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Abstract

An algorithm is sketched, which determines, up to an isomorphism,
the matroid associated to a given matrix. A lemma which considerably
shortens the corresponding computation time is used. The algorithm
is given in detail for the matrices having at most 7 columns. Matroids
on small ground-sets are represented by the following numerical pa-
rameters: cardinality of the ground-set, rank, number of bases and
the vector of the sorted frequencies of elements w.r.t. the family of
bases. It turns out that such a representation describes completely
the matroids on at most 7 elements, while it is not sufficient on larger
ground-sets.
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1. Definitions and the problem statement

Matroid M on a finite set (ground-set) E is ([4]) an ordered pair (E, B),
where B is a family of subsets of E, which satisfies the following ”exchange”
axiom :

If B, and B; belong to B,and z is an element of B; — B,, then
there exists an element y in Bz — B, such that (B, — z) + y belongs
to B. A

The sets in family B are called bases of M. All the bases of M have the
same cardinality, which is called the rank of M.

Given a matroid M on E and a subset X of E, rank of X (w.r.t. M) is
the maximal cardinality of the intersection of X with a base of M.

It is well-known that the complements (w.r.t. E) of bases of a rank r
matroid M are the bases of so-called dual matroid M*, the rank of which is
equal to | E | — rank(M).

Two matroids are isomorphic if there exists a bijection between their
ground-sets, which maps the bases of one matroid onto the bases of the
other.

Matroid M is representable over a field F if and only if there exists a
matrix A (the matriz representation of M) with entries in F, such that there
exists a rank-preserving bijection bij of the set E onto the set C of columns
of A (thus, if X is a rank r subset of £ w.r.t. M, then bij(X) is a rank r
submatrix of A -the number of rows in the submatrix is equal to the number
of rows in A. Given a representable matroid M with a matrix representation
A, we have that rank(M) =rank(A) and bases of M correspond to the
maximal linearly independent sets of columns of A.

Given a family F of subsets of a finite set £ and an element e from F,
the appearance frequency of e w.r.t. F is the number of subsets of F, which
contain e.

C(n,r) denotes the binomial coefficient "n over R”.

We shall give an algorithm for solving the following problem: Given a
real-valued m X n matrix M, determine its associated matroid f(M) and
identify (recognize) it in a catalogue of non-isomorphic matroids.

We distinguish two stages in calculating f(M) :
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(1) Extraction of matroid bases from the input matrix M

(2) Recognition of the generated matroid by comparision with matroids
in catalogue [1]

2. The algorithm

2.1 Stage (1)
Stage (1) can be sketched as follows:

a) Determine rank r of M and extract an r X r submatrix S of rank r

b) Let Q denote the r X n submatrix of M, consisting of exactly those
rows, which intersect .

c) Extract the bases of f(M) from @ in the following way: An r—tuple
R of columns of M corresponds to a base of f(M) if and only if the
r X r submatrix consisting of exactly those fields of M, which belong
to both @ and R — is of rank r. '

When the rank calculation is considered, we use the efficient algorithm
described in [2]. This algorithm is based on the reduction of the input matrix
M to the so-called row echelon form. Such a reduction is a generalization
of the Gaussian elimination to the rectangular case. The rank of a matrix is
equal to the number of non-zero rows in its row echelon form. The columns
and rows of the rank r submatrix S are easily determined from the reduction
algorithm: the columns of § are exactly those, which contain the first non-
zero elements in the first r rows of the row echelon form; the rows of S can
be reconstructed by memorizing the row interchanges performed during the
reduction process.

After the submatrix 5 is extracted, we should further calculate only
C(n,r) determinants corresponding to the r X r submatrices of ¢ (more pre-
cisely, we should just distinguish between zero- and non-zero- determinants
among them). The reduction of search for bases of f(M) to the columns of
the "horizontal” band @ (instead of considering the whole columns of M)
— is justified by the following Lemma:
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Lemma 1. Let an m X n matriz M of rank r be given and let K and L
be two r x n submatrices of M, such that rank(K) = rank(L) = r. Let J
denote an arbitrary m x r submatriz of M. Finally, let A and B be the r x 1
submatrices of M, which are composed of fields belonging both to K and J,
respectively to both L and J. Then

rank(A) =r <= mankB)=r

Proof. ([3]) Assume that rank(A) = r and rank(B) < r (the opposite
assumption is treated in the same way). Since rank(L) = r, there exists an
r X r submatrix C in the "horizontal band” L, such that rank(C) = r.

