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ABSTRACT

In this paper a theorem on coincidence points for f, S and T
is proved, where f is a multivalued mapping and S and T are singlevalued
mappings. The obtained theorem generalizes Theorem 1 from [3}.

1. INTRODUCTION

Many authors proved fixed point theorems or theorems
on coincidence points in convex metric spaces [1], (21, [3], [&4],
(6], {73, {91, l10].

Let us recall that a metric space (M,d) is convex if
for each x,y € M with x # y there exists z € M, x # z # y such
that ’

dix,z) + d(z,y) = d(x,y).

In [3] we introduced the notion of a weakly commuta-
tive pair (f,S) where [ is a multivalued and S is a singlevalued
mapping in the following way, where d(a,B) = 1b2]§ d(a,b) and ae
€ M, B g M.

Definition 1. Let (M,d) be a metrnic space, K a nonempty sub-
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set of M, CB(M) the §amily of all nonempty, cLosed and bounded subsets
of M, £ : K » CB(M) awd S : K > M. The pairn (£,S) 45 said to be
weakly commutative {f and cnly if for every y € K and z € K such that
y € fz and Sz € K, the following inequality holds

d(sSy,fSz) s d(fz,Sz).

For singlevalued mappings f and S the notion of a
weakly commutative pair is introduced by Sessa in [8]. There
are examples of mappings which are weakly commutative but not
dommutative.

We shall give the following generalization of the
notion of a weakly commutative pair (f.8) where f is a multi-
valued and S is a singlevalued mapping.

Definition 2. Let (M,d) be a metric apace, K a nonempty
subset of M, £ : K » CB(M)and S : K » M. The pair (f,S) 4£s said
to be compatibfe {4 §orn every sequence (xn}nell from K from the nelations

lim d(Sx_,fx ) = 0 and Sx_ € K, n € N
o n n n
At gollows that

lim d(Sy,,£8x_) = 0

N>

fon eveny sequence (yn}nEN §rom K auch that Yo € fxn, n e N.
For singlevalued mappings S and f the notion of the
compatibility is introduced by Jungck [5]. It is obvious that a
weakly commutative pair (f,S) is also a compatible one. There
are examples of compatible pairs which are not weakly commuta-
tive.
In [3] the following result is obtained, where H de-

notes the Hausdorff metric.

Theorem A. Let (M,d) be a complete convex metric space, K
a nonempty closed subset of M, S, T : K - M continuous mappings, £ : K
» CB(M) H-continuous mapping, 3K ¢ SK n TK, £fK n K ¢ SK n TK,
(£.5) and (f,T) weakly commutative pairs and the §ollowing impLications
hetfd:



on codncidence points in convex metrnic apaces 235

Tx € 9K => fx &« K; Sx & 3K => fx = K.
1§ thepe exists q € (0,1) 40 that
H(fx,fy) s qd(Sx,Ty), 4on every x,y = K

{hen thene exists z € K a0 that (Tz,Sz} n fz # 8.
1§ S, T : M > M ane continuous then therne exists z € K such
that Tz € fz and Sz € fz.

Remark, If 8§ : M » M, we suppose in Definition 1
that y = fz implies d(Sy,fSz) £ d(fz,5z) for every z e K such
that Sz & K. "

In this paper we shall prove a generalization of
Theorem A using the notion of a compatible pair and a result
from [7] stated here as Theorem B.

4 In Theorem B, ]R+ stands for the nonnegative reals.

Theorem B. let ¢ : R + R' be an incneasing function
stch that c(tr) <t fornall t > 0 and Tc'(t) is ginite for all

n |
t > 0. Then, tere exists a stnictly increasing gunction ¢ : ]R’-’ R
such that c(L) < f(t) < v, forv all t > 0 and St (t) 4a finite fon
n

t > 0.

4+

Theorem. Ltet (M,d) be a completle convex metrnic space, K
a nonemply closed subset of M, S, T : K =+ M continuous mappinga, f
K -+ CB(M) H-centinuous hmpp.ing. dK € SK N TK, fK N K € SK n TK,
(£,8) and (f,T) compalible pains and the following implications holds:

Tx &€ 3K = > fx € K; Sx € 3K => fx € K.

. . . . - o
14 thene exials an {increasing functien ¢ : R + R auch

that c(t+) < t, for wlf £t > 0 and %ch(t) Ls finite, fon all t > 0
30 that

H(fx,fy) s c(d(Sx,Ty)), gfor every x,y € K,
then thene exists z € K a0 that

{Tz,Sz} N fz # 0.



236 ‘ 0. HadZié

14§ S,T : M = M are continuous then there exists z € K s0
that Tz € fz, Sz € fz.

Proof. As in [3] let x & 3K and Py = K such that x =
= Tpo. From Tp0 € 3K it follows that fp0 € K n fK € SK. Hence,
there exists P € K such that Sp1 € fp0 € K and let Sp1 = pi. Further

d(pi,fpl) < H(fpo,fpl) s c(d(Spl,Tpo))
and if d(Spl,Tpo) > 0 from Theorem B we conclude that
d(pi,fpl) < ¥(d(Spy,Tpy)) .-

50, there exists pi € fp1 such that
(1) d(p}.pj) S ¥(d(Sp;,Tpy)).

Suppose that d(Sp,,Tpy) = 0. Then c(d(Sp,,Tpy)) = H(fp,,fp;) =
= 0 apd if we take that pi = pi we obtain that (1) holds. If
pé € K then pé € KN fK € TK and so there exists P, € K such_
that sz = pi. If pi ¢ K then there exists P, K such that

Then d(p},fp,) { H(fp;,fp,) S c(d(Sp;,Tp,)) and if d(Sp;,Tp,) >

> 0 it follows that

d(pj.fp,) < ¥(d(Sp,,Tp,))
which implies that there exists pé e fp2 such that
(2) d(py,p3) S ¥(d(Spy,Tp,)).

