Univ. u Novom Sadu Review of Research
Zb. Rad. Prirod.—Mat. Fak. Faculty of Science
Ser. Mat. 20, 1 (1990), 135-144 Mathematics Series

AN INTEGRAL GENERATED BY A
DECOMPOSABLE MEASURE

Endre Pap
Institute of Mathematics, University of Novi Sad
Trg Dositeja Obradovica 4, 21000 Novi Sad, Yugoslavia

Abstract

An integral using the pseudo-addition &, pseudo-multiplication ®
and the € —decomposable measure is introduced. The method used
is similar to the procedure of the construction of Lebesgue integral.
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1. Introduction

There are many different ways for defining integrals with respect to non-
additive set functions (some of them in [1], [2], (3], [4], [7], [8], [9]). We
continue our investigations of € —decomposable measures initiated in paper
[5] based on the pseudo-addition @ and pseudo-multiplication ® defined on
{a,b] C [~o0, +00]. In this paper we shall examine the corresponding integral
using a construction similar to that of the Lebesgue integral. 4
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2. Decomposable measures

Let [a,b] be a closed (in some cases semiclosed) subinterval of [—o0, +00].
We shall consider a partial order < on [a,b], which can be the usual order
of the real line, but it can also be another order. All future considerations
will be with respect to the order <.

The operation @ (pseudo-addition) is a function & : [a,b] X [a,b] — [a,d]
which is commutative, nondecreasing (with respect to <) associative and
either a or b is a zero element, denoted by 0, i.e. for each z € [a,b]

0@z =2z holds.

Let [a,b]4 = {z : z € [a,d], z > 0}.

The operation ® (pseudo-multiplication) is a function @ : [, b] X [a,b] —
[a,b] which is commutative, positively nondecreasing, i.e. z < y implies
z® 2 < y® z, 2 € [a,b]4, associative and for which there exist a unit
element 1 € [a,b), i.e. for each z € [a,b]

1@z =zx.

We suppose, further, 0 ® z = 0 and that ® is a distributive pseudo-
multiplication with respect to @, i.e.

zR(yd2)=(2Qy)D(z®2).
Examples can be found in paper [5] Some of them are:
2Dy = (z”-}-y”)%, p>0 and zQy=2z-y on[O,'+oo]
or z®y=max{z,y} and zQy==z+y on[-00,+00).
Pseudo-addition & is idempotent if for any z € {a, b]
z®z =z holds.

Let X be a non-empty set. Let 3~ be a a—algebra of subsets of X.

A set function m : ¥~ — [a,b]4 (or semiclosed interval) is a @) —decom-
posable measure if there hold
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m(@) =0 (if @ is not idempotent)

m(AU B) = m(A) @ m(B)

for A,B € ¥ such that AN B = 0.
In the case when @ is idempotent, it is possible that m is not defined on the
empty set.

A @ —decomposable measure m is o - @ —decomposable if
o« [ ]
m(U A,') = @m(A,)
=1 i=1

hold for any sequence (A;) of pairwise disjoint sets from Y.

Proposition 1. If m : Y~ — [a,b]+ is a @ —decomposable measure with
respect to the idempotent pseudo-addition @, then we have

m(A U B) = m(A) & m(B)

forany A,B€eY.

3. Integral

Let m be a 0 - @ —decomposable measure. A function f : X — [a,d] is
measurable from below if for any ¢ € [a,b] the sets {z : f(z) < ¢} and
{z : f(z) < c} belong to }_. f is measurable, if it is measurable from below
and the sets {z : f(z) > ¢} and {z : f(z) > ¢} belong to }_.

Let f and g be two functions defined on X and with values in [a,b).
Then, we define for any z € X

(f89)(z) = f(z) B g(z) ,

(f ®9)(2) = f(2) ® g(<)
and for any ¢ € [a,}]
(c® f)(z) = ¢ ® f(2).
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We suppose further that ([a,b],®) and ([a,b],®) are complete lattice
ordered semigroups. A complete lattice means that for each set A C [a,b]
bounded from above (below) there exists sup A (inf A). Further, we suppose
that [a, b] is endowed with a metric d compatible with sup and inf and which
satisfies at laest one of the following conditions:

(2) dz®y, 2’ ®y') < d(z,2') + d(y,')

(b) d(z @y, ' @ y') < max{d(z,z’), d(y,v")}.

Both conditions (a) and (b) imply that :
d(zn,¥n) > 0 implies d(z,® 2, y. ®2)— 0.
Condition () implies

n n
d(EP =i, P v;) < minmaxd(z;,y;).
i=1 7

i=1
We suppose further the monotonicity of the metric d, i.e.
z<z<y implies d(z,y) > max{d(y,z),d(z,z)}.

Let € be a positive real number, and B C [a,b]. A subset {I} is a e—net if
for each z € B there exists I such that d(If,z) < €. If we have If < z, then
we shall call {If} a lower e—net. If [f < If,, holds, then {If} is monotone.

