Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20, 1 (1990), 129-133 Review of Research Faculty of Science Mathematics Series

REPRESENTATION FOR A CLASS OF NON – LINEAR FUNCTIONALS OF GAUSSIAN MARTINGALES

Zoran A. Ivković
Faculty of Mathematics, University of Belgrade,
Studentski trg 16, 11000 Beograd, Yugoslavia

Abstract

Let $\{X(t), t > 0\}$ be a continuous Gaussian martingale and let \mathcal{H}^* be the mean-square linear closure of all the one-dimensional polynomials $\{P_n(X(t)), n = \overline{1, \infty}, t > 0\}$. For $Y \in \mathcal{H}^*$, there is the representation $Y = \int_0^\infty \Phi(t, X(t)) \ dX(t), \|\Phi(t, X(t))\| \in \mathcal{L}_2(\|dX(t)\|^2)$.

AMS Mathematics Subject Classification (1980): 60G12, 60G15. Key words and phrases: Stochastic integral, Hermite polynomial.

1. Introduction

Let $\{X(t), t > 0\}, X(0) = 0$, be a real mean-square continuous martingale and let the Hilbert space \mathcal{H}_1 be the mean-square linear closure of $\{X(t), t > 0\}$. It is a well-known fact (see, for instance, [2], Ch. IX) that any $Y, Y \in \mathcal{H}_1$ has the representation

$$(1) Y = \int_0^\infty \varphi(t) dX(t),$$

where the non-random function $\varphi(u), u > 0$, belongs to $\mathcal{L}_2(dF), F(t) = EX^2(t) = ||X(t)||^2$. In this paper we shall consider the continuous Gaussian martingale $\{X(t), t > 0\}$ and the Hilbert space \mathcal{H}^* -the mean-square linear

closure of all the one-dimensional polynomials $\{P_n(X(t)), n=\overline{1,\infty}, t>0\}$. (We assume that all the random variables are centered at the expectations). Remark that \mathcal{H}^* is the subspace of \mathcal{H} -the linear closure of all the polynomials $\{P_n(X(t_1)\ldots,X(t_n)), n=\overline{1,\infty},t_1,\ldots,t_n>0\}$. For example, the element $X(t)X(s)-F(min\{s,t\}), s\neq t$, does not belong to \mathcal{H}^* . We shall show that $Y\in\mathcal{H}^*$ has the representation

(2)
$$Y = \int_0^\infty \Phi(t, X(t)) dX(t),$$

where $\|\Phi(t,X(t))\|$ belongs to $\mathcal{L}_2(dF)$. The integral of form (2) is considered in the sense of [2], Ch.IX.

The proof proceeds according to the technique of Hermite polynomials $H_p(X_1,\ldots,X_p)$ of Gaussian variables X_1,\ldots,X_p (see, for instance, [3]). We write $H_p(X)=H_p(\underbrace{X_1,\ldots,X_p})$

Lemma 1. For $0 < t < t_1, \Delta X = X(t_1) - X(t), p \ge 2$

(3)
$$[H_p(X(t) + \Delta X) - H_p(X(t))] - pH_{p-1}(X(t))\Delta X =$$
$$= A_2(\Delta X)^2 + \ldots + A_p(\Delta X)^p,$$

where A_k are independent of ΔX .

Proof. Recall the relation
$$H_p(X+Y) = \sum_{k=0}^p \binom{p}{k} H_p(\underbrace{X,\ldots,X}_{k}\underbrace{Y,\ldots,Y}_{n-k}),$$

[4], and the factorization property of Hermite polynomials: if X and Y are independent, then $H_p(\underbrace{X,\ldots,X}_{p-k}Y,\ldots,Y)=H_k(X)H_{p-k}(Y)$. Since X(t)

and ΔX are independent, we have

$$H_{p}(X(t) + \Delta X) = H_{p}(X(t)) + pH_{p-1}(X(t))H_{1}(\Delta X) +$$

$$+ \binom{p}{p-2} H_{p-2}(X(t))H_{2}(\Delta X) + \dots$$

$$\dots + pH_{1}(X(t))H_{p-1}(\Delta X) + H_{p}(\Delta X). \quad \Box$$

2. Representation

Proposition. 1. The space \mathcal{H}^* coincides with the set of integrals $\int_0^\infty \Phi(t,X(t)) dX(t)$, where the random function $\Phi(t,X(t))$ satisfies $\|\Phi(t,X(t))\| \in \mathcal{L}_2(dF)$ (It is not necessarily that $E\Phi=0$).

