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Abstract

Different types of convergences of a sequence of generalized random

processes on the Zemanlan space 4 are defined and compared.

1. Introduction

Generalized random processes (g.r.p.) were defined by several authors
[1,2,4,5,7,8,9,10,11,12]. Different types of convergences of a sequence of
é.r.p.—s were introduced and investigated in [(4]. In [1,2,4,5,7,10,11,12]
spaces 9 and K{Hp} were taken to be the spaces of test functions and in
[8,9] the Zemanlan space 4. 1ln [1,4,5,7,8,9,10,12] the representation
theorems for a g.r.p. were obtalined.

For a space of test functions we take the space 4, whose.elements
have an orthogonal expansion. The space # and its dual space &’ were
introduced in [13}. Our construction of the spaces 4 and 4’ 1is different
from [13], and the detalls are given in [8].

In [4] the representation theorems for a sequence of g.r.p. on K{Hp}
converging almost surely, 1n probabillty and mean (K’) were obtalined.
Following [4], in (9] representation theorems for a sequence of g.r.p.-s

on converging almost surely (£’) are obtalined.
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In Sections 2., 3. we shall give the baslc definitions and propertles
of space o and of a g.r.p. on A In Section 4. we shall defline various
types of convergences of a sequence of g.r.p.-s and glve representatlon

theorems for sequence. of g.r.p.-s converging in probability and mean ().

2. Spaces f and of

We shall use the notation from [13]. Let 1 be an open interval of the
real line R and Lz(I) be the spaces of the equivalence classes of square
integrable functions with values In the set of compiex numbers, €, with
the usual norm. Denote by ¢”(I) the set of infinitely differentiable
{smooth) functions, by N the set {1,2,...} and let N=Nu {0}. Let R be a
linear differential self-adjoint operator of the form

% Ty
R=6eD'6 ... D8,
o 1 v
such that
_ n, n,_ no_
R = ey(—D) ... (-D) 61(—0) 60 ,

where D=d/dx, nke No' k=1.2,...,v, Ok, k=0,1,...,v, are smooth functions
without zeros on I, and ék are complex conjugates of Bk, k=0,1,...,r,

We suppose that there exist a sequence of real numbers {An, n € No}, and a
sequence of smooth functions {wn, n e No} such that ﬂwn= Anwn, n e No'
Furthermore, suppose that the sequence {An, n e No} monotonically tends to
Infinity and that {wn. ne ND} forms = complete orthonormal system I1n
L?(1). We can enumerate the sequences {An, ne No} and {¢ﬁ' n e'I%}. so
that A } s A} s|a]s... . Pit X=2a If A0 and A =1, if A =0,
0 1 2 n n n n n

n € N. The sequence {xn. ne No} is nondecreasing and |Xn| 5 w. Let
AP R(ﬂk). k € No, where %= J. 3 1s the identity operator. In [8], the
scale of spaces Jk. k € N0 is defined in the following way:

0 w
4k={¢EL2(I):¢=Za¢, fel, =} la 171X |2“<m}, kel
n=0..- a=0 - -
Put

4=n Ak={¢£L2(l): f=z ay ., Vk I¢|l<m}.

n=0
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The set
a .
S = {¢ =-Zota_ +ib )¢, s€N, a,b € Q}
(Q 1s the sebt of rational numbers), is a countable dense set in each ‘n'
k € No' and hence In 4. Also, since S c 4, 4 Is dense in each Jk, k € No.
Thus 4 , k € N, Is the completition of 4 with respect to the norm I-lk.

Let J’(J;) be the dual space of the space 4, (4;) keN.

Then we have
o«
. 4 =1 ‘k
. k=0
From [13, ch. 9.3. and 9.6.] it follows that

(W_, e = (Rkw_.w). mkeN, ¢e A

’
where for

dped fed, (f,¢)=<CL,9).

3. Generalized random processes on o

Let (Q,%,?) be a probability space. Throughout this paper we shall
assume that (Q,%,P) 1s fixed. :

Definition 3.1. A‘zgeneralized random processes on 4 Is a mapping
£ 0 x 4 > € such that
(i) v¢ e d, E(-,9) is a random variable on 1,
(it) Yw € Q, €&(w,+) is an element from 4.
In 9] representation theorems for a g.r.p. on 4 were obtained. In

this paper we shall need only the representation of a g.r.p. on 4 on a set

B € ¥ with arbitrary large probabillty.

