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Abstract

Let f(z) be continuous for z > 0; we consider the existence and

asymptotic behavior for z — oo of nonoscillatory solutions of the equa-
tion ’ ‘ '
(0.1) v +f(z)y=0.
In our analysis there are neither hypotheses concerning the sign of the
function f(z) nor hypotheses concerning the absolute integrability of
f(z) over (a, 00). First we prove a sufficient condition for the existence
of nonoscillatory solutions of (1.1} and then obtain asymptotic formu-
lae for such solutions.
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1. Introduction

Result similar to the ones presented here are given by A. R. Its [1] and by J.
Mahony [2]. Both Its and Mahony consider the asymptotic behavior of oscil-
latory solutions of (0.1) as well as the asymptotic behavior of nonoscillatory
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solutions. Its assumes
f(z) = zﬁP(zH"‘) +ez72,

where P is a smooth, periodic function of period 1 such that

1
/ P(t)dt = 0,
0

with a, 3, and ¢ real numbers, and with

B=a-1and /o et /o " tP(1)dt)dz < (c +1/4)(1 + a)?.

Mahony sketches at the end of his paper how his results for the interesting
case where f(z) = sin(az)/z can be extended to cover the cases in which

f(z) = sin(az)/z + i?b,z"
2

and in which A
f(z) = p(z)/=,
where p is a periodic function of period 7, again of zero mean.

Our results neither contain nor are contained in the result of Its and
Mahony.  In particular the condition in both Its and Mahony concerning the
zero mean of a periodic part of the coefficient function f is not needed in
our reasonings.

Regarding the existence of nonoscillatory solutions, we refer to Willett’s
paper, [3], where sufficient conditions are obtained for this. We are primarily
interested in asymptotics and our conditions imply results pertinent to that
end. Note also the conditions in our nonoscillation theorem are simple and
easy to verify.

We use successive approximations in our proofs. Note we are only con-
cerned with one solution of equation (0.1) and the construction of a second
linearly independent solution follows by usual Wronskian techniques.

2. Results

First we prove existence of nonoscillatory solutions for equation (0.1).
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Theorem 1. Let o
(2.1) h(z) = / f(z)dt

and let there erxist a posilive continuous funct:on g, and an zg > 0, such
that g(z) — 0 as x — oo, while

(2.2) jh(z)] € g(z), z > zo,
and
(2.3) L P(t)dt < eq(z), z > zo,

with ¢ a constant such that

(2.4) 0<c<1/4.
Then the equation (0.1) has nonoscillatory solutions for z 2> zq.

Proof. We prove first that the integral equation

(2.5) w(z) = — L “(u(2) - h(t))2dt
has a solution z(z) such that
(2.6) 2(z) = 0(9(2)), @ — oo.

We shall use this z to construct nonoscillatory solutions of (0.1). Introduce
a sequence {zn(z)}, defined for z > zp, as

27) z(z) =0, za(z)=— /: “(h(t) = zaca(®))2dt, n=1,2,...

First we show that
(2.8) |za(z)] < 4cg(z), z > zp.

Obviously inequality (2.8) is valid for n = 1 since, by use of hypotheses (2.2)
and (2.3),

2 (2)] = / K2 (£)dt < / G*(t)dt < cg(z), z > zo.

If we suppose that (2.8) holds for n = k then, applying (2.2), (2.3) and (2.4),
we have

ensa (@) < [ (@al®)]+ BODE < (o4 17 [ 200t < deg(2)
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for z > z¢. Hence, by induction, (2.8) holds for all integers n > 0.

Next we prove that {z,(z)} is a uniformly convergent sequence of con-
tinuous functions. Continuity follows from the definition of z,(z) and the
continuity of h(z). In order to show the convergence, we prove the inequality

(4 )n+l

(2.9) |zn41(2) = za(2)| £ ~—9(2), n=0,1,.

for z > zo. By (2.2), (2.3) and the definition of 2¢(z), inequality (2.9) is
valid for n = 0. Assume, for z > z¢, that (2.9) holds for n = k - 1, so

AL
(2.10) jon(@) ~ (@) < Bl g(a)

then one gets from

lor41(@) = 4@ < [ 12(8) = 241 O1O] + l2n-1 (O] + 2RO,

and use of (2.2), (2.3), (2.4), (2.8) and (2.10), that

)k+l

0 k
|zep1(2) — 2k(2)] < /x (—4—:—)—(8c + 2)92(t)dt < (4e ——g(z)

for z > z¢, which proves'(2.9) for all integers n > 0. Since

(2.11) tnpa(2) = 3 (za1(2) — 20(2)),

k=0

we conclude from (2.9) that {2,(z)} converges uniformly on [z¢,00) and the
function
(2.12) 2(z) = J_l_{tgo zn(z)

is continuous. Also, from (2,9) and (2.11) there follows, for z > z,,
2 <& (“’) 4ot <
(2.13) i@ < 52 300 < ale)

The appraisal of (2.6) now follows at once.