If d(Spl,sz) = 0 we take that pé = pé and so (2)
holds. i

In this way we obtain two sequences {pn}nEN and {pﬁ}neN such
that:

1. For every n € N : P, € fpn-l'

»

. ., 2. For everyn € N : Py, € K => pj, = TPy

Py, # K => Tp, < 3K and

F3) 'd(SPZn—l'TPZn) + d(TPZn'pin) = d(SPZn—l'pin)'
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3. For every n € N : pj ) €K =>p) .0 = 5Py 41}

Pont1 ¢ K => SPyp+1 € 2K and
(0 d(TPyn+SPyner) + d(SPoqy1+Pone1) = TPy Ponsy) -
4. For every n € N:
4P, Pyeq) S (A(Spy 1,TP, ),
4(Pynt1+Pansa) S ¥(A(5Pyq44.TRyp))-

Let P Pl’ Q0 and Ql be defined by

0,
Py = {p2n' ne N and pén = TpZn}'
Pl = {pZn’ n e N and pén 4 TpZn}'
Q = Pyqpyr m € Noand pyoyy = Spypyg)s
Q) = {Pypeq ™ € W and pjryg # Spypd.

It is easy to prove that
(Pyn+Pane1) # Py * Qs (Pyp_gsPyq) # Q) * Py

If Xon = TPy, and X, 09 = Spyyq. 0 € N we shall
prove that

i} { v(d(x,_1,%)).p} € K

(5) d(x

n' n+l)

Y(d(x, _5.%, 1)) n 2 2, py ¢ K.

1. (PypPonsy) € Pg % Qpi

Then we have that
d(TPZn'SPZni-l) = d(pén’pén+l) s l1'(d(sP2n-l’Tp2n))
which means that
(g1 Xgnen) § WXy, 1% )) -

2. (p2n’p2n+1) € P0 x Ql;

Then from (4) we have that

d(Tpy+SPype1) S 9(TPyiPonyy) = 9Py Popey) S ¥(A(SPy, 4, TPy D)
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as in case 1.

3. (Pyp+Poney? € Py % Qs

Then

d(TPZn'Sp2n+1) s d(TPZR'pin) + d(pén'pin+1) s
s d(Tp2n'pén) + w(d(SPZH—l’TPZn)) s d(TPZn’pén) +
+ d(SPyn-1:TPyy)
and from (3) we obtain that
d(TPy+SPypyq) § (5P, _1Poy)
Since Pont1 € Q Ve have pin-l = SpPy-1- This implies
that
d(TPy+SPonsr) S d(Pypy_1:Pon) S ¥(d(Spy,_ 1. TPy, 5))
and so
Xy Xoner) 5 V(A(Xy 10%9500)-
42 (Pyn-1rPay) € Q) % Poi
Then
d(Sp2n-1'Tp2n) < d(SPZn—l'pén—l) t d(l:’:'!n-l'TPZn) =
= d(SPZn-l’pén—l) + d(pin—l'pén) s
$ d(8py,_1+Pyy-1) F W(A(SPy, 1. TPynp)) S
£ d(Spy,,_1:Pyp-1) * 9(SPy;_1+TPoy 5)

and since Pypn-1 € Qq we obtain that d(Sp2n—1'Tp2n) < d(TPZn-Z'
, .

Pan-1)-

) From p, ;1 € Q1 it follows that Pyn-2 € Py and so

TpZn—Z = Pj,.o Hence

and so
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d(x2"_1,x2n) s w(d(XZn-S'XZH-Z))'

Using 1., 2., 3. and 4. we conclude that (5) is pro-
ved. It can be proved that (5) implies that for every n € N

k(n)
dix X 4q) S ¥ (d(x4,%x:))

where
1, n=1
k(n) = {
n/2), n 2 2.
Since flwn(t) is finite for t > 0 we conclude that
1]
{xn)nEN is a Cauchy sequence, and so there exists z € K such
that

z=1im T = lim S .
e Pan T 1M SPanyn
As in [Q]. suppose that there exists a subsequence {pznk}kEN

such that pjp e Py for every k € N which means that sznk €

'3
< fp2nk—1' k € N . We shall prove that Sz € fz using the com-

patibility of (f,S). Since sznk € prnk-l nk, Span-l € K and

d(fp2nk-l'Sp2nk—1) s d(TPan'SPan-l)

we obtain that {ig d(fPZHk—l'SPan-l) = 0 and from the compati-
bility of .(f,S) it follows that éiﬂ d(STPanvaPZHk-l) = 0. As
in [3] it follows that Sz € fz and so {Tz,S5z} n fz # @. The
rest of the proof is similar to that in [3].

Corollary [7]. Llet (X,d) be a complete convex meiric space,

K a nonempty, closed subset of X and S : K > CB(X) be such that Sx € K
fon eveny x € 3K and :

H(Sx,Sy) < c(d(x,y)), for all x,y € K

whene ¢ : RV > RY is as in the Theonem. Then S has a §ixed point.
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REZIME

O TACKAMA KOINCIDENCIIE U
KONVEKSNIM METRICKIM PROSTOR{IMA

. U radu je dokazana teorema o tatkama koincidé‘ncije za f, S i
T. g_de je T visezna&no preslikavanje a S i T jednoznaZna preslikavanja.
Dobijena teorema uop3itava teoremu 1 iz rada [3].
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