Proof. Let \mathcal{H}_p^* , $p = \overline{1, \infty}$, be the mean-square linear closure of $\{H_p(X(t)), t > 0\}$ ($\mathcal{H}_1^* = \mathcal{H}_1$). Then, by the orthogonality of Hermite polynomials of different degrees, it holds that

$$\mathcal{H}^* = \sum_{p=1}^{\infty} \bigotimes \mathcal{H}_p^*$$

Let E_t be the conditional expectation with respect to δ -field generated by $\{X(u), u \leq t\}$. From

(5)
$$E_s H_p(X(t)) = H_p(E_s X(t)) = H_p(X(s)), s < t, [3]$$

it follows that $H_p(X(t)), t > 0$ is a martingale. In this way \mathcal{H}_p^* coincides with the set of integrals

(6)
$$\int_0^\infty \varphi_p(t)dH_p(X(t)), \varphi_p(t) \in \mathcal{L}_2(\|dH_p(X(t))\|^2).$$

By Lemma $dH_p(X(t)) = pH_{p-1}(X(t))dX(t), H_0(\cdot) = 1.$ Then (6) becomes

(7)
$$\int_0^\infty \varphi_p(t) p H_{p-1}(X(t)) dX(t).$$

Remark that the measure $||dH_p(X(t))||^2 = ||pH_{p-1}(X(t))||^2 dF(t)$ is equivalent by absolute continuity to the measure dF(t). Let $Y \in \mathcal{H}^*$. By (4) and (6)

$$Y = \sum_{p=1}^{\infty} \int_{0}^{\infty} \varphi_{p}(t) p H_{p-1}(X(t)) dX(t) = \int_{0}^{\infty} \{ \sum_{p=1}^{\infty} \varphi_{p}(t) p H_{p-1}(X(t)) \} dX(t).$$

Let us denote $\Phi(t,X(t)) = \sum_{p=1}^{\infty} \varphi_p(t) p H_{p-1}(X(t))$. The random function $\Phi(t,X(t)), t > 0$, is such that $\|\Phi(t,X(t))\| \in \mathcal{L}_2(dF)$.

Conversely, consider the random function $\Phi(t, X(t)), t > 0$, such that $\int_0^\infty ||\Phi(t, X(t))||^2 dF(t) < \infty$.

For almost every t (with respect to dF), $\|\Phi(t,X(t))\|^2$ is finite. The random variable $\Phi(t,X(t)), t \in \sup dF$ is decomposable by the complete

orthogonal system $\{H_p(X(t)), p = \overline{0,\infty}\}$ in the space of all the random variables of the finite variances and measurable to X(t). Let $\Phi(t, X(t)) = \sum_{p=0}^{\infty} \varphi_p(t) H_p(X(t))$ be this decomposition. The integral

$$Y = \int_0^{\infty} \Phi(t, X(t)) dX(t) = \int_0^{\infty} \{ \sum_{p=0}^{\infty} \varphi_p(t) H_p(X(t)) \} dX(t) =$$

$$= \sum_{p=0}^{\infty} \int_0^{\infty} \varphi_p(t) \frac{1}{p+1} dH_{p+1}(X(t))$$

belonges to \mathcal{H}^* . \square

3. Processes as curves in \mathcal{H}^* . Linear completeness.

Let us denote $\mathcal{H}_t^* = E_t \mathcal{H}^*$. By (5) the subspace \mathcal{H}_t^* is the linear closure of $\{P_n(X(u)), n = \overline{1, \infty}, u \leq t\}$ and \mathcal{H}_p^* reduces the family of projections $\{E_t, t > 0\}$. It follows immediately that the spectral type of $\{E_t, t > 0\}$ in \mathcal{H}^* is dF and the multiplicity of dF is ∞ . (For these notions see, for instance, the classical paper [1]). Consider the process $\{Y(t), t > 0\}$ in x defined by

$$Y(t) = \int_0^t \Phi(t, u, X(u)) dX(u), \|\Phi(t, \cdot, X(\cdot))\| \in \mathcal{L}_2(dF).$$

