Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20, 1 (1990), 83-87 Review of Research Faculty of Science Mathematics Series

CONFORMAL DIFFEOMORPHISM BETWEEN TWO f – MANIFOLDS

Jovanka Nikić

Faculty of Technical Sciences, University of Novi Sad Trg Dositeja Obradovića 6, 21000 Novi Sad, Yugoslavia

Abstract

f-manifolds have been studied by various authors including Blair D. [1], Endo H. [2], Yano K. [5] and the integrability conditions of this structure [6]. Singh K. and Srivastava R. in [4] prove a number of theorems involving the fundamental tensor for almost Hermitian manifolds with torsion and study a torsion preserving conformal diffeomorphism.

The paper studies the conformal diffeomorphism between two Riemannian f-manifolds and the Nijenhuis tensor on such manifolds. The result is obtained: The structure f' on \mathcal{M}'^n is integrable iff and only iff the structure f on \mathcal{M}^n is integrable, where \mathcal{M}^n and \mathcal{M}'^n are conformal diffeomorphically Riemannian f-manifolds with the structure tensors f and f', respectively.

AMS Mathematics Subject Classification (1980): 53C10, 53C15, 53C40, 51H20

Key words and phrases: f-manifolds, conformal diffeomorphism, Nijenhuis tensor.

1. Introduction

Let \mathcal{M}^n be a C^{∞} real differentiable manifold, $\mathcal{R}(\mathcal{M}^n)$ the ring of real valued differentiable functions over \mathcal{M}^n , $\mathcal{H}(\mathcal{M}^n)$ the module of derivatives of

 $\mathcal{R}(\mathcal{M}^n)$. Then $\mathcal{H}(\mathcal{M}^n)$ is a Lie algebra over the real numbers and elements of $\mathcal{H}(\mathcal{M}^n)$ are called vector fields.

A C^{∞} n-dimensional differentiable manifold is called an f-manifold iff there exists a non-null tensor field f of type (1,1), of constant rank r, $r \leq n$, such that $f^3 + f = 0$. The (1,1) tensor fields ℓ and m defined by

$$\ell = -f^2, \quad m = I + f^2$$

are complementary projection operators, where I denotes the identity operator. It is easily seen that $\ell^2 = \ell$, $m^2 = m$, $\ell m = m\ell = 0$, $\ell + m = I$.

Let L and M be complementary distributions corresponding to ℓ and m respectively. $Dim\ L = r$, $dim\ M = n - r$. Then:

$$\ell f = f\ell = f, \qquad fm = mf = 0,$$

 $f^2\ell = \ell f^2 = -\ell, \qquad f^2m = mf^2 = 0.$

It can be seen from the above relations that f acts as an almost complex structure on L and as a null operator on M.

An f-manifold \mathcal{M}^n always admits a positive definite Riemannian metric g such that

(1.1)
$$g(X,Y) = g(fX, fY) + g(mX,Y).$$

The above metric satisfies the following relations:

$$g(mX,Y)=g(X,mY), \ g(X,mY)=g(mX,mY),$$

$$g(fX,Y) = g(f^2X, fY), \ g(X, fY) = g(fX, f^2Y).$$

Let ∇ be the Riemannian connexion with respect to the metric g on \mathcal{M}^n . Thus,

(1.2)
$$X(g(Y,Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$$
$$[X,Y] = \nabla_X Y - \nabla_Y X.$$

Let N denote the Nijenhuis tensor of f i.e.

(1.3)
$$[f, f](X, Y) = \mathcal{N}(X, Y) =$$
$$= [fX, fY] - f[fX, Y] - f[X, fY] + f^{2}[X, Y].$$

2. Conformal diffeomorphism between two f-manifolds

Let \mathcal{M}^n and \mathcal{M}'^n be two manifolds with structure tensors f and $f'(f^3 + f = 0)$, $f'^3 + f' = 0$), and admitting the Riemannian metric g and g' respectively as in (1.1).

Let $\phi: \mathcal{M}^n \to \mathcal{M}'^n$ be a diffeomorphism. For $X \in \mathcal{H}(\mathcal{M}^n)$, let $X' \equiv \phi_* X$ where ϕ_* is the Jacobian map or the differential of ϕ [3]. Then, ϕ is called a conformal diffeomorphism, if there exists some real valued function $\sigma \in \mathcal{R}(\mathcal{M}^n)$ such that

$$g'(X',Y') \circ \phi = e^{2\sigma}g(X,Y) ; X,Y \in \mathcal{H}(\mathcal{M}^n)$$

For a real valued function φ , $grad\varphi$ is defined by [4] in the following way

$$g(grad\varphi, X) = X(\varphi); X \in \mathcal{H}(\mathcal{M}^n).$$

We shall be using the following Lemma [4].

Lemma 1. Let $\phi: \mathcal{M}^n \to \mathcal{M}'^n$ be a conformal diffeomorphism on two C^{∞} manifolds \mathcal{M}^n and \mathcal{M}'^n have ∇ and ∇' as Riemannian connexions. Then

$$(2.1) \qquad \nabla'_{X'}Y' = \{\nabla_X Y + X(\sigma)Y + Y(\sigma)X - g(X,Y)grad\sigma\}'.$$

Let us assume that ϕ preserves the f-structure i.e. $f'X' = (fX)^i$.

