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Abstract

Let Pg(n) be the k-th largest prime factor of an integer n > 1 if
n has at least k prime factors, and let P.(n) be zero otherwise. An
asymptotic formula for the sum ., P:(n) is obtained.
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Let Pi(n) denote the k-th largest prime factor of an integer n > 1
if Q(n) > k, and let otherwise Pi(n) = 0, where §}(n) is the number of
all prime factors of n. In other words Pi(1) =0, and if P(n) = Pi(n) is
the largest prime factor of n > 2, then Py(n) = P(n/P(n)),...,Pk(n) =
P(n/Pg_1(n)) if Q(n) > k. In [1] Alladi and Erdds (see (1.21), p. 284)
showed that, for k£ > 1 a fixed integer,

z1+1/k xl+l/k loglog z

log" z logh+! 2

(l) Z Pk(n) = A )

n<r

Their proof was elementary, but quite complicated. Recently R._Ba_la-
subramanian [3] found a simple proof of (1) that works even if k is not fixed,
but lies in a suitable interval depending on z. In addition, he evaluated
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Ar = k**¢(1 4+ 1/k)/(k + 1)!. In [4] J.-M. De Koninck and I proved, for any
fixed integer N > 1,

x?

T
(2) > Pi(n) = Ay, 1 -+ AN .t O(N_+1)
n<zr log
where A;; = 72/12,...,A; N are certain absolute constants which may

be explicitly evaluated. The aim of this note is to generalize (2) as to include
a sharper version of (1). The result is the following

Theorem. Let k> 1 be a fizxed integer, and N > 0 an arbitrary,
but fized integer. Then there ezist constants Agy > 0,...,AgNy1 which
may be ezplicitly evaluated such that

Z1H+1/k Zl+1/k Z1+1/k
(3) D Pil(n) = Axy—— log* 2 +ot Aka+110gk+Nz + O(logk+N+1 z)'

n<z

The proof of the asymptotic formula (3) will be also elementary. We
shall make use of the formulas
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(4) ;108”1: alogﬁ‘“z + +CN1——ogﬁ+Nz + (logﬁ+N+1z)’
(e >0)
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dn . 1
+ t*=1log t(log §)P+N-1 M + O(y‘l"l log y1(log i)ﬁ+N ),

and

1 e en 1
6 = .o O
(6) n§.’ n°(log f-;)ﬁ logﬁz +--+ logﬁ+N—l + ( ﬁ+N ), .

where 0 <y <1,and a>1 in(5)and (6). Here and in the sequel p (with
or without indices) stands for primes, the constants c¢; = cj(a,f),d; =
dj(a,B),e; = ej(a,f)(j = 1,...,N) may be explicitly evaluated, N > 1
is an arbitrary fixed integer, and in (5) ¥ < y2 < z,y1 — 0©. Moreover we
shall use the standard notation f = O(g) and f << g, which both mean
that |f] < Cg for some absolute C > 0. The proofs of the above formulas
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follow without difficulty from the prime number theorem and elementary
analysis. For example, we have

> 1 _ ”"°__M__/”___‘i‘___
p*(log2)% = Jyvo t2(log $)P — Jy, to(log )P logt

v1<p<y2
T
+0(y}~*(log ;,T)_ﬂ “N(logy)™")

by the prime number theorem in the standard form

)= T 1= [+ 0V (€ >0),

AL
and successive integrations by parts give (5).

We begin the proof of (3) by noting that

(1) Y. Pi(n) = B> p

niz mp1p2...px<z,P(m)<p1.,1 SPzS---SPk

= E ) Pllb( ,Pl)

P1p2.. Pk <2 P15P2%... <Pk -+ Pk
where as usual ¥(z,y) denotes the number of n < z all of whose prime
factors are < y. It will be shown now how the first equality in (7) may be
used in a simple way to obtain lower and upper bounds for the sum of Pi(n).
Namely, let in (7) m = 1,21/%2-*% < p; < g1/k01-k ,%zl/" < pi < zl/*,
By the prime number theorem there are >> z'/¥/logz choices for each
pi(j =1,...,k). Therefore :

(8) > Pi(n) >> z' /¥ (% [log z)F = 2141/ *1og=F ¢

n<zr

which represents a lower bound of the right order of magnitude. On the
other hand, we have

T > mpipz...pe > mp},
hence p; < (z/m)'/*, which gives

9 BV TR DR e L SIS |

n<z m<z Pp2.pr<z/m

<< MK - 1/1:(108;2?:)" !

m<z
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< ¢(1 4 1/k)z*+ ¥ (loglog z)*'log z
<< z”‘l/”(loglog z)logz.