Let us benote by $\mathcal{H}_1(Y;t)$ then mean-square linear closure of $\{Y(u), u \leq t\}$. We say that the process $\{Y(t)\}$ is linearly complete in \mathcal{H}^* if $\mathcal{H}_1(Y;t) = \mathcal{H}_t^*$ for each t > 0. The characterization of the completenes of $\{Y(t)\}$ in the terms of $\Phi(t,u,X(u))$ seems to be of some interest. We say that the family of random functions $\{\Phi(t,u,X(u)),t>0\}$ is complete in \mathcal{H}^* if from $\int_0^t <\Phi(t,u,X(u),\Psi(u,X(u))>dF(u)=0$, for each t>0, follows that $\in t_0^\infty \|\Psi(u,X(u))\|^2 dF(u)=0$. $(<\cdot,\cdot>$ denotes the inner product in \mathcal{H}^* .

Proposition. 2. The relation $\mathcal{H}_1(Y;t) = \mathcal{H}_t^*$ for each t > 0 holds if and only if the family $\{\Phi(t,u,X(u)),t>0\}$ is complete in \mathcal{H}^* .

Proof. Let $Z = \int_0^\infty \Psi(u, X(u)) dX(u) \in \mathcal{H}^*$. Then $\langle Y(t), Z \rangle = \int_0^t \langle \Phi(t, u, X(u), \Psi(u, X(u)) \rangle dF(u)$. If $\langle Y(t), Z \rangle = 0$ for each t > 0, then Z

is orthogonal to $\mathcal{H}_1(Y)$. So, if $Z \in \mathcal{H}_1(Y;t)$ it follows that $\|Z\|^2 = \int_0^\infty \|\Psi(u,X(u))\|^2 dF(u) = 0$ or the family $\{\Phi(t;u,X(u)),t>0\}$ is complete in \mathcal{H}^* . Conversely, if $\{\Phi(t,u,X(u)),t>0\}$ is complete, it follows that necessarily Z=0 or $\mathcal{H}_1(Y;t)=\mathcal{H}_t^*$. Remark that the completeness of $\{\Phi(t,u,X(u)),t>0\}$ in \mathcal{H}^* is equivalent to the completeness of the system of non-random functions $\{\varphi_p(t,n),t>0,p=\overline{1,\infty}\}$ in \mathcal{H}^* , because $\Phi(t,u,X(u))=\sum_{p=1}^\infty \varphi_p(t,u)pH_{p-1}(X(u))$.

References

- H. Cramér: Stochastic processes as curves in Hilbert Sspaces, Probability Theory and its Applications, Vol. 9 (1964), 195-204.
- [2] J.L.Doob: Stochastic Processes, John Wiley and Sons, 1953.
- [3] Z. Ivković and Z. Lozanov: Hermite Polynomials of Gaussian Processe, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 12(1982), 105-115.
- [4] Z. Ivković: On Hermite polynomials of gaussion Markov processes and fields, to apear in Bull. Acad. Sci. Arts No. 17 (Belgrade).

REZIME

REPREZENTACIJA JEDNE KLASE NELINEARNIH FUNKCIONALA GAUSOVSKIH MARTINGALA

Neka je $\{X(t), t > 0\}$ neprekidni Gausovski martingal i neka je \mathcal{H}^* srednje kvadratna linearna zatvorenost svih jedno-dimenzionalnih polinoma $\{P_n(X(t)), n = \overline{1, \infty}, t > 0\}$. Za $Y \in \mathcal{H}^*$ važi reprezentacija $Y = \int_0^\infty \Phi(t, X(t)) dX(t), \|\Phi(t, X(t))\| \in \mathcal{L}_2(\|dX(t)\|^2)$.

Recived by Editors July 15, 1989.