Theorem 3.1. Let £ be a g.r.p. on 4. Then for every € > 0 there exist a
set Be ¥, with P(B) =2 1-e, an integer ko=k0(c) € No. and a sequence of

random varijables on R, {c , m e No} such that
",

M )
‘21) £(w, ¢) =X c (wiy.¢), weB ¢ed

=D
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and
« 2 o "2ko 1/2

(3.2) [ zo le ()|® X ] <k,, weB.
aZ

The proof is given in [0, Theorem 3.1.]. See also {1,11,13]
We deflne the differential operator (R’)k, k € No on the set of
g.r.p.-s by '
(R )™ €(lw,9) = £ (w,kaN. weN oPed.

k+1

@) =R (®) ), keN  (R)° =3

14 = . = c=
We shall denote R by R. Put A= {n e N: f«n—o} v K= HNN\AL

Theorem 3.2. Let € be a g.r.p. on 4. For every € > 0 there exist a set
B e ¥ with P(B) 2 1-¢, an integer k°= ko(c), a function xk: QxI>C and

random varlables {c., m € No} such that for every k = k_ .

(3.3) £lw,9) = I X (w,t) Rp(t)dt + Z c (0¥ ,9), weB, ¢ed
n€A
I

(3.4) IX (w,)] , <k. weB.
L
The proof of (3.3) is the same as in [9, Theorem 3.3. and 3.4.]. We
note only that here, we shall take Xk in the form
]

X (0,1) = z b (Ll (1), tel, wven,

n=0

where
c (w) x:k , weB
b (w) = - m € No .
" 0 , weB
We have that IXk(w. ] o @€ 1 is a random variable, since
. L

sup {|€(w. ). ¢ €5, |¢]..,}, weB
'xk("’v')l 2= r ks1 -
L
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In [9] the following conditlons were posed on sequence {Am, ne No}
and {wm, m € No} in order to obtain the representation with a contlinuous
process Xk. By a contlinuous process on l x 1 we shall mean the process

that is, for almost every w € R, a contlinuous functlion on 1.

() There exist 5,€ No and a constant K such that, for s 2 s,

sup {{o (£)/A° | : meWN, tel}l<kK.

(**} There exist P,€ No such that for p 2 P,

©
Z Ii '—2” < o,
m=0 "

Theorem 3.3. Let £ be a g.r.p. on 4. Then, for every € > O there exist a
set Be ¥, with P(B) = 1-e, an integer k0= ko(e), random varlables
‘%-, m e A, and a contlnuous random process Xk(w,t) on 0 x 1, such that

for k= ko' p = Py s = sO

(3.5) Elw,¢) = J X (0, t) R Pg(e)dt + ) c (W, 8), weB ¢ed

n€A
1

(3.8) X tw,9], <k, wen.
L

The proof is similar to the proof of Theorem 3.5., [9]), where the same
representation as In (3.5) was obtalned on a set A € ¥, with P(A)=0, under
an additlional conditlon. Relation (3.6) foliows in the same way as in
Theorem 3.2. . Agaln, we note that Xk has the form
- (k+p+n)
z c (w) A-"RtPE

m m
m=0

Wm(t) , wWeB tel
Xk(w.t) =

4. Convergence of generalized random processes on 4
We shall give the definitons of dlfferent types of convergences of a

sequences of g.r.p.-s on 4, following [4).

Definiton 4.1. The sequence {En. ne No} = {ﬁn} of g.r.p.-s on & is said
to converge to the g.r.p. £ in probability (A’) If for every € > O there

exists k € No such that
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lim P {e e Q| sup |£n(u1,¢) - Euw, )] =€ } =0
n-3m l#l, =1

In short, we shail write

€ Fe )

Definition 4.2. The sequence {En} of g.r.p.-s on 4 is sald to converge to
the g.r.p. € im mean (A’) if there exists k e N0 such that

lim I sup |€ (w,¢) - €(w,9)|dP(w) =0
‘ L e

In short, we shall wurlte
£ Lg )
Obviously, convergences in probablllty [mean] (d4’) given above imply
the weak convergences in probabillty {mean].
Definition 4.3. (see also [9]). The sequence {En} of g.r.p.-s on 4 is said

to converge to a g.r.p. € almost surely (4'), if there exists a set Z € §,
with P(Z)=0 and for w € f\Z, En(w,-) > &(w,-) weakly.