Here we used the classical elementary estimate

Y 1< Az(loglog z 4+ B)*-1
log z(k — 1)!

n<z,w(n)=k
(A, B>0;k>1,z>2)

of Hardy and Ramanujan (see {7}, p. 265), where A, B are suitable absolute
constants and w(n) is the number of distinct prime factors of n. Thus the
upper bound in (9) is only by a factor of (loglogz)*~! smaller than the
true order of the summatory function of Pi(n). ‘

The main obstacle in evaluating the last sum in (7) is the presence of
the i-function. However, noting that (z,y) = [z] if y > z([z] is
the integer part of z) and using the trivial #(z,y) <z for y < z, this
difficulty may be overcome, and we may obtain essentially (7) without the
condition Pj(m) < p;. In this way the problem will be reduced to a rather
technical one which involves a k-fold summation over prime s. We have

X
(10) > P1¢(Em—_'—

D ’pl)
..o <m<..<ok -+ Pk

z
= > Pﬂl’(;}r,m)

P192... Pk <2,P1 $P2< . <Pk PEIP2.. Pk > T Pk

z
+ > P1¢(———p—,P1) .
Pip2...px<z,p1 <P2<.. Sk Ppz---Pk

= 3 A

P1P2.. Pk ST,P1 $P2 <. Sk PED2 - PR DT

+ O( 3 =

ees Pk
pip2..pk<z,p1<p2< .. P npz.--P

T
mp2...pPk

In the sum appearing in the O-term the conditions p; < p; < ... < pi
and pip2...pr <z imply that p; < zV/(¥+1)_ Therefore this sum is

< X

© Prep<z

Z1+1/(k+1)
np2...Pk

’
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<< 2HUHD) T L )y 1 2 /) loglog 2)*,

41 Px

n<z <z

" on using the elementary estimate
1
Z - = loglogz + O(1).
p<z P
Thus we obtain

(11) > Pin) = > m[

n<z P1P2..Px<Tp1$p2<...Spx
+O(z("+2)/("+')(log log :t)k),
= b p1 + O(z*+3/ ) (loglog z)*),

np1p2..-px<T,p1<p2<...SPx

A
»p2-..Pk

where n stands for natural numbers, and the portion of the sum containing
the greatest integer function for p?pz...pr < z is estimated trivially in
exactly the same way as the O-term in (10). Two further simplifications
may be made in the last sum in (11). Firstly, we may restrict n to the range
1<n<z° where 0<e<1 isany fixed number. This follows from

3 p << zV/* >, n-1/k > 1

np1p2...px ST,n>7¢ p1 <p2<...<Px n>z* P1p2.-px<x/n
<< Z1+1/k Z n—l—l/k << zl+l/k—:/k,
n>r*

since the last expression is of lower order of magnitude than any term on the
right-hand side of (3). Secondly, the contribution from p; > (z/2n)/(+-1)
in (11) (k > 2 may be henceforth assumed to hold in view of (2)) is
also negligible. Namely, from p; > (z/2r)Y/¢-1) p, < ... < p and
?»p2-.-Pk S z/n we have p; << (z/n)(k‘z)/(k"l)z. Hence for & > 2

2 > P

n<z® py1py..px <T/n,p1 <P2<... <Pk Pk > (z/2n)1 /(5-1)
<< z1+(k—2)/(k-1)’ Z n—1-(k=2)/(k-1)
n<z*

< xl+(k—2)/(k—l)2c(1 + (k _ 2)/(k _ 1)2) << zl+(k—2)/(k—l)2,

on using the same argument as in (9), and for k¥ =2 we get the bound
zlogz. Actually, even the contribution for p; > (z/n)"/*(logz)P,D =
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D(k) > 0 sufficiently large, is also seen to be negligible by the above
argument, but it will be enough to have p; < (2/2r)Y/*~-1 in (11). We
obtain