We are left with the proof that z(:c) is a solutlon of (2.5). Since, by (2.2)
and (2.8),

(2a(2) - h(z))2 <(4c+ 1)292(==)
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for z > zp, and the integral on the left side of (2.3) is convergent, we get,
using the Lebesgue dominated convergence theorem,

Jim [7Gal®) - b)Yt = [ (x(0) - h(O)dt,
and it follows that 2(z) is a solution of equation (2.5).

Finally, to construct a solution of (0.1), we introduce the function &(z)
by
(2.14) £(2)/4(z) = h(z) - 2(z), =2 zo.
By a straightforward calculation we show that £(z) satisfies the equation
£"(z) + {#/(2) - (2(z) - h(z))* - h(z)}¢(=) = 0 .
for z > zp. Noting that z(z) is a solution of equation (2.5) and that, by

(2.1),
K(z) = - f(z),

we conclude that £(z) is a solution of (0.1). If we integrate (2.14) over (a, z),
with a > z¢, we obtain a solution of (0.1) given by

(2.15) £2) = boexp{ | ((t) - =0))dt},
which is obviously a nonoscillatory one. This proves Theorem 1.

Now we give a theorem concerning the asymptotic behavior of the solu-
tion of (0.1) just constructed. '

Theorem 2. Let the functions h and g be as defined as in Theorem 1. If

(2.16) [ fwit < x)o(z), =2 20,

where ¢ is a monotonelzy decreasing functions such that

(2.17) 0 < e(z) < z < 1/4,

and if, for some positive integer n, '

(2.18) /0 ” M (2)g(z)dz < oo,

then the solution (2.15) of (0.1) satisﬁes)the asymptotic equality
(219 we)~ Aexp([ (h(t) ~ zna()i), 7 oo,

where A = constant and the z, are Jeﬁned by (2.7).
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Proof. Notice that all hypotheses of Theorem 1 hold. For the sequence
zn(z) put

(2.20) rn(z) = E(Zk(z) = zx-1(2))-
k=n

For the function z defined by (2.12) we have

(2.21) 2(z) = zp—1(z) + ra(2).

In the same manner as in the proof of inequality (2.9) it can be shown (by
use of the fact the ¢ is monotonely decreasing) that

(2.22) |zk(z) = zk—1(z)| < Eﬁ(‘-lz—)—)—lig(z), k=1,2,... ,

for z > zo. Now, from (2.17), (2.20) and (2.22), there follows

223)r(2)) < L2 S (ae(@)t = T B ya) < L enapg(a)
= 4c(a:) 1

But condition (2.18) shows that the integral

./:o ra(z)dz

converges absolutely and, by (2.15) and (2.21), we obtain the asymptotic
behavior given by (2.19).

3. Examples

Ezample 1 Let

a+bsinz >1.

y O 2

f(=) = z*1nf z

We shall treat two cases and obtain asymptotic formulae which hold for
z — o0o. For the first case suppose a # 0 while b is an arbitrary constant.
Now, for large z,

h(z) = a lzl_"‘ In~Pz+ O(.él_"‘ ln—A-1 z),
for @ > 1 and § arbitrary. For any fixed ¢ > 0 we take

9(z) = _____IZ'_"'lle—a In=Pz.
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Thus, for large z ,

o0 al +¢)® gy - 20y, ~20-
/ar g'(t)dt = (2a(_li)(a)_ 1)2::3 21n~%# 2 + 0(z* 021 z),

If a > 2, assumptions (2.3) and (2.4) hold, for any a,b and 8. Moreover,
since there exists a constant M > 0 such that the function

e(z) = Mz> *In~P 2

fulfills the conditions of Theorem 2, (with (2.18) being satisfied for n = 1),
we conclude

y(z) ~ Aexp(/: h(t)dt).
Since

/a * h(z)dz < oo,

the solution tends to a nonzero constant.
If « = 2 and 8 > 0 then we take ¢(z) = MIn~® z and note

