^{2} |\tilde{\lambda}_{n}|^{2k} < \infty \right\}, \quad k \in \mathbb{N}_{0}$$

Put

$$A = \bigcap_{k=0}^{\infty} A_k = \left\{ \phi \in L^2(I) \colon f = \sum_{m=0}^{\infty} a_m \psi_m, \quad \forall k, \quad \|\phi\|_k < \infty \right\}.$$

The set

$$S = \left\{ \phi = \sum_{n=0}^{8} (a_n + ib_n) \psi_n, s \in \mathbb{N}_0, a_n, b_n \in Q \right\}$$

(Q is the set of rational numbers), is a countable dense set in each A_k , $k \in \mathbb{N}_0$, and hence in A. Also, since $S \subset A$, A is dense in each A_k , $k \in \mathbb{N}_0$. Thus A_k , $k \in \mathbb{N}_0$, is the completition of A with respect to the norm $\|\cdot\|_{L^2}$.

Let $A'(A'_k)$ be the dual space of the space A, (A'_k) $k \in \mathbb{N}_0$. Then we have

$$A' = \bigcup_{k=0}^{\infty} A_k$$

From [13, ch. 9.3. and 9.6.] it follows that

$$(\psi_{\underline{\mathbf{m}}}, \mathcal{R}^{\underline{\mathbf{k}}}\phi) = (\mathcal{R}^{\underline{\mathbf{k}}}\psi_{\underline{\mathbf{m}}}, \phi), \quad \mathbf{m}, \mathbf{k} \in \mathbb{N}_0, \quad \phi \in \mathcal{A}$$

where for

$$\phi \in A$$
, $f \in A'$, $(f,\phi) = \langle f, \overline{\phi} \rangle$.

3. Generalized random processes on &

Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space. Throughout this paper we shall assume that $(\Omega, \mathcal{F}, \mathcal{P})$ is fixed.

Definition 3.1. A generalized random processes on A is a mapping $\xi\colon \Omega\times A\to C$ such that

- (i) $\forall \phi \in A$, $\xi(\cdot,\phi)$ is a random variable on Ω ,
- (ii) $\forall \omega \in \Omega$, $\xi(\omega, \cdot)$ is an element from A'.

In [9] representation theorems for a g.r.p. on A were obtained. In this paper we shall need only the representation of a g.r.p. on A on a set $B \in \mathcal{F}$ with arbitrary large probability.

Theorem 3.1. Let ξ be a g.r.p. on A. Then for every $\varepsilon > 0$ there exist a set $B \in \mathcal{F}$, with $P(B) \ge 1-\varepsilon$, an integer $k_0 = k_0(\varepsilon) \in \mathbb{N}_0$, and a sequence of random variables on Ω , $\{c_-, m \in \mathbb{N}_0\}$ such that

(2.1)
$$\xi(\omega,\phi) = \sum_{n=0}^{\infty} c_n(\omega)(\psi_n,\phi), \quad \omega \in \mathbb{B}, \quad \phi \in A$$

and

$$\left[\sum_{n=0}^{\infty} \left|c_{n}(\omega)\right|^{2} \tilde{\lambda}_{n}^{-2k_{0}}\right]^{1/2} < k_{0}, \quad \omega \in B.$$

The proof is given in [9, Theorem 3.1.]. See also [1,11,13] .

We define the differential operator $(\mathcal{R}')^k$, $k \in \mathbb{N}_0$ on the set of g.r.p.-s by

$$\left(\mathcal{R}'\right)^k\ \xi(\omega,\phi)\ =\ \xi\ \left(\omega,\mathcal{R}^k\phi\right),\quad \omega\in\Omega,\quad \phi\in\mathcal{A}\ .$$

$$\left(\mathcal{R}'\right)^{k+1} = \mathcal{R}'\left(\left(\mathcal{R}'\right)^{k}\right), \quad k \in \mathbb{N}_{0} \quad \left(\mathcal{R}'\right)^{0} = \mathcal{J}$$

We shall denote \mathcal{R}' by $\mathcal{R}.$ Put $~\Lambda = \left\{ n \in \mathbb{N}_0 \colon \lambda_n = 0 \right\}$, $~\Lambda^c = ~\mathbb{N}_0 \backslash \Lambda$.

Theorem 3.2. Let ξ be a g.r.p. on A. For every $\varepsilon > 0$ there exist a set $B \in \mathcal{F}$ with $P(B) \geq 1-\varepsilon$, an integer $k_0 = k_0(\varepsilon)$, a function $X_k \colon \Omega \times I \to \mathbb{C}$ and random variables $\{c_1, m \in \mathbb{N}_0\}$ such that for every $k \geq k_0$.