In [9] representatlon theorems for a sequence of g.r.p.-s on A
converging almost surely (d4°) were obtalned. To obtaln representation
theorems of g.r.p.-s convergling in probaﬁillty and mean (4') we need a
bound condition as in B{ii) of Theorem 4.1. of [9]. See also {4]. Thus we
glive:

Definition 4.4. The sequence {E } of g.r.p.-$ on 4 is said to converge to
n
“the g.r.p. € boundedly in probability lmean] (d4'), if
P . 1 .
W) g —>g W), I — & W)

(11) there exists a set Z € ¥, such that P(Z)=0 and for w € 11V 4 {sn(w,-)}
is bounded in (A’).

In short, we shall write En—§+ £ (4), [En —%+ £ (4]

Obviously, € +>& (4) »£ Foe () (6 g ()] (g 1o & (4.

We have that (see 14,9]) condition (ii) of the above definitlon 1is

equlvalent to
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(ii") For every € > O there exists set B e ¥, with P(B) 2 1-e, an integer

k e No, independent of n, such that for every w € B, ¢ € 4 E“(w,¢)|5k|¢|k.

Since Ena £ iff En— £ » O,we shall consider the case Ene 0.

Theorem 4.1. Let {En} be a sequence of g.r.p.-s on d. If £n+ 0 boundedly
in probability {mean) (A’), then for every € > O there exist a set B € 3,
such that P(B) = l-e¢, an Integer koe No' Independent of n, and for every

ne No' a sequence {c " m e NO} of random variables on 1, such that
.,

o
(a.1) € (v, $) =-Zo c.,n(w)(\ll-,Q). weB ¢ed
] 2. —2k0 172
(4. 2) [ Z; |cm."(w)| ]Anl ] < ko , wWeB.

(4.3) for each & > 0

] 2. . -Zlo 172
'P{ueB:[Z le, (@} ]*[X_| ] >6}—>0. nsw,
. w=0 N
B

(4.4) P { weB: | (w)] >3 } 530, n92w, meN
n,n . o

© . -zko 172
[ Z e, W | | ] dP(w) 20, n-ow ] ,
n=0 » D n

o

L)

Proof. Assume that En—ga 0 ), [En —%a 0 (4’)] and let ¢ > O given. From

equivalence (1i) and (fi'), there exist a set B e ¥, with P(B) =2 1-¢ and
an integer k,€ N such that for each w € B and ¢ € A, |£n(w.¢)| = k0|¢|k .
o

Thus, (4.1) and (4.3) follow from Theorem 3.1.
We have that (see the proof of Theorem 3.1. of ([9])

o -2k 1172
] , we€RB

sup |€ (w, )] = [ le. (@ ]?]X ]
oot = [ § oo
0

Thus, for & > 0

ploen: [

2w -Zko 172
e, Pl 0] =a -
m,n n

ir~18
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P{weB:sup |€(w.¢)|26}s
1 n

I¢], =
o
SP{wEw:sup |€n(w.¢)|za}->0. nso,
l¢l, =t
o
m 2 -ZIKO 1/2
[I[ z je. () ]X | ] dP(w) = I sup |€ (w,9)|dP(w) =
m=0 ®en - l =1 n
B B k
o
s[ow |6 0o @@ 20, now].

o lel, =1
L4}

Putting ¢=\0n in (4.1) we get that, for m € No. d>0

P{weB:|c (w)|>6}—’0.n—ym.
a,n
To prove the converse, we need an additional assumption.
Theorem 4.2. The sequence {En} converges to zero boundedly In probability
[mean] (d4’), if the follewing conditions hold.