Y Pi(n)= )] > p + O(z'19),

n<zr n<Zf prpy..pr<z/npe < (/) /D) g1 <. <p
where © <1/2 if k=2 and for k>2 we have

1-¢ k-2 1
0 = 0O(k,e) = maX(T,(T:_i-)-E) < 5

Moreover, the double sum above may be written as a multiple sum, so that
in fact we have

(12) 3" Pi(n) = O(z'+9)+

n<z

+X X 2

n<z* Pk5(3/2n)l’(k—l) Pr—1 <min(pys ;#"Pb

> > m

P2 Sl‘n.il’l(Pal iﬁ;) 4 Smil’l(Pgl ) ..‘.:m‘n )

But the conditions p; < p3<...<pr and pi < (z/22)Y/¢-1  jmply
. z . z
min(px 2"'2pkn) = pk,...,min(pa pa . .pkn) = par
and finally one has

, z P2 if p2 < (z/(ps...pkn))"/2,
13 f— ) = . ,
(13) min(ps pkn) { s i p2 > (2z/(ps.. .pkn))'/2,

It follows that (12) becomes

(14) '3 Pin) = 0(2"+0)+

n<z :
+2 X >
n<rt ka(::/Zn)l’(""l) Pk—15Pk

DYDY D DR %

s X
P3<pa P2Sp3 primin(py o)
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Now from (14) it becomes fairly clear why (3) must hold. We have ¥ summa-
tions over primes p;(1 < j < k), each of which accounts for an additional
logz factor in the denominators in (3), on using (4) and (5). The summa-
tion over n will "preserve” log-factors in view of (6), and the final exponent
of z in all the terms must be the same, and consequently it will be 14 1/k
in view of (8) and (9). To elucidate this in more detail suppose now that in
(14) we ha ve p; < (2/n)'/%. Then in (13) we have the first case, since

p§p3...pk < pt < z/n.

Therefore the corresponding portion of the multiple sum in (14) equals

(15) Z Z Z Z Zpl

n<zt p < (z/n)t/* Pr—1<Px - P28<paP1<P2

SD Y SRD DI L) DX SR

n<z® p, <(z/n)1/* pr—1<px P2<p3 j=1 log? p2 log

Cho1; ok
= .=y 3 (2 ’;,,;_p* +0(logN:kpk))

n<.z" pk<(z/n)l/k J—l

Ck -(z/n)(k+1)/k (z/w)(k+1)/k
= Z(Z grze= +o(EM___ T
n<zt j=1 logt*~1(z/n) logN HFH1 ;

z1+1/k 1+1/k
log"z lgk+lz+"'+
Z1+1/k Z1+1/k
+ Bk,N+1m+0 W )
where By ; are suitable constants (Bj,; > 0), and where (4) and (6) was
used.

= Bk

The remaining portion of the multiple sum in (14), where now
(z/n)* < pg < (z/2n)"/ 1)
is estimated in an analogous way, using (4)-(6). Consider the range p;_; <
pr and split itinto the ranges pr_1 < (z/npe)/*~1 and (z/np )/ <

Pe-1 < pe- I pey < (2/npe) /=), then p2 < (2/ps ... pen)Y/2, and we
obtain that the corresponding portion of the multiple sum equals

2 > > >

n<3* (x/n)*<pu<(x/2n) /3 =1) pp_y <(z/npx) (D) PE—2SPR-1
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DI

P28pan1<pP2

z1+1/k Z1+1/k Z1+1/k 21417k
—Ckl z+Ck2-l——g-,;;1——+ +C'kN+1logk+N + O(

logk+N+1 z

This processes is continued, and in the j-th step (2 < 7 <k-—1) the range
of summation for pi_j4, is split into

z y/tk=j+1)