(3.3)
$$\xi(\omega,\phi) = \int_{T} X_{k}(\omega,t) \, \mathcal{R}^{k} \phi(t) dt + \int_{\mathbf{m} \in \Lambda} c_{\mathbf{m}}(\omega) (\psi_{\mathbf{m}},\phi), \quad \omega \in \mathbb{B}, \quad \phi \in \mathcal{A},$$

(3.4)
$$\|X_{k}(\omega, \cdot)\|_{L^{2}} < k, \quad \omega \in B.$$

The proof of (3.3) is the same as in [9, Theorem 3.3. and 3.4.]. We note only that here, we shall take X_{i} in the form

$$X_{\mathbf{k}}(\omega,t) = \sum_{m=0}^{\infty} b_{m}(\omega)\psi_{m}(t)$$
, $t \in \mathbb{I}$, $\omega \in \Omega$,

where

$$b_{m}(\omega) = \begin{cases} c & (\omega) \tilde{\lambda}^{-k}, & \omega \in \mathbb{B} \\ & & m \in \mathbb{N} \\ 0, & \omega \notin \mathbb{B} \end{cases}.$$

We have that $[X_k(\omega,\cdot)]_{1/2}$, $\omega \in \Omega$ is a random variable, since

$$\|X_{\mathbf{k}}(\omega,\cdot)\|_{L^{2}} = \begin{cases} \sup \left\{ \left| \xi(\omega,\phi) \right|, \phi \in S_{\mathbf{r}}, \|\phi\|_{\mathbf{k} \leq 1} \right\}, & \omega \in \mathbb{B} \\ 0, & \omega \notin \mathbb{B} \end{cases} =$$

$$= \left\{ \begin{bmatrix} \sum_{m=0}^{\infty} |c_{m}(\omega)|^{2} \tilde{\lambda}_{m}^{-2k} \end{bmatrix}^{1/2}, \quad \omega \in \mathbb{B} \\ 0 \quad \qquad \langle k \rangle \right\}$$

In [9] the following conditions were posed on sequence $\{\lambda_m, n \in \mathbb{N}_0\}$ and $\{\psi_m, m \in \mathbb{N}_0\}$ in order to obtain the representation with a continuous process X_k . By a continuous process on $\Omega \times I$ we shall mean the process that is, for almost every $\omega \in \Omega$, a continuous function on I.

- (*) There exist $s_0 \in \mathbb{N}_0$ and a constant K such that, for $s \ge s_0$ $\sup \left\{ \left| \psi_{\mathbf{m}}(t) / \tilde{\lambda}_{\mathbf{m}}^{\mathbf{S}} \right| : \mathbf{m} \in \mathbb{N}_0, \quad t \in \mathbb{I} \right\} < K.$
- (•) There exist p ∈ N such that for p ≥ p

$$\sum_{m=0}^{\infty} |\tilde{\lambda}_m|^{-2p} < \infty .$$

Theorem 3.3. Let ξ be a g.r.p. on A. Then, for every $\varepsilon > 0$ there exist a set $B \in \mathcal{F}$, with $P(B) \ge 1-\varepsilon$, an integer $k_0 = k_0(\varepsilon)$, random variables $k_0 = k_0(\varepsilon)$, and a continuous random process $K_k(\omega,t)$ on $\Omega \times I$, such that for $k \ge k_0$, $p \ge p_0$, $s \ge s_0$.

(3.5)
$$\xi(\omega,\phi) = \int_{t} X_{k}(\omega,t) \, \mathcal{R}^{k+p+8} \phi(t) dt + \sum_{m \in \Lambda} c_{m}(\omega) (\psi_{m},\phi), \quad \omega \in B, \quad \phi \in A,$$

The proof is similar to the proof of Theorem 3.5., [9], where the same representation as in (3.5) was obtained on a set $A \in \mathcal{F}$, with P(A)=0, under an additional condition. Relation (3.6) follows in the same way as in Theorem 3.2. Again, we note that X_{i} has the form

$$X_{\mathbf{k}}(\omega,t) = \begin{cases} \sum_{m=0}^{\infty} c_{m}(\omega) \tilde{\lambda}_{m}^{-(\mathbf{k}+\mathbf{p}+\mathbf{n})} \psi_{m}(t), & \omega \in \mathbb{B}, & t \in \mathbb{I} \\ 0, & \omega \notin \mathbb{B}, & t \in \mathbb{I} \end{cases}$$

4. Convergence of generalized random processes on A

We shall give the definitions of different types of convergences of a sequences of g.r.p.-s on A, following [4].