Consider a row R of M, which belongs to L — K. The assumption
rank(B) < r implies the linear dependence of rows of B. In particular,
the subrow R(| B may be expressed as a linear combination of the other
rows of B. It follows that there exists a linear transformation T of M, which
consists of multiplying the rows of L — R by the appropriate coefficients and
adding these products to R, and which makes the fields of B R equal to
zero. It is obvious that at least one field F' of C (1} R is not equal to zero after
applying T (otherwise we would have a contradiction with rank(C) = r).

Now, consider the submatrix W of size (r + 1) X (r + 1) of the matrix
T(M), which consists of the matrix A and the additional row and column,
which intersect in F' (this row and column are extracted from M and all
their elements, apart from F), lie in those columns, respectively rows, which
intersect A). Since all the fields in the additional row, apart from F, are
equal to zero, it follows that

det(W) = det(A) - det(F) # 0.

This implies that rank(M) = rank(T(M)) > r + 1, a contradiction. O

Consequence of Lemma. Arbitrary rank r r—tuple of rows is sufficient to de-
termine the matroid bases. Namely, according to the Lemma, an r—tuple J
of columns corresponds (or does not correspond) to a matroid base, without
regard to the rank r r—tuple of rows, which is used.

The easiest way to determine matroid bases is to start from the first
submatrix S of rank r (we assume that such a submatrix is detected in the
process of rank calculating). Then the matroid bases associated to M are
the same as the matroid bases associated to H(S), where H(S) denotes the
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"horizontal band” associated to S, i.e., the submatrix of M, which consists
of exactly those rows, which intersect S.

2.2 Stage (2)

The comparison between families F} and F; of bases, which respectively
correspond to the matroid M; = f(M) and a matroid M, from the cata-
logue, is preceded by comparison of the following four types of numerical
parameters in turn:

a) cardinalities of the ground-sets of M; and M; (this cardinality should
be equal to n with the matroid M2; note that there may be elements (loops)
which do not belong to any base — therefore such a cardinality should be
given in a catalogue independently from the family of bases). If the ground-
sets of M; and M, are equicardinal, then they may be considered to coincide.

b) ranks of M; and M,
c) the numbers of bases in F} and F

d) sorted (non-increasing) sequences of appearance frequencies of ele-
ments of the common ground-set w.r.t. the families F; and F» respectively.

Given a matrix M, the parameter a) (=the number of matrix columns)
is known in advance, the parameters b) and c) are obtained in Stage (1),
while the parameter d) is easily derived from the family of bases. On the
other hand, when the family F; is considered, the parameters a), b) and c)
are given with each matroid in catalogue [1]. The values of the parameter
d) were derived from that catalogue, in order to be applied in Section 4.

QOur hierarchy of numerical features associated to a matroid can be in-
cirporated in a nested sequence of IF-statements in the following way:

IF the paramaters a) coincide THEN
IF the paramaters - b) coincide THEN
~IF we are not sure that M; = M, THEN
IF the paramaters ¢) coincide THEN
IF we are not sure that M, = M, THEN
IF the paramaters d) coincide THEN
IF we are not sure that M, = M, THEN
Compare directly F;, and F5.

The three lines "IF we are not sure that M; = My THEN” are inserted
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because we may stop searching for a matroid isomorphic to M; in the cata-
logue, in the cases when there is a unique matroid in the catalogue with the
given numerical parameters.

The first stopping possibility works only for the matroids of rank 0 and
n (on the ground-set of cardinality n). The second one works for matroids
of ranks 1 and n — 1, but also for some matroids of "interior” ranks as well.
Finally, an inspection of catalogue [1] assures us that the third stopping
possibility will work with all the matroids on < 7 elements; thus we need
not compare the families themselves for n < 7. This is not the case for higher
values of n, as is shown by the counterexample in the next section.

3. The auxiliary list of matroids

We shall proceed with a list which enables the calculation of each matroid
on < 7 elements, provided that the corresponding numbers n (cardinality
of the ground-set), r (rank), b (number of bases), as well as the vector of
sorted appearance frequencies w.r.t. the family of bases are given. Each
triple (n,r,b) is followed by the symbol ”:”, each matroid is followed by the
symbol ”;”. If there exists only one matroid (up to an isomorphism) with
some given parameters n,r,b, then it is represented by "one” ; otherwise it
is represented by the vector v.

There exists only one (empty) rank O matroid on n elements. There
exist exactly n non-isomorphic rank 1 matroids, which respectively have
i bases for each ¢ between 1-and n. If n > r/2, then the matroids on
< 7 elements are uniquely represented by the sorted vectors of appearance
frequencies, which are associated to their dual matroids. Therefore, we
may conclude that it suffices to give a list for (n,r) belonging to the set

{(4,2),(5,2),(6,2),(6,3),(7,2),(7,3)}.