Pk—j41 <
7+ (nPkPk—l e oo Pk—j+2

and
z
NPkPk—1 - - - Pk—j+2
In the first range we have pi_; < pk—j41,-..,P2 < p3, ;1 < P2, and this
portion yields analogously as before an expression of the type appearing on
the right-hand side of (3). In the second range, we continue the process of

splitting up the range of summation of the next variable. All the ensuing
sums will be eventually of the-same type, and the last one will be

2 > 2

nLz¢ (z/n) 1k <pr<(z/20) 1) (z/npp ) I E=D <pr_1 <pa

> Y. m

—=
(’7/"?3---1-"1:)*(?25?3 b~y rerry

=Y 33 .. > X

<x* Pk Pk-1
naEt PP (z/np3..pk) <p2<ps

PE=3+) ¢ i1 < Prejsa

N+1 2 2

(Y S+ 0l ’m( )-

j=1 p2 pkn2 IOgJ(m - p;.. .pkn2 lOg m)

This will eventually reduce again to an expression analogous to the one on
the right-hand side (3), since the terms coming from both limits of summa-
tion for po,...,pk—1 will at the end give rise to the same type of terms.
Take, for example, the lower limits of summation.” Using (5) it is seen that
summation over p; > (z/nps...px)/? (i.e. the lower limit) gives rise to
terms of the type

za/zn—a/nga/z N .p;3/2 105-1'-1(23/2 . _p;3/2) G=1,....,N+ 2),
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and in general summation over pp > (2/(Pm41...px))V/2(2 <M< k1)
gives rise to terms of the type '

z(m+l)/mn—(m+1)/mp;(.'-7';+l)/m o

. p;(m+l)/m -j—m+1(z(m+l)/m . .p;(m-f-l)/m).

log

Finally summation over p; gives

N+1 )
(16) z :(k-'-l)/k"—(k-}l)/k(z Dy logl—klj(x/n)+0(log—-k—N—l z))

n<z =1

N+1
= z(k+1)/k( z Ek.j logl—k—j z 4+ O(IOg-k—N—l :))
=1

with suitable constants Dy ; and Ej ;(FEy,; > 0), since the upper limit of
summation (z/2r)"/*-1 for p, gives by (5) an expression absorbed in
the error term in (3) and (16). Likewise the upper limits of summation for

P2,P3,.-.,Pk—1 Will eventually yield again expression of the type (16), so
collecting all such expressions it is seen that (3) is established. The constants
A (7 =1,...,N) in (3) can be certainly written down explicitly in closed
form, although the above proof would lead to fairly cumbersome expressions
for these constants. It may be also remarked that our theorem gives easily
the asymptotic formula '»

(17) > (B(n) — Pi(n) — ... = Pi_y(n))
‘n<r
N+1 T
= (Y Agjlog' ™ F 2 4+ O(log™ N 2)), |
j=1

where &k > 2 and the hypotheses are the same as in (3). Ilere B(n) =
2.pe|ln @p is the sum of all prime divisions of n. This formula, with the
right-hand side as in (1), was given by Alladi and Erdés {2]. One obtains
easily (17) from (3) when one observes that the sum in ( 17) is empty for
Q(n) € k-1, and that for r =Q(n) > k one has

(18) B(n)— Pi(n)— ... = Pe_1(n) = P(n) + ...+ P(n)

= P(n) + O(Pk+1(n)l°g n),
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since trivially Q(n) << logn. Hence summing (18) with the aid of (3) we
obtain (17).

By the same method we sould evaluate asymptotically the sum
Yon<z(Px (n))°, where ¢ > 0 is a fixed real number,and k> 1 is a fixed
integer. The result would be an expression similar to the right-hand side
of (3), with z'*1/F replaced by z't</*, and A,; = Aij(c). The case
¢ < 0 requires new methods. For ¢ = —1 ( sum of reciprocals, where
n =1 is excluded from summation and n with (n) < k) this problem
was solved in [5] and [6].
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REZIME
O k - TOM PROSTOM FAKTORU PRIRODNOG BROJA

Neka je Pi(n) k-ti najvedi prosti faktor prirodnog broja n > 1 ako n ima bar
k prostih faktora, a neka je Pr(n) = 0 u suprotnom. Dobivena je asimptotska
formula za sumu 3, <, Pk(n).
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