Definition 4.1. The sequence $\{\xi_n, n \in \mathbb{N}_0\} = \{\xi_n\}$ of g.r.p.-s on A is said to converge to the g.r.p. ξ in probability (A') if for every $\varepsilon > 0$ there exists $k \in \mathbb{N}_0$ such that

$$\lim_{n\to\infty} P\left\{\omega\in\Omega\big|\sup_{\left\|\phi\right\|_{\mathbf{k}}\le 1}\left|\xi_n(\omega_1,\phi)-\xi(\omega,\phi)\right|\ge\varepsilon\right\}=0$$

In short, we shall write

$$\xi_n \xrightarrow{P} \xi (A')$$

Definition 4.2. The sequence $\{\xi_n\}$ of g.r.p.-s on A is said to converge to the g.r.p. ξ im mean (A') if there exists $k \in \mathbb{N}_0$ such that

$$\lim_{n\to\infty}\int\limits_{\Omega}\sup_{\|\phi\|_{\mathbf{k}}\leq 1}\left|\xi_{n}(\omega,\phi)-\xi(\omega,\phi)\right|d\mathsf{P}(\omega)=0$$

In short, we shall write

$$\xi_n \xrightarrow{1} \xi (A')$$

Obviously, convergences in probability [mean] (\mathbf{A}') given above imply the weak convergences in probability [mean].

Definition 4.3. (see also [9]). The sequence $\{\xi_n\}$ of g.r.p.-s on A is said to converge to a g.r.p. ξ almost surely (A'), if there exists a set $Z \in \mathcal{F}$, with P(Z)=0 and for $\omega \in \Omega \setminus Z$, $\xi_n(\omega,\cdot) \to \xi(\omega,\cdot)$ weakly.

In [9] representation theorems for a sequence of g.r.p.-s on A converging almost surely (A') were obtained. To obtain representation theorems of g.r.p.-s converging in probability and mean (A') we need a bound condition as in B(ii) of Theorem 4.1. of [9]. See also [4]. Thus we give:

Definition 4.4. The sequence $\{\xi_n\}$ of g.r.p.-s on **4** is said to converge to the g.r.p. ξ boundedly in probability [mean] (**4**), if

(1)
$$\xi_n \xrightarrow{P} \xi (A'), \quad [\xi_n \xrightarrow{1} \xi (A')]$$

(ii) there exists a set $Z \in \mathcal{F}$, such that P(Z)=0 and for $\omega \in \Omega \setminus Z \setminus \{\xi_n(\omega, \cdot)\}$ is bounded in (A').

In short, we shall write $\xi_n \stackrel{P}{b} \xi (A')$, $[\xi_n \stackrel{1}{b} \xi (A')]$.

$$Obviously, \quad \xi_n \xrightarrow{P} \xi \ (A') \ \Rightarrow \xi_n \xrightarrow{P} \xi \ (A') \quad [\xi_n \ \xrightarrow{1} \xi \ (A')] \ \Rightarrow \ [\xi_n \ \xrightarrow{1} \xi \ (A')] \ .$$

We have that (see [4,9]) condition (11) of the above definition is equivalent to

(ii') For every $\varepsilon > 0$ there exists set $B \in \mathcal{F}$, with $P(B) \ge 1-\varepsilon$, an integer $k \in \mathbb{N}_0$, independent of n, such that for every $\omega \in B$, $\phi \in \mathcal{A}$, $\xi_n(\omega,\phi) | \le k \|\phi\|_k$.

Since $\xi_n \to \xi$ iff $\xi_n - \xi \to 0$, we shall consider the case $\xi_n \to 0$.

Theorem 4.1. Let $\{\xi_n\}$ be a sequence of g.r.p.-s on 4. If $\xi_n \to 0$ boundedly in probability [mean] (A'), then for every $\varepsilon > 0$ there exist a set $B \in \mathcal{F}$, such that $P(B) \ge 1-\varepsilon$, an integer $k \in \mathbb{N}_0$, independent of n, and for every $n \in \mathbb{N}_0$, a sequence $\{c_n, n \in \mathbb{N}_0\}$ of random variables on Ω , such that

(4.1)
$$\xi_{n}(\omega,\phi) = \sum_{m=0}^{\infty} c_{m,n}(\omega)(\psi_{m},\phi), \quad \omega \in \mathbb{B}, \quad \phi \in A$$

(4.2)
$$\left[\sum_{m=0}^{\infty} |c_{m,n}(\omega)|^2 |\tilde{\lambda}_m|^{-2k_0} \right]^{1/2} \le k_0, \quad \omega \in B.$$

(4.3) for each $\delta > 0$

$$P\left\{\omega \in B: \left[\sum_{m=0}^{\infty} |c_{m,n}(\omega)|^{2} |\tilde{\lambda}_{m}|^{-2k_{0}}\right]^{1/2} > \delta\right\} \to 0, \quad n \to \infty,$$

$$\left[\int_{B} \left[\sum_{m=0}^{\infty} |c_{m,n}(\omega)|^{2} |\tilde{\lambda}_{m}|^{-2k_{0}}\right]^{1/2} dP(\omega) \to 0, \quad n \to \infty\right],$$

$$P\left\{\omega \in B: |c_{m,n}(\omega)| > \delta\right\} \to 0, \quad n \to \infty, \quad m \in \mathbb{N}_{0}$$