3.1 List

n=4, r=2

b=1: one; b=2: one; b=3: (2,220); (31,1,1);
b=4: one; b=5: one; b=6: one;
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n=>5 r=2
b=1: one; b=2: one; b=3: (2,2,2,00); (3,1,1,1,0);
b=4: (2,2,2,2,0); (4,1,1,1,1); b=5: one;
b=6: (3,3,3,3,0); (3,3,2,2,2); b=7: one;
b=8: one; b=9: one; b=10: one;
n=6, r=2

1: one; b=2: one;

3: (2,2,2,0,0,0); (3,1,1,1,0,

4: (2,2,2,2,0,0); (3,3,2,
b= 5: (3,3,2,2,0,0); (5,1,1,

6: (3,3,3,3,0,0); (3,3,2,

8: (4,3,3,3,3,0); (4,4,2,2,2,2);

9: (4,4,4,3,3,0); (3,3,3,3,3,3);
b=10: one; b=11: one; b=12: one;
b=13: (5,5,5,3,3,3); (5,5,4,4,4,4);
b=14: one; b=15: one;

b=7: one;

n=6, r=3

b= 1: one; b=2: one;

b= 3: (3,2,2,2,0,0); (3,3,1,1,1,0); '
= 4: (3,3,3,3,0,0); (4,2,2,2,2,0); (4,4,1,1,1,1);
b= 5: one;

= 6: (4,4,4,3,3,0); (6,3,3,2,2,2); (6,3,3,3,3,0);
b= 7: (5,5,5,3,3,0); (7,4,4,2,2,2);

b= 8: (5,5,5,5,4,0); (8,4,3,3,3,3); (4,4,4,4,4,4);
b= 9: (6,6,5,5,5,0); (6,6,6,3,3,3); (9,4,4,4,3,3);

b=10: (6,6,5,5,4,4); (7,7,7,3,3,3); (10,4,4,4,4,4);
=12: (7,7,7,7,4,4); (8,8,5,5,5,5); (6,6,6,6,6,6);

b=13: one; b=14: one;

b=15: (9,8,8,8,6,6); (9,9,7,7,7,6);

b=16: (9,9,9,9,6,6); (8,8,8,8,8,8); (10,10,7,7,7,7);
b=17: ome; b=18: (9,99,9,9,9); (10,9,9,9,9,8);
b=19: one; b=20: one;

7, r=2

b=1: one; b=2: one;
b=3: (2,2,2,0,0,0,0); (2,1,1,1,0,0,0);



46
b=4
b=25
b=6
b=
b=
b=1
b=11:
b=12:
b=13:
b=15:
b=16:
b=18:
b=19:
n=1719,
= 1:
b= 3:
= 4:
b= 5:
= 6:
b= 7:
b= 8:
b= 9
b=10:
b=12:
b=13:
b=14:
b=15:
b=16:
b=17:
b=18:
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(2,2,2,2,0,0,0); (4,1,1,1,1,0,0);
(3,3,2,2,0,0,0); (5,1,1,1,1,1,0);
(3 3,2,2,2,0,0); (6,1,1,1,1,1,1); b=7: one;
(4,3,3,3,3,0,0); (4,4,2,2,2,2,0);

@443300%(33&3330%(&azzzzm;
(4,4,4,4,4,0,0); (5,5,2,2,2,2,2);

5,4,4,3,3,3,0); (6,6,2,2,2,2,2);

(4’474,474’47 0) ; (575757 37 37 370) ; (4’ 474, 373, 373) ;
one ; =14: (5,5,5,5,4,4,0); (6,5,5,3,3,3,3);
(5,5,5,5,5,5,0); (6,4,4,4,4,4,4); (6,6,6,3,3,3,3);
one ; b=17: one;

(6,5,5,5,5,5,5); (6,6,6,6,4,4,4);

one ; b=20: one; b=21: one;
r=3
one ; b=2: one;

3,2,2,2,0,0,0); (3,3,1,1,1,0,0);

3,3,3,3,0,0,0); (4,2,2,2,2,0,0); (4,4,1,1,1,1,0);
5,3,3,2,2,0,0); (5,5,1,1,1,1,1);

(4,4,4,3,3,0,0); (6,3,3,2,2,2,0); (6,3,3,3,3,0,0);
(5,5,5,3,3,0,0); (7,4,4,2,2,2,0);

5,5,5,5,4,0,0); (4,4,4,4,4,4,0); (8,4,3,3,3,3,0);
(8’4,4,2, 2,2’ 2) ;