There exist k € INO such that for every p € N there exists a set Bpe %,
with P(B) =2 1 - % , such that

o
{4.1") £ (v.¢) = z c, (0.9, weB, ged
n=0 '

-2k

1/2
] <k, weB ,

«x
(4.2') [ T le, 25|
g men ™ P

(4.3') for every & > 0

© . -2k 4172
P{UEB [z je (@ |7|X | ] >6}—)0, no»o,
p olo mn,n n

I f . o 2k 172
le, @} A dP(w) — 0, Ny w | .

Proof. Put £=1/p. Then we have that for every“p € N there exists a set
Bpe F with'P(Bp] 2 1-1/p , such that (4.1'), (4.2"), (4.3') hold. Let

[
n1= U Bp . We have that P(Ql)=1, and forw e, ¢ped
p=0 "
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« ® - -
l€; (w, 91| = [ ) ey PR 2"]I¢I, . s k|¢l, .

thus (if) is satist"xed.

To prove (i), let € > O be given. Then, there exists, p € N such that
P(Bp) 1 - % . Also, from (4.3') 1t follows that there exists n= no(l:.G).
such that for n = no. §>0

@ 2, ~2E1/2 .
P{ueﬂp: [-Z |c..n(w)| ]A_| ] >45}<5

=0

Since

o« 2 x 2K 172
sup € (u,9)] = [ c  (w) - , weB

we have for every & > O, and n!no.

® 2 -2kq17/2
P{w € 2 :sup € (w,9)] > 6} = P{w €B :[ c (W[ ] >6} +
ey oot deren [ Lot

0

+ P {u € B:: sup |En(u.¢)| > 6} <
°

, n no(l:.a).

NI®™
N o

For € > 0 there exist piNandBpE!, P(Bp) z l-gi:"
it follows that there exlsts n,= no(c) such that for n zn

« 2 -2k ‘1/2 P
J' [“):o AN O x| ] dP(e) < 5
B
P

From (4.3")

Hence,

Isup |€, (. #) [dP(w) -I sup € (w,$)|dP(w) +
Q Iﬂk =1 a I"k =1
1 o P (1]

I sup €, (w.¢) [dP(w) =
8¢ l‘l. s1
P [+]

1/2
s I [ i le. () lzli |-2'] dP(w) + k I dP(w) 5 S + k'
5 meP @ . 3

_.Ezc
2k '
B B
14 ) 4

for nzn.]
0



228 Z. Crvenkovic¢

Theorem 4.3. Let {En} be a sequence of g.r.p.-s aen d. If gn—g» 0 (&)

[En-;;o (4 )] then for every € > 0 there exist a set Be %, with
P(B) > 1-e, an integer koe No’ both indeperdent of n, for each m € A a
sequence of random variables {c.'n, ne No}, and for every k = ko a
sequer_lcg of functions Xk n of Q x 1, such that

(4.5) £ (w,) = J' X (w,t) Ro(tiat + T e ()4 ,¢), weB ged,

m€A
1
(4.8) le'"(w, )HLz <k, weQq
4.7 Ix ] o, [|x (w, )] —1»0]
k,n L2 k,n L?.

(4.8) for every & > 0 P{weB:[ Z|c (w) |> 6}-)0. now
»EA "o

[J-X |c"I n(m)ldP 320, n —)ou]
BMEA '

Proof. From Theorem 3.2. and Lhe equivalence of (il) and (ii"), (4.5)
follows where for n € Nu' k z ko

k

cmn(w) i; wm(t), weB tel

et

X (w,t) =
" 0 , weB, tetl
Thus we have,
o
2 Z|(‘ (u))|2|in|_2k, weB, tel
m,n

I (w9 =™ <k

k.n L2 0 ., weB, tel

and, for weB ¢ed

fx "(”-')l = sup J€ (v, )]
k, LZ ﬂ¢|k <1 n

{l'hus. for every & > O

P {w¢ B : |)(’k’“(z.),-)lLz >3 } R
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and therefore

. P { we: le'n(u.-)le > 8 } =

=P { weB: |Xk n(w,-)] 2 5} =P { weB: sup ]En(w,¢)| > 6} s
' L ﬂ'plk =1

s P { wef: sup ]En(w,¢)| > 6} 50, now
|¢l =1

k

Thus, gxk'n(u,-)|L2+ 0.