Proof. Assume that $\xi_n \xrightarrow{P} 0$ (A'), $[\xi_n \xrightarrow{1} 0$ (A')] and let $\varepsilon > 0$ given. From equivalence (ii) and (ii'), there exist a set $B \in \mathcal{F}$, with $P(B) \ge 1-\varepsilon$ and an integer $k_0 \in \mathbb{N}$ such that for each $\omega \in B$ and $\phi \in A$, $|\xi_n(\omega, \phi)| \le k_0 \|\phi\|_{k_0}$. Thus, (4.1) and (4.3) follow from Theorem 3.1.

We have that (see the proof of Theorem 3.1. of [9])

$$\sup_{\left\|\phi\right\|_{\mathbf{k}_{0}}\leq1}\left|\xi_{n}(\omega,\phi)\right|=\left[\sum_{\mathbf{m}=0}^{\infty}\left|c_{\mathbf{m},n}(\omega)\right|^{2}\left|\tilde{\lambda}_{\mathbf{m}}\right|^{-2\mathbf{k}_{0}}\right]^{1/2},\ \omega\in\mathbf{B}.$$

Thus, for $\delta > 0$

$$P\left\{ \omega \in B : \left[\sum_{m=0}^{\infty} \left| c_{m,n}(\omega) \right|^2 \left| \widetilde{\lambda}_{m} \right|^{-2k_0} \right]^{1/2} \ge \delta \right\} =$$

$$\begin{split} & P \left\{ \left. \omega \in \mathbb{B} : \sup_{\left\| \phi \right\|_{k_{0}} \leq 1} \left| \xi_{n}(\omega, \phi) \right| \geq \delta \right. \right\} \leq \\ & \leq P \left\{ \left. \omega \in \omega : \sup_{\left\| \phi \right\|_{k_{0}} \leq 1} \left| \xi_{n}(\omega, \phi) \right| \geq \delta \right. \right\} \to 0, \quad n \to \infty \right. \\ & \left[\left. \int_{\mathbb{B}} \left[\left. \int_{\mathbf{m}=0}^{\infty} \left| c_{\mathbf{m},n}(\omega) \right|^{2} \left| \widetilde{\lambda}_{\mathbf{m}} \right|^{-2k_{0}} \right. \right]^{1/2} dP(\omega) = \int_{\mathbb{B}} \sup_{\left\| \phi \right\|_{k_{0}} \leq 1} \left| \xi_{n}(\omega, \phi) \left| dP(\omega) \right. \right. \\ & \leq \int_{\Omega} \sup_{\left\| \phi \right\|_{k_{0}} \leq 1} \left| \xi_{n}(\omega, \phi) \left| dP(\omega) \right. \to 0 \right. , \quad n \to \infty \right. \right]. \end{split}$$

Putting $\phi = \psi_n$ in (4.1) we get that, for $m \in \mathbb{N}_0$, $\delta > 0$

$$\mathbb{P}\left\{\left.\omega\in\mathbb{B}:\;\left|c_{m,n}(\omega)\right|>\delta\right.\right\}\to0\;,\quad n\to\infty\;.$$

To prove the converse, we need an additional assumption.

Theorem 4.2. The sequence $\{\xi_n\}$ converges to zero boundedly in probability [mean] (A'), if the following conditions hold.

There exist $k \in \mathbb{N}_0$ such that for every $p \in \mathbb{N}$ there exists a set $B \in \overline{\mathcal{F}}$, with $P(B) \ge 1 - \frac{1}{D}$, such that

(4.1')
$$\xi_{\mathbf{n}}(\omega,\phi) = \sum_{\mathbf{m}=0}^{\infty} c_{\mathbf{m},\mathbf{n}}(\omega)(\psi_{\mathbf{m}},\phi), \quad \omega \in \mathbb{B}_{\mathbf{p}}, \quad \phi \in A$$

(4.2')
$$\left[\sum_{m=0}^{\infty} \left|c_{m,n}(\omega)\right|^{2} \left|\tilde{\lambda}_{m}\right|^{-2k}\right]^{1/2} < k, \quad \omega \in \mathbb{B}_{p},$$

(4.3') for every $\delta > 0$

$$P\left\{ \omega \in B_{p} : \left[\sum_{m=0}^{\infty} \left| c_{m,n}(\omega) \right|^{2} \left| \tilde{\lambda}_{m} \right|^{-2k} \right]^{1/2} > \delta \right\} \longrightarrow 0, \quad n \to \infty,$$

$$\left[\int_{B_{p}} \left[\sum_{m=0}^{\infty} \left| c_{m,n}(\omega) \right|^{2} \left| \tilde{\lambda}_{m} \right|^{-2k} \right]^{1/2} dP(\omega) \longrightarrow 0, \quad n \to \infty \right].$$

