Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20, 1 (1990), 135-144 Review of Research Faculty of Science Mathematics Series

AN INTEGRAL GENERATED BY A DECOMPOSABLE MEASURE

Endre Pap

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

An integral using the pseudo-addition \oplus , pseudo-multiplication \otimes and the \bigoplus -decomposable measure is introduced. The method used is similar to the procedure of the construction of Lebesgue integral.

AMS Mathematics Subject Classification (1980): 28A25
Key words and phrases: Pseudo-addition, pseudo-multiplication, decomposable measure.

1. Introduction

There are many different ways for defining integrals with respect to non-additive set functions (some of them in [1], [2], [3], [4], [7], [8], [9]). We continue our investigations of \bigoplus -decomposable measures initiated in paper [5] based on the pseudo-addition \bigoplus and pseudo-multiplication \bigotimes defined on $[a,b] \subset [-\infty,+\infty]$. In this paper we shall examine the corresponding integral using a construction similar to that of the Lebesgue integral.

2. Decomposable measures

Let [a,b] be a closed (in some cases semiclosed) subinterval of $[-\infty, +\infty]$. We shall consider a partial order \leq on [a,b], which can be the usual order of the real line, but it can also be another order. All future considerations will be with respect to the order \leq .

The operation \oplus (pseudo-addition) is a function \oplus : $[a,b] \times [a,b] \to [a,b]$ which is commutative, nondecreasing (with respect to \leq) associative and either a or b is a zero element, denoted by 0, i.e. for each $x \in [a,b]$

$$0 \oplus x = x$$
 holds.

Let
$$[a,b]_+ = \{x : x \in [a,b], x \ge 0\}.$$

The operation \otimes (pseudo-multiplication) is a function \otimes : $[a,b] \times [a,b] \rightarrow [a,b]$ which is commutative, positively nondecreasing, i.e. $x \leq y$ implies $x \otimes z \leq y \otimes z$, $z \in [a,b]_+$, associative and for which there exist a unit element $1 \in [a,b]$, i.e. for each $x \in [a,b]$

$$1 \otimes x = x$$
.

We suppose, further, $0 \otimes x = 0$ and that \otimes is a distributive pseudo-multiplication with respect to \oplus , i.e.

$$x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z).$$

Examples can be found in paper [5]. Some of them are:

$$x \oplus y = (x^p + y^p)^{\frac{1}{p}}, \ p > 0$$
 and $x \otimes y = x \cdot y$ on $[0, +\infty]$
or $x \oplus y = \max\{x, y\}$ and $x \otimes y = x + y$ on $[-\infty, +\infty)$.

Pseudo-addition \oplus is idempotent if for any $x \in [a, b]$

$$x \oplus x = x$$
 holds.

Let X be a non-empty set. Let \sum be a σ -algebra of subsets of X.

A set function $m: \sum \to [a,b]_+$ (or semiclosed interval) is a \bigoplus -decomposable measure if there hold

 $m(\emptyset) = 0$ (if \oplus is not idempotent)

$$m(A \cup B) = m(A) \oplus m(B)$$

for $A, B \in \sum$ such that $A \cap B = \emptyset$.

In the case when \oplus is idempotent, it is possible that m is not defined on the empty set.

A \bigoplus -decomposable measure m is σ - \bigoplus -decomposable if

$$m(\bigcup_{i=1}^{\infty} A_i) = \bigoplus_{i=1}^{\infty} m(A_i)$$

hold for any sequence (A_i) of pairwise disjoint sets from \sum .

Proposition 1. If $m: \sum \rightarrow [a,b]_+$ is a \bigoplus -decomposable measure with respect to the idempotent pseudo-addition \oplus , then we have

$$m(A \cup B) = m(A) \oplus m(B)$$

for any $A, B \in \sum$.

3. Integral

Let m be a σ - \bigoplus -decomposable measure. A function $f: X \to [a,b]$ is measurable from below if for any $c \in [a,b]$ the sets $\{x: f(x) \leq c\}$ and $\{x: f(x) < c\}$ belong to $\sum f$ is measurable, if it is measurable from below and the sets $\{x: f(x) \geq c\}$ and $\{x: f(x) > c\}$ belong to $\sum f$.