(s,6,5,5,5,0,0); (9,4,4,4,3,3,0); (6,6,6,3,3,3,0);
9,5,5,2,2,2,2); (9,3,3,3,3,3,3);

(10,4,4,4,4,4,0); (7,7,7,3,3,3,0); (6,6,6,6,6,0,0);
(6,6,5,5,4,4,0) ; b=11: one;
(6,6,6,6,6,6,0); (8,8,5,5,5,5,0); (7,7,7,7,4,4,0) ;
(6,6,6,6,4,4,4) ; (8,8,8,3,3,3,3); (12,4,4,4,4,4,4);
(12,5,5,5,3,3,3) ;

(8,8,7,6,5,5,0); (9,9,9,3,3,3,3); (13,5,5,4,4,4,4);
9,9,7,7,5,5,0); (8,8,7,7,4,4,4); (14,5,5,5,5,4,4);
(9,8,8,8,6,6,0); (9,9,7,7,7,6,0); (9,9,6,6,5,5,5);
(15,5,5,5,5,5,5) ;

(9,9,9,9,6,6,0); (8,8,8,8,8,8,0); (10,10,7,7,7,7);
(8,8,8,6,6,6,6); (9,9,9,9,4,4,4);

9,9,9,8,8,8,0); (11,11,7,7,5,5,5);

9,9,9,9,9,9,0) ; (10,9,9,9,9,8,0); (9,9,8,8,8,6,6);
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(9,9,9,9,6,6,6); (11,11,9,8,5,5,5);

b=19: (10,10,10,9,9,9,0); (11,11,9,7,7,6,6); (12,12,9,9,5,5,5) ;

b=20: (10,10,10,10,10,10,0); (12,12,8,7,7,7,7);
(12,8,8,8,8,8,8); (10,10,8,8,8,8,8);

b=21: (11,11,9,8,8,8,8); (12,11,11,11,6,6,6);
(13,13,9,7,7,7,7) ; (12;12,9,9,9,6,6) ;

=22: (12,12,12,12,6,6,6); (13,13,9,9,8,7,7);

b=123: (13,11,11,10,10,8,8); (14,14,9,9,9,7,7);

b=24: (12,12,12,9,9,9,9); (12,11,11,11,11,8,8);
(12,11,11,11,9,9,9) ; (14,14,9,9,9,9,8);

b=25: (13,13,13,9,9,9,9); (13,12,12,11,11,8,8) ;

_ (15,15,9,9,9,9,9) ;

b=26: (131312111199),(14111111111010),
(14,14,11,11,11,8,8) ;

b=127: (13,13,13,12,12,9,9); (14,13,13,12,11,9,9);
(12,12,12,12,12,12,9) ;

b=28: (13,13,13,13,12,10,10) ; (14,14,14,12,12,9,9);
(13,13,13,12,11,11,11) ; (12,12,12,12,12,12,12) ;

b=29: (14,14,13,13,13,10,10); (13,13,13,12,12,12,12);
(14,14,13,12,12,11,11)

b=30: (14,13,13,13,13,12,12); (14,14,14,14,14,10,10);
(13,13,13,13,13,13,12) ; (15,14,14,12,12,12,11);
(14,14,14,12,12,12,12) ;

b=31: (15,13,13,13,13,13,13); (14,14,13,13,13,13,13);
(14,14, 14,13,13,13,12) ; (15,15,15,12,12,12,12) ;

b=232: (15,14,14,14,13,13,13); (14,14,14,14,14,13,13);
(14,14, 14,14, 14, 14,12) ;

b=33: (15,14,14,14,14,14,14); (15,15,14,14,14,14,13);

b=34: one; b=35: one;

3.2 A counterexample

The following counterexample (also derived from catalogue [1]) shows that
the parameters n,r,b and the vector of sorted appearance frequencies are
not sufficient to determine matroids on 8 elements up to an isomorphism:

The non-isomorphic rank 4 matroids M; and M; on 8 elements have 63
bases each, which are all the 4-subsets of the ground-set {4, B,C, D, E, F, G,
H}, except for the subsets in the families
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{ABCD,ABEF,ABGH,ACEG,BDFH,CDEF,CDGH} and
{AEFG,ABCD,BEFH,ACGH,BDEG,CDFH,ADEH}

respectively.

The corresponding vectors of appearance frequencies of elements A, B, C,
D,E,F,G,H (w.r.t. the families of bases of the matroids M; and M3) are
(31, 31, 31, 31, 32, 32, 32, 32) and (31, 32, 32, 31, 31, 32, 32, 31) respectively.
After sorting, these two vectors become equal. This means that there exist
two non-isomorphic matroids on 8 elements, with which the parameters b),
¢) and d) are coincident.