Proof. Put $\epsilon=1/p$. Then we have that for every $p \in \mathbb{N}$ there exists a set $B \in \mathcal{F}$ with $P(B_p) \geq 1 - 1/p$, such that (4.1'), (4.2'), (4.3') hold. Let $\Omega = \bigcup_{p=0}^{\infty} B_p$. We have that $P(\Omega_1)=1$, and for $\omega \in \Omega$, $\phi \in \mathcal{A}$

$$\left|\left|\xi_{n}^{*}(\omega,\phi)\right|\right|=\left[\left|\sum_{n=n}^{\infty}c_{n,n}(\omega)\right|^{2}\left|\tilde{\lambda}_{n}\right|^{-2k}\right]\left|\phi\right|_{k},\,\,\leq\,k\left|\phi\right|_{k},$$

thus (ii) is satisfied.

To prove (i), let $\varepsilon > 0$ be given. Then, there exists, $p \in \mathbb{N}$ such that $P(B_p) \ge 1 - \frac{\varepsilon}{2}$. Also, from (4.3') it follows that there exists $n_0 = n_0(\varepsilon, \delta)$, such that for $n \ge n_0$, $\delta > 0$

$$P\left\{\omega\in B_{p}:\left[\sum_{m=0}^{\infty}\left|c_{m,n}(\omega)\right|^{2}\left|\tilde{\lambda}_{m}\right|^{-2k}\right]^{1/2}>\delta\right\}<\frac{\varepsilon}{2}$$

Since

$$\sup_{\|\phi\|_{\omega} \le 1} \left| \xi_{n}(\omega, \phi) \right| = \left[\sum_{m=0}^{\infty} c_{m,n}(\omega) \right|^{2} \left| \tilde{\lambda}_{m} \right|^{-2k} \right]^{1/2}, \quad \omega \in \mathbb{B}_{p}$$

we have for every $\delta > 0$, and $n \ge n_0$

$$P\left\{\omega \in \Omega_{1}: \sup_{\left\|\phi\right\|_{\mathbb{K}_{0}}} \left|\xi_{n}(\omega,\phi)\right| > \delta\right\} = P\left\{\omega \in \mathbb{B}_{p}: \left[\sum_{m=0}^{\infty} \left|c_{m,n}(\omega)\right|^{2} \left|\tilde{\lambda}_{m}\right|^{-2k}\right]^{1/2} > \delta\right\} + C\left(\frac{1}{2}\right)^{2} \left|\xi_{n}(\omega,\phi)\right| > \delta$$

$$+ P\left\{\omega \in B_{p}^{c} \colon \sup_{\left\|\phi\right\|_{k_{-}} \leq 1} \left|\xi_{n}(\omega,\phi)\right| > \delta\right\} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} , \quad n \geq n_{0}(\varepsilon,\delta).$$

[For $\varepsilon > 0$ there exist $p \in \mathbb{N}$ and $B_p \in \mathcal{F}$, $P(B_p) \ge 1 - \frac{\varepsilon}{2k}$. From (4.3') it follows that there exists $n_0 = n_0(\varepsilon)$ such that for $n \ge n_0$

$$\int_{B_{n}} \left[\sum_{m=0}^{\infty} c_{m,n}(\omega) |^{2} |\tilde{\lambda}_{m}|^{-2k} \right]^{1/2} dP(\omega) < \frac{\varepsilon}{2}$$

Hence,

$$\begin{split} \int_{\Omega_1} \sup_{\|\phi\|_{k_0}} & \leq 1 \left| \xi_n(\omega, \phi) \right| dP(\omega) = \int_{B_p} \sup_{\|\phi\|_{k_0}} & \leq 1 \left| \xi_n(\omega, \phi) \right| dP(\omega) + \\ & \int_{B_p^c} \sup_{\|\phi\|_{k_0}} & \leq 1 \left| \xi_n(\omega, \phi) \right| dP(\omega) \leq \\ & \leq \int_{B_p} \left[\sum_{m=0}^{\infty} \left| c_{m,n}(\omega) \right|^2 \left| \tilde{\lambda}_m \right|^{-2k} \right]^{1/2} dP(\omega) + k \int_{B_p^c} dP(\omega) \leq \frac{\varepsilon}{2} + k \cdot \frac{\varepsilon}{2k} = \varepsilon \end{split}$$
 for $n \geq n_0$.