Let f and g be two functions defined on X and with values in [a,b]. Then, we define for any $x \in X$

$$(f \oplus g)(x) = f(x) \oplus g(x) ,$$

$$(f \otimes g)(x) = f(x) \otimes g(x)$$

and for any $c \in [a, b]$

$$(c \otimes f)(x) = c \otimes f(x).$$

We suppose further that $([a,b],\oplus)$ and $([a,b],\otimes)$ are complete lattice ordered semigroups. A complete lattice means that for each set $A \subset [a,b]$ bounded from above (below) there exists $\sup A$ (inf A). Further, we suppose that [a,b] is endowed with a metric d compatible with \sup and \inf and which satisfies at laest one of the following conditions:

(a)
$$d(x \oplus y, x' \oplus y') \leq d(x,x') + d(y,y')$$

(b)
$$d(x \oplus y, x' \oplus y') \le \max\{d(x,x'), d(y,y')\}.$$

Both conditions (a) and (b) imply that:

$$d(x_n, y_n) \to 0$$
 implies $d(x_n \oplus z, y_n \oplus z) \to 0$.

Condition (b) implies

$$d(\bigoplus_{i=1}^n x_i, \bigoplus_{j=1}^n y_j) \leq \min_j \max_i d(x_i, y_j).$$

We suppose further the monotonicity of the metric d, i.e.

$$x \le z \le y$$
 implies $d(x,y) \ge \max\{d(y,z),d(x,z)\}.$

Let ε be a positive real number, and $B \subset [a, b]$. A subset $\{l_i^{\varepsilon}\}$ is a ε -net if for each $x \in B$ there exists l_i^{ε} such that $d(l_i^{\varepsilon}, x) \leq \varepsilon$. If we have $l_i^{\varepsilon} \leq x$, then we shall call $\{l_i^{\varepsilon}\}$ a lower ε -net. If $l_i^{\varepsilon} \leq l_{i+1}^{\varepsilon}$ holds, then $\{l_i^{\varepsilon}\}$ is monotone.

We define the characteristic function

$$\chi_A(x) = \left\{ \begin{array}{ll} 0, & x \notin A \\ 1, & x \in A \end{array} \right.$$

A mapping $e: X \to [a,b]$ is an elementary (measurable) function if it has the following representation

$$e = \bigoplus_{i=1}^{\infty} a_i \otimes \chi_{A_i}$$
 for $a_i \in [a, b]$

and $A_i \in \sum$ disjoint if \oplus is not idempotent.

Theorem 1. Let $f: X \to [a,b]$ be a measurable from below function if the pseudo-addition is idempotent, or f is measurable and for each positive real number ε there exists a monotone ε -net in f(X). Then, there exist a sequence (φ_n) of elementary functions such that, for each $x \in X$,

$$d(\varphi_n(x), f(x)) \to 0$$
 uniformly as $n \to \infty$.

Proof. Suppose first that \oplus is not idempotent. We take a lower monotone ε -net $\{f_i^{\varepsilon}\}$ on f(X).

Let

$$e^{e} = \bigoplus_{i=1}^{\infty} f_{i}^{e} \otimes \chi_{X_{i}^{e}},$$

where $X_i^{\epsilon} = \{x : f_{i+1}^{\epsilon} > f(x) \ge f_i^{\epsilon}\}.$

For each point x from X there exists $f_i^e(x)$ such that

$$d(f_i^{\varepsilon}(x), f(x)) \leq \varepsilon,$$

where $f_i^{\varepsilon}(x) = f_i^{\varepsilon} \otimes \chi_{X_i^{\varepsilon}}(x)$. Hence, by the monotonicity of d and $e^{\varepsilon}(x) \geq f_i^{\varepsilon}(x)$, we obtain

$$d(e^{\epsilon}(x), f(x)) < \epsilon, x \in X.$$

Taking $\varepsilon = \frac{1}{n}$ we define the desired sequence (φ_n) as $\varphi_n = e^{\frac{1}{n}}$.

If the pseudo-addition \oplus is idempotent, then we take in the preceding procedure a lower ε -net $\{f_i^{\varepsilon}\}$ and

$$X_i^{\varepsilon} = \{x : f(x) \ge f_i^{\varepsilon}\}.$$

We have used that $e^{\epsilon}(x) \leq f(x)$ holds, which follows by

$$e^{\varepsilon}(x) \leq e^{\varepsilon}(x) \oplus f(x) \leq \bigoplus_{i=1}^{\infty} ((f_{i}^{\varepsilon} \otimes \chi_{X_{i}^{\varepsilon}}(x)) \oplus f(x)) \leq f(x).$$