A further elaboration of this counterexample leads to a more fascinating
conclusion that there exist even 22 non-isomorphic matroids on 8 elements
with coincident a), b), c), d), although it was not possible to find only two
matroids with all the four coinciding parameters on 7 elements. We shall
give some further relevant details:

There exist 71 non-isomorphic rank 4 matroids on 8 elements with ex-
actly 63 bases each ([1]). The distribution of these matroids with respect to
the vectors of sorted appearance frequencies looks as follows:

n=8, r=4, b=63

(32,32,32,32,31,31,31,31) — 22 matroids
(32, 32,32,32,32,31,31,30) — 8 matroids
(33,32,32,32,31,31,31,30) — 8 matroids
(33,32,32,31,31,31,31,31) — 8 matroids
(33,33,31,31,31,31,31,31) — 3 matroids
(32,32,32,32,32,32,30,30) — 3 matroids

The following 19 vectors of sorted appearance frequencies have just one
corresponding matroid each:

(32,32,32,32,32,32,32,28) , (33,33,33,31,31,31,31,29),
~(33,32,32,32,32,31,31,29) , (32,32,32,32,32,32,31,29),
(34,32, 32,32,32,30,30,30) , (33,33,32,32,31,31,30,30),
(34,32,32,31,31,31,31,30) , (33,33,32,31,31,31,31,30),
(35,31,31,31,31,31,31,31) , (34,32,31,31,31,31,31,31),
(33,32,32,32,32,31,30,30) , (33,33,33,32,32,30,30,29),
(33,33,33,33,32,30,30,28) , (34,33,33,32,32,30,29,29),
(33,33,33,33,32,30,29,29) , (34,33,33,31,31,30,30,30),
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(34, 34,33,31,31,30,30,29) , (34,34,33,31,30,30,30,30)
(35,33, 33, 31,30, 30, 30,30)

4. An illustrative example

As an illustration, we shall give the results of the application of our algo-
rithm, for m = 2 and n = 4, to a class M(z,y) of 2 X 4 matrices, the entries
of which are defined by using two independent real variables z and y in the
following way:

all,l]]=y-z-3; a[1,2] =0;

a[1,3] = 0 if abs( sqr(z)+ sqr(y) —49)< 7,

a[1,3) = 1 otherwise ; a[l,4] =z —2;
a[2,1]=0; a[2,2]:=y+2-24+5;
a[2,3]:=2-(y-3); a[2,4] := -2 + abs(y - 3) ;

Let the seven non-isomorphic matroids for (n,r) = (4,2), listed in the
above order, be denoted by 1, 2, 3, 4, 5, 6, 7 respectively. Then the list of
the values of f(M(z,y)) for —10 < z,y < 10 looks as in Table 1. below.

It can be easily verified (by computer) that all the considered 441 ma-
troids are of rank 2. All the seven rank 2 matroids on 4 elements can be
found among them. The seven ”lines” corresponding to the matrix fields
a[l,1], a[1,4]), a[2,2), a[2,3]), a[2,4] (two "lines” in each of the last
two cases), as well the "circle” associated to the matrix field a{1,3] can be
recognized in the table below.
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y\z | -10-9-8-7-6-54-3-2-10123456789 10
10y 7777777777676 77773777
7773777777676 77737777
T7T7777T7T7T7T767677377777
777737776636473777777
77777766776}76267777477
666662666646166566666
7T7T77677T7T7762677767777
666636266636566636666
7T77677777367677776777
666566623646366665666
777677737767677776777
-1 7776773737676 77776777
21 7T77673777767677776777 .
3| TTTT2777736767T7T7T67777
4| 7773677777676 77767777
S5 7T73776777727677677777
6] 737777667767666777777
-7 3777777766334 77777777
8| TTTTTTT777676777T77777
9| 7777777673777V
A0y TTTTITNVIT6T6TNVINNNN
Table 1.
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REZIME

JEDAN ALGORITAM ZA GENERISANJE MATROIDA
PRIDRUZENOG DATOJ MATRICI

U radu je opisan jedan algoritam, koji sa taénos¢u do na izomorfizam odred-
juje matroid pridruzen datoj matrici. Algoritam je detaljno opisan za ma-
trice, koje nemaju vise od 7 kolona. Matroidi na malim nosaima su reprezen-
tovani pomo¢u sledeéih parametara: kardinalnost nosata, rang, broj baza, i
vektor sortiranih uéestanosti javljanja pojedinih elemenata nosata u familiji
baza. Ovi parametri su dovoljni da opidu matroid sa najvide 7 elemenata, a
nisu dovoljni da opifu matroide na veéim nosacima.
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