Theorem 4.3. Let $\{\xi_n\}$ be a sequence of g.r.p.-s on A. If $\xi_n \xrightarrow{P} 0$ (A') $\{\xi_n \xrightarrow{P} 0 \ (A')\}$ then for every $\varepsilon > 0$ there exist a set $B \in \mathcal{F}$, with $P(B) > 1-\varepsilon$, an integer $k \in \mathbb{N}_0$, both independent of n, for each $m \in \Lambda$ a sequence of random variables $\{c_{m,n}, n \in \mathbb{N}_0\}$, and for every $k \ge k_0$ a sequence of functions $X_{k,n}$ of $\Omega \times I$, such that

$$(4.5) \quad \xi_{\mathbf{n}}(\omega,\phi) = \int_{\mathbf{I}} X_{\mathbf{k}}(\omega,t) \, \mathcal{R}^{\mathbf{k}}\phi(t)dt + \sum_{\mathbf{m}\in\Lambda} c_{\mathbf{m},n}(\omega)(\psi_{\mathbf{m}},\phi) \, , \quad \omega\in\mathbf{B}, \quad \phi\in\mathbf{A} \, ,$$

$$\|X_{k,n}(\omega,\cdot)\|_{L^{2}} < k, \quad \omega \in \Omega$$

$$\|X_{k,n}(\omega,\cdot)\|_{L^{2}} \xrightarrow{P} 0, \quad \left[\|X_{k,n}(\omega,\cdot)\|_{L^{2}} \xrightarrow{1} 0\right]$$

(4.8) for every
$$\delta > 0$$
 $P\left\{\omega \in \mathbb{B} : \left[\sum_{m \in \Lambda} \left|c_{m,n}(\omega)\right| > \delta\right\} \to 0, n \to \infty\right\}$
$$\left[\int_{\mathbb{R}^{m} \in \Lambda} \left|c_{m,n}(\omega)\right| dP \to 0, n \to \infty\right]$$

Proof. From Theorem 3.2. and the equivalence of (ii) and (ii'), (4.5) follows where for $n \in \mathbb{N}_0$, $k \ge k_0$

$$X_{k,n}(\omega,t) = \begin{cases} \sum_{m=0}^{\infty} c_{m,n}(\omega) \tilde{\lambda}_{m}^{-k} \psi_{m}(t), & \omega \in \mathbb{B}, & t \in \mathbb{I} \\ 0, & \omega \notin \mathbb{B}, & t \in \mathbb{I} \end{cases}$$

Thus we have,

$$\|X_{k,n}(\omega,\cdot)\|_{L^{2}}^{2} = \begin{cases} \sum_{m=0}^{\infty} |c_{m,n}(\omega)|^{2} |\tilde{\lambda}_{m}|^{-2k}, & \omega \in \mathbb{B}, \quad t \in \mathbb{I} \\ 0, & \omega \notin \mathbb{B}, \quad t \in \mathbb{I} \end{cases}$$

and, for $\omega \in B$, $\phi \in A$

$$\|X_{k,n}(\omega,\cdot)\|_{L^{2}} = \sup_{\|\phi\|_{k}} |\xi_{n}(\omega,\phi)|$$

Thus, for every $\delta > 0$

$$\mathbb{P}\,\left\{\,\omega\,\notin\,\mathbb{B}\,:\,\,\left\|X_{k,\,\mathfrak{n}}(\omega,\,\cdot\,)\,\right\|_{L^{2}}\,>\,\delta\,\,\right\}\,,$$

and therefore

$$P\left\{\left.\omega\in\Omega:\left\|X_{k,n}(\omega,\cdot)\right\|_{L^{2}}>\delta\right\}=$$

$$=P\left\{\left.\omega\in\mathbb{B}:\left\|X_{k,n}(\omega,\cdot)\right\|_{L^{2}}>\delta\right\}=P\left\{\left.\omega\in\mathbb{B}:\sup_{\left\|\phi\right\|_{k}\leq1}\left|\xi_{n}(\omega,\phi)\right|>\delta\right\}\leq$$

$$\leq P\left\{\left.\omega\in\Omega:\sup_{\left\|\phi\right\|_{k}\leq1}\left|\xi_{n}(\omega,\phi)\right|>\delta\right\}\rightarrow0,\quad n\rightarrow\infty.$$

Thus, $X_{k,n}(\omega,\cdot) \downarrow_{2} \rightarrow 0$.

$$\begin{split} & \left[\int\limits_{\Omega} \|X_{k,n}(\omega,\cdot)\|_{L^{2}} dP(\omega) = \int\limits_{B} \|X_{k,n}(\omega,\cdot)\|_{L^{2}} dP(\omega) = \\ & = \int\limits_{B} \sup_{\|\phi\|_{k}} |\xi_{n}(\omega,\phi)| dP(\omega) \leq \int\limits_{\Omega} \sup_{\|\phi\|_{k}} |\xi_{n}(\omega,\phi)| dP(\omega) \to 0 \right]. \end{split}$$

Hence (4.7) follows.