The integral of a simple function $s = \bigoplus_{i=1}^n a_i \otimes \chi_{A_i}$ for $a_i \in [a, b]$ with disjoint $A_1, A_2, ... A_n$, if \oplus is not idempotent, is defined by

$$\int_X^{\oplus} s \otimes dm := \bigoplus_{i=1}^n a_i \otimes m(A_i).$$

The integral of an elementary function

$$e = \bigoplus_{i=1}^{\infty} a_i \otimes \chi_{A_i}$$
 for $a_i \in [a,b]$ $(i \in N)$ with (A_i)

disjoint if \oplus is not idempotent, is defined by

(1)
$$\int_{X}^{\oplus} e \otimes dm := \bigoplus_{i=1}^{\infty} a_{i} \otimes m(A_{i}).$$

The integral of a bounded measurable (from below for \oplus idempotent) function $\overline{f:X} \to [a,b]$, for which, if \oplus is not idempotent for each $\varepsilon > 0$, there exists a monotone ε -net in f(X), is defined by

(2)
$$\int_{X}^{\oplus} f \otimes dm := \lim_{n \to \infty} \int_{X}^{\oplus} \varphi_{n}(x) \otimes dm,$$

where (φ_n) is the sequence of elementary functions constructed in Theorem 1.

Theorem 2.. The integral defined in (2) is independent of the choice of sequence (φ_n) .

Theorem 3. Let \oplus and \otimes be continuous and \oplus infinitely commutative and associative. Then the integrals defined by (1) and (2) have the following properties:

(i)
$$\int_X^{\oplus} (f \oplus g) \otimes dm = \int_X^{\oplus} f \otimes dm \oplus \int_X^{\oplus} g \otimes dm$$
,

(ii)
$$\int_X^{\oplus} (c \otimes f) \otimes dm = c \otimes \int_X^{\oplus} f \otimes dm$$

for any $c \in [a, b]$.

Proof. (i) Let f and g be elementary functions, i.e.

$$f = \bigoplus_{i=1}^{\infty} (a_i \otimes \chi_{A_i}), \quad g = \bigoplus_{i=1}^{\infty} b_i \otimes \chi_{B_i},$$

where (A_i) and (B_i) are (if \oplus is not idempotent, disjoint) partitions of X in \sum . Hence, $f \oplus g$ is also an elementary function and

$$f \oplus g = \bigoplus_{i=1}^{\infty} \bigoplus_{j=1}^{\infty} (a_i \oplus b_j) \otimes \chi_{A_i \cap B_j}.$$

By (1) we obtain

$$\int_{X}^{\oplus} (f \oplus g) \otimes dm = \bigoplus_{i=1}^{\infty} \bigoplus_{j=1}^{\infty} (a_{i} \oplus b_{j}) \otimes m(A_{i} \cap B_{j}) =$$

$$= \bigoplus_{i=1}^{\infty} \bigoplus_{j=1}^{\infty} (a_{i} \otimes m(A_{i} \cap B_{j})) \oplus \bigoplus_{i=1}^{\infty} \bigoplus_{j=1}^{\infty} b_{j} \otimes m(A_{i} \cap B_{j}) =$$

$$= \bigoplus_{i=1}^{\infty} (a_{i} \otimes m(A_{i} \cap \cup_{j=1}^{\infty} B_{j})) \oplus \bigoplus_{j=1}^{\infty} (b_{j} \otimes m(\cup_{i=1}^{\infty} A_{i} \cap B_{j}) =$$

$$= \bigoplus_{i=1}^{\infty} (a_{i} \otimes m(A_{i})) \oplus \bigoplus_{j=1}^{\infty} (b_{j} \otimes m(B_{j})) =$$

$$= \int_{X}^{\oplus} f \otimes dm \oplus \int_{X}^{\oplus} g \otimes dm$$

Now, let f and g be measurable (from below if \oplus is idempotent). Let (φ_n) and (ψ_n) be the corresponding sequences from Theorem 1 to f and g, respectively. The integral

$$\int_X^{\oplus} (f \oplus g) \otimes dm$$

exists, since it can be defined by the sequence $(\varphi_n(x) \oplus \psi_n(x))$

$$\int_{X}^{\oplus} (f \oplus g) \otimes dm = \lim_{n \to \infty} \int_{X}^{\oplus} (\varphi_{n}(x) \oplus \psi_{n}(x)) \otimes dm$$

and $(\varphi_n(x))$ and $(\psi_n(x))$ satisfy, for any x,

$$d(\varphi_n(x), f(x)) \to 0$$
 and $d(\psi_n(x), g(x)) \to 0$.