[j I, (0] japt) = [ X, (e)] aP(e) =
n L B v

= j sup |£n(w,¢)|dP(u) < I sup |§n(w.¢)|dP(w) 30 ] .
p lel, = g I?l, =

Hence (4.7) follows.

For m € A put ¢=w_ in (4.5) and we get P{ w € B |c‘ “(w)l > ﬁ} >0

m € A. Slnce A Is finite, (4,8) follows.

Theorem 4.4. gn—g—, 0 (4') [€ >0 (4)] if there exist k € N, such that

for every p € N there exist Bpe ¥ with _P(Bp) 2 1- 1/p such that

(4.5") £ _(u,¢) = j X (0,8) Rie(trae + § c

(W)(y .¢) , weB, ¢ ekd .
n€A " " e

1

(4.6") Ix

k'n(w.-)l 2 ¢ k, wef

L

7)) X ], >0, n>m [Hx.,n(“",')NLz L0 n —)w] :

(4.8) for every &> 0 P{u eB :[ Z le. (W] > 6} 50, nH>w
P m€A mon

[] el so.nse].
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The proof is the same as the proof of Theorem 4.2.
Slince

i.u.; Ign(w.‘)l , W € Bp
. L
. Ith(w, )|L2 ]
] . weB.

P

Suppose that (*) and (**) are satisfied.

Theorem 4.8. Let {Enf be a sequence of g.r.p.-s on 4. If £ —:-b o (d4')
[En—;+0 (d’)), then for every ¢ >0 there exist a set Be 3 with
P(B) 2 1-e, an integer koe No' both iIndependent of n, for each n € A a

sequence of random variables {c. n(u), ne No}, and for every k = ko a

sequence of continuous random processes X‘ n on 2 x1,

neWN
]

such that, for

(4.9) € (we) = [ X (0,007 "g(t)at + Zc_ 9, veB ped,
’ L]

A ™
1

z = .
where s Sy P =P,

(4.10) (], <k, wet ,

'xk,n
L

(4.11) {th(w, )} Is equicontimous on 1, for p > P,

(4.12) for each t € I, and k >k, X (-, Ps0,ns0,

[X (-,l)-—1->0, n-)o]
k,n

(4.13) for every 8> 0 P{weB :Iglc (w)|>6}-;0,n->o
P €A ™"

[ et 200 024].

Proof. From Theorem 3.3. and equivalence of (ii) and (1i’) (4.9) follow,

where for ne€e N, kzk
0 (/]

L1
X, (e t)= »=0
" 0 ., Wée&B,

c (W) X PRy (4), weB, tel
n » »

tel
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(4.10) and (4.13) follow In the same manner as in Theorem 4.3. The proof
of (4.11) is given 1n Theorem 4.3. of [9].

To prove (4.12) it is encugh to see that

] -k
X, (w.t)] = ,Zo'c-.-‘”’”‘-' o (O]]5 T8 17"
& 2 ¢ (-2 1172
sxzc[Z|c W ? |5 | ] . weB,
m,n -

=0

0
where Z |X_|'zp= C . Since XIl n(u,t) = 0, w ¢ B we have, for every 8 > 0,

a=0 !

and t € 1
)

n=0

- 1/2
P {é eq || L O] 6} s P {? €B :[ Z |c_’n(m)|2|i_|'2Il ] > 6} s
< P {; € N : sup 1€ (w,$)] > 6} 20, nyw,.
lel, st °

..

3 [ 2. -2k 172
" [J.lxl'n(u,to)ldP(wh ]'|xm(u. t,) |dP(w)= I[_Zo“’-.n("‘” x| ] dP(w) 3
Q B BT .

= I sup |€ (w,¢)| dP(w) 50, n =,
¢} ¢ [ 3 51"

The converse of Theorem 4.5. 1s not true.
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Rezime
KONVERGENCIJA NIZA UOPSTENIH SLUCAJNIH PROCESA NA ZEMANIANOVOM PROSTORU #

Definisane su 1 wuporedene razlic¢ite vrste konvergenclja nlza
uopstenih slucajnlh procesa na Zemanlanovom prostoru 4.
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