For $m \in \Lambda$ put $\phi = \psi_m$ in (4.5) and we get $P\left\{ \omega \in B \mid |c_{m,n}(\omega)| > \delta \right\} \to 0$ $m \in \Lambda$. Since Λ is finite, (4.8) follows.

Theorem 4.4. $\xi_n \xrightarrow{P} 0$ (A') $[\xi_n \xrightarrow{1} 0$ (A')] if there exist $k \in \mathbb{N}_0$ such that for every $p \in \mathbb{N}$ there exist $B_p \in \mathcal{F}$ with $P(B_p) \ge 1 - 1/p$ such that

$$(4.5') \quad \xi_{\mathbf{n}}(\omega,\phi) = \int_{\mathbf{I}} X_{\mathbf{k}}(\omega,t) \, \mathcal{R}^{\mathbf{k}} f(t) dt + \sum_{\mathbf{m} \in \Lambda} c_{\mathbf{m},\mathbf{n}}(\omega) (\psi_{\mathbf{m}},\phi) \,, \quad \omega \in \mathbb{B}_{\mathbf{p}}, \quad \phi \in \mathcal{A} \,,$$

$$\|X_{k,n}(\omega,\cdot)\|_{2} < k, \quad \omega \in \Omega$$

$$(4.7') \quad \left\|X_{k,n}(\omega,\cdot)\right\|_{L^2} \xrightarrow{P} 0 \ , \ n \to \infty, \qquad \left[\left\|X_{k,n}(\omega,\cdot)\right\|_{L^2} \xrightarrow{1} 0, \ n \to \infty\right] \ .$$

(4.8) for every
$$\delta > 0$$
 $P\left\{\omega \in B_{p} : \left[\sum_{m \in \Lambda} |c_{m,n}(\omega)| > \delta\right\} \to 0, n \to \infty\right\}$
$$\left[\int \sum_{m \in \Lambda} |c_{m,n}(\omega)| dP \to 0, n \to \infty\right].$$

The proof is the same as the proof of Theorem 4.2. Since

$$\|X_{k,n}(\omega,\cdot)\|_{L^{2}} = \begin{cases} \sup_{\|\phi\|_{k} \le 1} |\xi_{n}(\omega,\phi)|, & \omega \in B_{p} \\ 0, & \omega \notin B_{p}. \end{cases}$$

Suppose that (*) and (**) are satisfied.

Theorem 4.5. Let $\{\xi_n^{-1}\}$ be a sequence of g.r.p.-s on d. If $\xi_n^{-\frac{p}{b}} \neq 0$ (d') $[\xi_n^{-\frac{1}{b}} \neq 0$ (d')], then for every $\epsilon > 0$ there exist a set $B \in \mathcal{F}$ with $P(B) \geq 1-\epsilon$, an integer $k_0 \in \mathbb{N}_0$, both independent of n, for each $m \in \mathbb{N}_0$ sequence of random variables $\{c_{m,n}(\omega), n \in \mathbb{N}_0\}$, and for every $k \geq k_0$ a sequence of continuous random processes $X_{k,n}$ on $\Omega \times I$, such that, for $n \in \mathbb{N}_0$

$$(4.9) \quad \xi_{\mathbf{n}}(\omega,\phi) = \int\limits_{\mathbf{I}} X_{\mathbf{k},\mathbf{n}}(\omega,t) \mathcal{R}^{\mathbf{k}+\mathbf{p}+\mathbf{n}} \phi(t) dt + \sum\limits_{\mathbf{m} \in \Lambda} c_{\mathbf{m},\mathbf{n}}(\omega) (\psi_{\mathbf{m}},\phi), \ \omega \in \mathbb{B}, \ \phi \in \mathbb{A},$$

where $s \ge s_0$, $p \ge p_0$.

(4.10)
$$\|X_{k,n}(\omega,\cdot)\|_{L^2} < k, \quad \omega \in \Omega$$
,

(4.11) $\{X_{k,n}(\omega,\cdot)\}$ is equicontinuous on I, for $p > p_0$,

(4.12) for each
$$t \in I$$
, and $k > k_0 \quad X_{k,n}(\cdot,t) \xrightarrow{P} 0$, $n \to 0$,
$$\left[X_{k,n}(\cdot,t) \xrightarrow{1} 0, \ n \to \infty \right]$$

(4.13) for every
$$\delta > 0$$
 $P\left\{\omega \in B_p : \left|\sum_{m \in A} \left|c_{m,n}(\omega)\right| > \delta\right\} \to 0, n \to \infty$
$$\left[\int_{\mathbb{R}} \left|\sum_{m \in A} \left|c_{m,n}(\omega)\right| dP \to 0, n \to \infty\right].$$

Proof. From Theorem 3.3. and equivalence of (ii) and (ii') (4.9) follow, where for $n \in \mathbb{N}_0$, $k \ge k_0$

$$X_{k,n}(\omega,t) = \begin{cases} \sum_{m=0}^{\infty} c_{m,n}(\omega) \tilde{\lambda}_{m}^{-(k+p+m)} \psi_{m}(t), & \omega \in \mathbb{B}, & t \in \mathbb{I} \\ 0, & \omega \notin \mathbb{B}, & t \in \mathbb{I} \end{cases}$$

(4.10) and (4.13) follow in the same manner as in Theorem 4.3. The proof of (4.11) is given in Theorem 4.3. of [9].