[ @@z = [T 06 e+ 2)da

converges for sufficiently la.rge n Ifg>1 /2 we take n = 1 in (2.18) and get
the following results:

if 3>1, y~ constant ;

ifg=1 y~ A(lnz)%

e 1 @ 1.1-8
1f2<ﬂ<1, y Aexp(l_ﬂln z).
If 1/3 < B < 1/2 condition (2.18) is fulfilled for n = 2 and one gets,

iff=1/2, y~ Aexp(2aln1/2 z)(lnz)f‘z;

1n1-%8 z),

2 5 In! az)exp(

if 1/3 1/2, y~ A
if1/3<B<1/2, y~ Aexp(y— —35

and so on; the asymptotic behavior can be obtained for any positive .
If o = 2, and B = 0 the conditions of Theorem 1 are fulfilled for |a| < 1/4 .

and we have the existence of nonoscillatory solutions of our equations, but we
cannot find a function ¢(z) satisfying condition (2.18) of Theorem 2. Thus -



114 H. Howard, V. Marié, Z. Radasin

in this case we are not able to obtain the asymptotic behavior of solutions.
This ends our discussion of the first case.

For the second case suppose a = 0. Now we have, for large z
h(z) = bz~*(In"Pz)cos z + O(z™* ' In" z),
9(z) = (|| + )z~ In~" 2,
/ Pyt = CLED jiozayy-a, 4 o(g1-tapy-20-1,),
T 2a -1 ‘
c(z) = Mz'"*In"Pz,

If @ > 1, the conditions of Theorem 2 hold for any 3, and if we take
n = 1in (2.18) it is easily seen that the solution tends to a nonzero constant
as z — oo. If @ =1 and § > 1/2, the situation is the same. If @« = 1 and
B =1/2, take n = 2 in (2.18) and get

y ~ A(Inz)¥/2,
Ifa=1and 1/3 < 8 < 1/2 take n = 2 in (2.18) and get

b 1-258
Yy Aexp(mln Z'),

ifa=1and 1/4 < 8 < 1/2, take n = 3 in (2.18) and get

y~ Aexp(b?In'/? z)(In a:)bi/“.
Ifa=1and 1/5< 3 < 1/4 take n = 4 in (2.18) and get

b2 1 2ﬁ b4
3/~Aexp(2(1 ﬂ) av)exp(4(1 )

If « =1and 1/6 < 8 < 1/5, thte behavior is the same as above, although
one has to take n = 5.

I~ ).

If @ =1 and 8 = 0 our method gives us only the existence of nonoscilla-
tory solutions (and not the asymptotic behavior) for || <'1/4. However, it
is shown by Its that in this case solutions are nonoscillatory for |b| <1 /\/_
and the asymptotic behavior is also determined.
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Ezample 2 Let
f(z) = az® cos(eP*), a #0,8> 0.
Notice that, if a > 0, |

sup f(z) = — inf f(z) = oco.
T2T0 32?0

By partial integration we get

h(z) = —%:t:"‘e"ﬂ’c sin(ef%) — %/m(at"‘_1 — Bt™)e Pt sin(eP*)dt;

T

there exists positive constants My, M, such that
9(z) = Myz®eP*

with

| 90 < daga),

x

where
e(z) = Myze P=,

Therefore, Theorem 2 holds (take » = 1 in (2.18)) and it follows that (0.1)
has a nonoscillatory solution which tends to a nonzero constant for any a, «
and 8 > 0.
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REZIME

ASIMPTOTIKA NEOSCILATORNIH RESENJA LINEARNE
DIFERENCIJALNE JEDNACINE DRUGOG REDA

Neka je f(z) neprekidna funkcija za z > 0. U radu je razmatrana egzistencija
i asimptotsko ponasanje za £ — 0o neoscilatornog resenja jednatine

¥+ flz)y =0.

Pri ovoj analizi ne koriste se pretpostavke kako o znaku funkcije f(z) tako
ni o apsolutnoj integrabilnosti funkcije f(z) nad (a,00). Prvo je dobijen
dovoljan uslov za postojanje neoscilatornih reienja navedene diferencijalne
jednagtine, a zatim asimptotska formula za ova resenja.
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