Hence, since d satisfies (a) or (b)

$$d(\varphi_n(x) \oplus \psi_n(x), f(x) \oplus g(x)) \to 0.$$

Now, we have

$$\int_{X}^{\oplus} (f \oplus g) \otimes dm = \lim_{n \to \infty} \int_{X}^{\oplus} (\varphi_{n} \oplus \psi_{n}) \otimes dm =$$

$$= \lim_{n \to \infty} (\int_{X}^{\oplus} \varphi_{n} \otimes dm \oplus \int_{X}^{\oplus} \psi_{n} \otimes dm) =$$

$$= \lim_{n \to \infty} \int_{X}^{\oplus} \varphi_{n} \otimes dm \oplus \lim_{n \to \infty} \int_{X}^{\oplus} \psi_{n} \otimes dm =$$

$$= \int_{X}^{\oplus} f \otimes dm \oplus \int_{X}^{\oplus} g \otimes dm.$$

Property (ii) easily follows by the continuity of \otimes .

Example 1. For any function g bounded above we can define

$$m(A) = \sup_{x \in A} g(x)$$
 $A \in \mathcal{B}$,

where B is the Borel σ -algebra on $[-\infty, \infty)$. Taking $\oplus = \max = \sup$, $\otimes = +$, we obtain

$$\int_{\mathbf{R}}^{\oplus} f \otimes dm = \sup_{x \in \mathbf{R}} (f(x) + g(x)),$$

f bounded above.

If \oplus is a strict pseudo-addition with a monotone generator g, $g \circ m : \sum \rightarrow [\circ, g(c)]$ and $c \in [a,b]$ is an additive measure then we have (see [3],[5]) for the simple function

$$\int_X^{\oplus} s \otimes dm = g^{-1}(\sum_{i=1}^n g(a_i) \cdot (g \circ m)(A_i))$$

and for the measurable function f

$$\int_X^{\oplus} f \otimes dm = g^{-1}(\int_X (g \circ f) \cdot dx),$$

where $dx = d(g \circ m)$ is the Lebesgue measure and $u \otimes v = g^{-1}(g(u) \cdot g(v))$.

Example 2. ([5]) If c > 0, then we define

$$u \oplus v = -c \ln(e^{-\frac{u}{c}} + e^{-\frac{v}{c}})$$
 and

$$u \otimes v = u + v$$
.

The corresponding integral is

$$\int_{R}^{\oplus} f \otimes dm = -c \ln \int_{\mathbf{R}} e^{\left(-\frac{f}{c}\right)} dx.$$

References

- [1] D'Apuzzo, L., Squillante, M., Ventre, A.G.S., A survey on decomposable measures, Control and Cybernetics (to appear).
- [2] Choquet, G., Theory of capacities, Ann. Inst. Fourier (Grenoble), 5 (1953-1954), 131-292.
- [3] Ichihashi, H., Tanaka, M., Asai, K., Fuzzy Integrals Based on Pseudoadditions and Multiplications, J. Math. Anal. Appl. 130 (1988), 354 -364.
- [4] Maslov, V.P., Asymptotical methods for solving pseudo-differential equations, (in Russian), Moscow, 1987.
- [5] Pap, E., Decomposable measures and applications on nonlinear partial differential equations, Rend. del Circolo Mat. di Palermo (to appear).
- [6] Schweizer, B., Sklar, A., Associative functions and abstract semigroups, Publ. Math. Debrecen 10 (1963), 69-81.
- [7] Sugeno, M., Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo, Institute of Technology, 1974.
- [8] Weber, S., \(\perp \)—decomposable measures and integrals for Archimedean t—conorm, J. Math. Anal.Appl. 101 (1984), 114-138.
- [9] Weber, S., Measures of fuzzy sets and measures of fuzzines, Fuzzy Sets and Systems 13 (1984), 247-271.

144 Endre Pap

[10] Weber, S., Two integrals and some modified version - critical remarks, Fuzzy Sets and Systems 20 (1986), 97-105.

REZIME

INTEGRAL GENERISAN DEKOMPOZABILNOM MEROM

Uveden je integral pomoću pseudo-sabiranja ⊕, pseudo-množenja ⊗ i ⊕ --dekompozabilne mere. Korišćena je metoda bliska konstrukciji Lebesgueovog integrala.

Received by the editors November 15, 1990.