Theorem 1.

$$(\nabla'_{X'}f')(Y') = \{(\nabla_X f)(Y) + (fY)(\sigma)Y - Y(\sigma)(fX) + g(fX,Y)grad\sigma + g(X,Y)f grad\sigma\}'.$$

Proof. From (2.1), we have

$$(\nabla'_{X'}f')(Y') = \nabla'_{X'}(f'Y') - f'(\nabla'_{X'}Y') =$$

$$= \{\nabla_X(fY) + X(\sigma)fY + fY(\sigma)X - g(X, fY)grad\sigma\}' -$$

$$-f'((\nabla_XY) + X(\sigma)Y + Y(\sigma)X - g(X, Y)grad\sigma)' =$$

$$= ((\nabla_Xf)(Y) + fY(\sigma)X - Y(\sigma)fX + g(fX, Y)grad\sigma + g(X, Y)fgrad\sigma)'$$
which proves the theorem. \square

86 Jovanka Nikić

Theorem 2. Let N and N' be Nijenhuis tensors, of f on M^n and of f' on M'^n respectively. Then we have

$$(\mathcal{N}(X,Y))' = \mathcal{N}'(X',Y').$$

Proof. From (1.3) and the previous theorem we have:

$$\mathcal{N}'(X',Y') = [f'X',f'Y'] - f'[X',f'Y'] - f'[f'X',Y'] + f'^{2}[X',Y'] =$$

$$= \nabla'_{(f'X')}(f'Y') - \nabla'_{(f'Y')}(f'X') - f'\nabla'_{X'}(f'Y') + f'\nabla'_{(f'Y')}X' -$$

$$-f'\nabla'_{(f'X')}Y' + f'\nabla'_{Y'}(f'X') + f'^{2}\nabla'_{X'}Y' - f'^{2}\nabla'_{Y'}X' =$$

$$= (\nabla'_{f'X'}f')(Y') - (\nabla'_{f'Y'}f')(X') - f'(\nabla'_{X'}f')(Y') + f'(\nabla'_{Y'}f')(X') =$$

$$= ((\nabla_{fX}f)(Y) + fY(\sigma)fX - Y(\sigma)f^{2}X + g(f^{2}X,Y)grad\sigma +$$

$$+g(fX,Y)fgrad\sigma - (\nabla_{fY}f)(X) - fX(\sigma)fY + X(\sigma)f^{2}Y -$$

$$-g(f^{2}Y,X)grad\sigma - g(fY,X)fgrad\sigma - f(\nabla_{X}f)(Y) - fY(\sigma)fX +$$

$$+Y(\sigma)f^{2}X - g(fX,Y)fgrad\sigma - g(X,Y)f^{2}grad\sigma + f(\nabla_{Y}f)(X) +$$

$$+fX(\sigma)fY - X(\sigma)f^{2}Y + g(fY,X)fgrad\sigma + g(Y,X)f^{2}grad\sigma)' =$$

$$= (\mathcal{N}(X,Y))',$$

which proves the theorem.

The following result [6] is very well known. The structure f is integrable iff and only iff [f, f] = 0.

The consequence of Theorem 2 is the following theorem:

Theorem 3. Let $\phi: \mathcal{M}^n \to \mathcal{M}'^n$ be a structure preserving a conformal diffeomorphism between two f-manifolds \mathcal{M}^n and \mathcal{M}'^n . The structure f' on \mathcal{M}'^n is integrable iff and only iff the structure f on \mathcal{M}^n is integrable.

References

- [1] Blair, D.E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics 509, Springer Verlag 1976.
- [2] Endo, H., Invariant Submanifolds in a Contact Riemannian Manifold, Tensor, N.S. Vol. 42, 1985, 86-89.

- [3] Hicks, N.Y., Notes on Differential Geometry, D. Van Nostrand Company, INC., Princeton, New Jersey, 1965.
- [4] Singh, K.D. and Srivastava, R.C., Almost Hermitian Manifolds with Torsion, Matematički vesnik, 8(23), 1971. 125-134.
- [5] Yano, K., On structure defined by a tensor field f of type (1,1) satisfying $f^3 + f = 0$, Tensor, N.S. 14, 1963, 99-109.
- [6] Yano, K., Ishihare S.: On integrability conditions of a structure f satisfying $f^3 + f = 0$, Quart. J. Math. Oxford, 15(1964) 217-222.

REZIME

KONFORMNO DIFEOMORFNO PRESLIKAVANJE IZMEDJU DVE f-MNOGOSTRUKOSTI

U radu je ispitivano konformno difeomorfno preslikavanje izmedju dve f---mnogostrukosti i veza izmedju Nijenhuisovih tenzora takvih mnogostrukosti.

Struktura f' na mnogostrukosti \mathcal{M}'^n je integrabilna ako i samo ako je struktura f na \mathcal{M}^n integrabilna, gde su \mathcal{M}^n , \mathcal{M}'^n konformno difeomorfne Rimanove f-mnogostrukosti sa tenzorima strukture f i f' respektivno.

Received by the editors June 7, 1990.