To prove (4.12) it is enough to see that

$$\begin{split} \left| X_{k,n}(\omega,t) \right| & \leq \sum_{m=0}^{\infty} \left| c_{m,n}(\omega) \right| \left| \tilde{\lambda}_{m} \right|^{-k} \left| \psi_{m}(t) \right| \left| \tilde{\lambda}_{m} \right|^{-m} \left| \tilde{\lambda}_{m} \right|^{-p} \\ & \leq K^{2} \left| C \left[\sum_{m=0}^{\infty} \left| c_{m,n}(\omega) \right|^{2} \left| \tilde{\lambda}_{m} \right|^{-2k} \right]^{1/2}, \quad \omega \in \mathbb{B} \; , \end{split}$$

where $\sum_{m=0}^{\infty} |\hat{\lambda}_m|^{-2p} = C$. Since $X_{k,n}(\omega,t)=0$, $\omega \notin B$ we have, for every $\delta>0$, and $t_0 \in I$

$$P\left\{\omega\in\Omega\mid\mid X_{k,n}(\omega,t_0)\mid>\delta\right\}\leq P\left\{\omega\in B:\left[\sum_{m=0}^{\infty}\left|c_{m,n}(\omega)\right|^2\left|\tilde{\lambda}_m\right|^{-2k}\right]^{1/2}>\delta\right\}\leq$$

$$\leq P\left\{\omega\in\Omega:\sup_{\left\|\phi\right\|_{k}}\left|\left|\xi_{n}(\omega,\phi)\right|>\delta\right\}\to0,\quad n\to\infty\ .$$

$$\left[\int\limits_{\Omega}\left|X_{k,n}(\omega,t_0)\right|dP(\omega)=\int\limits_{B}\left|X_{k,n}(\omega,t_0)\right|dP(\omega)=\int\limits_{B}\left[\int\limits_{m=0}^{\infty}\left|c_{m,n}(\omega)\right|^2\left|\tilde{\lambda}_m\right|^{-2k}\right]^{1/2}dP(\omega)\right]$$

The converse of Theorem 4.5. is not true.

References

- 1. C. Chaning: Representation of random linear functional on certain $S\{H_p\}$ spaces, Studia Math. 64 (1979), 195-212.
- I.M. Gel'fand and N. Vilenkin: Generalized functions, Vol. 4, Academic Press, New York, 1964.
- P.R. Halmosh: Measure Theory, D. Van Nostrand Company, Inc. Toronto, New York, London, 1950.
- **4. L.J. Kitchens:** Convergence of random functionals on $K\{M_p\}$ spaces, · (preprint).

- 5. L.J. Kitchens: Almost sure representation of random functionals on K(M_L) spaces, (preprint).
- M. Loeve: Probability Theory, D. Van Nostrand Company, Inc. Toronto, New York, London 1955.
- Z. Lozanov-Crvenković and S. Pilipović: On some classes of generalized random linear functionals, I. Math. Anal. Appl. 129 (1988), 433-442.
- 8. Z. Lozanov-Crvenkovic and S. Pilipovic: A class of generalized random processes with values in $L^2(\Omega)$, Rew. Res. Fac. Sci. N. Sad, ser. math., (to appear).
- Z. Lozanov-Crvenković and S. Pilipović: Generalized random processe on the Zemanian space A, (to appear).
- 10.C.H. Swartz and D.E. Myers: Random functionals on K{N_p{ spaces, Studia. Math. 39 (1971), 233-240; Correction to the paper "Random functionals on K{N_p} spaces", Studia Math. 43 (1972), 273.
- 11.M. Ullrich: Some theorems on random Schwartz distribution, Trans. of the First Prague conference on Information Theory, Statistical Decisions Functions, Random Processes, Prague 1957, pp 273-291.
- 12.M. Ullrich: Representation theorem for random Schwartz distributions, in "Trans. of the 2nd Prague Conference, Prague 1959" 661-666.
- A.G. Zemanian: Integraljnie preobrazovanija obabscenih funkciii, Nauka, Moskva, 1974.

Rezime

KONVERGENCIJA NIZA UOPŠTENIH SLUČAJNIH PROCESA NA ZEMANIANOVOM PROSTORU &

Definisane su i uporedene različite vrste konvergencija niza uopstenih slučajnih procesa na Zemanianovom prostoru 4.

Received by the editors April 15, 1988.