We define the characteristic function

0, z4 A
XA(-T):{ 1, zegA '

A mapping e : X — [a,b] is an elementary (measurable) function if it has
the following representation

oo
e= @a;@xAi for a; € [a,b)]

=1

and A; € }_ disjoint if ® is not idempotent.
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Theorem 1. Let f : X — [a,b] be a measurable from below function if
the pseudo-addition is idempotent, or f is measurable and for each positive
real number ¢ there ezists a monotone e—net in f(X). Then, there exist a
sequence (¢n) of elementary functions such that, for each z € X,

d(en(z), f(z)) = 0 uniformly as n — oo.

Proof. Suppose first that @ is not idempotent.We take a lower monotone
e—net {ff} on f(X).
Let

e = @ff ®Xx:7
=1

where X¢ = {z: ff,, > f(z) > f{}.
For each point z from X there exists ff(z) such that

d(ff(z), f(z)) < ¢,

where ff(z) = f{ @ xx.(z). Hence, by the monotonicity of d and e*(z) >
ff(z), we obtain

d(e(z), f(z)) <e, z€X.
Taking £ = 1 we define the desired sequence (¢,) as ¢, = en.

If the pseudo-addition @ is idempotent, then we take in the preceding
procedure a lower e—net {ff} and

Xi={z:f(z)2 ff}.

We have used that e°(z) < f(z) holds, which follows by

e’(z) < () @ f(2) < é((f.-’ ® Xy (7)) ® f(2)) < f(2).

=1

The integral of a simple function s = i, a; ® x,,, for a; € [a,] with
disjoint Ay, As,...A,, if @ is not idempotent, is defined by

[+ n -
_/X s®dm := @a; ® m(A;).

=1 .
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The integral of an elementary function

e=ai®xs for a;€la,b] (i €N) with (4)

=1

disjoint if @ is not idempotent, is defined by

(1) /X@e®dm :=éa;®m(A,-).

=1
The integral of a bounded measurable (from below for @ idempotent)

function f : X — [a,d], for which, if @ is not idempotent for each £ > 0,
there exists a monotone ¢ —net in f(X), is defined by

@ o redm:= lim [ ou@) @ dm,

where (¢,) is the sequence of elementary functions constructed in Theorem
1.

Theorem 2.. The integral defined in (2) is independent of the choice of
sequence (yn).

Theorem 3. Let @ and ® be continuous and @ infinitely commutative and
associative. Then the integrals defined by (1) and (2) have the following
properties: '

() [Rfog)®@dm=[Rfednd [f9@dm,
(i) [2(c® f)@dm=c® [Y f@®dm

for any c € [a,b).

Proof. (1) Let f and g be elementary functions, i.e.

f=P(ai®x,,) 9=Pbi®xs,
=1

i=1
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where (A;) and (B;) are (if @ is not idempotent, disjoint) partitions of X in
Y. . Hence, f @ g is also an elementary function and

f@ g= @@(a; & bJ) ® XAinB,-

i=1 j=1

By (1) we obtain

A@(f@g)@dm= éé(ai@bj)®m(A;ﬂBj)=

=1 5=1

= DD @ m(4:n B;) 6 DD b; @ m(4in B;) =

=1 j=1 =1 y=1

= (@ ® m(A; U2, B;)) © A(b; © m(UZ1 A 1 B;) =

i=1 i=1
= é(a,- ® m(A;)) & P(b; ® m(B;)) =
=1 =1
@ 5]
= /;( f@dmo /:x g®dm

Now, let f and g be measurable (from below if @ is idempotent). Let
(n) and (¥,) be the corresponding sequences from Theorem 1 to f and g,
respectively. The integral

. |
/ (f ®9)® dm
X

exists, since it can be defined by the sequence (n(z) ® ¥n(z))

[Gegedn=lim [ (o) tu) o dm
x n—00 X n n
and (pn(z)) and (Yn(z)) satisfy, for any z,

d(en(z), f(z)) > 0 and d(n(z),9(z)) - 0.

Hence, since d satisfies (a) or (b)

d(‘Pn(z) &) wn(z), f(z) @ g(z)) — 0.
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Now, we have

/e(f(})g)@dm: lim /®(¢ ® ¥n) ® dm =
X n— 00 x n n

n-—+o0o

li ® d ® ®d
= lm(/x en® m@/x Yo ®dm) =

@ ()
= lim/ en®dm e lim/ b @ dm =
X n—oo Jx

n—00
@ D
X X
Property (i) easily follows by the continuity of ®.
Example 1. For any function g bounded above we can define
m(A) = supg(z) AE€B,
€A

where B is the Borel o—algebra on [—o0, ).
Taking @& = max = sup, ® = + , we obtain

[ f@dm = sup(s(@) + g(a),
R zeR

f bounded above.

If @ is a strict pseudo-addition with a monotone generator g,
gom:Y — [o,g(c)] and c € [a,b] is an additive measure then we
have (see [3],[5]) for the simple function

/e s®@dm = g“l(i g9(a;) - (g o m)(As))

X i=1

and for the measurable function f

/:f®dm =9"(/X(9°f)‘-dz),

where dz = d(g o m) is the Lebesgue measure and u @ v = g~ '(g(u) - g(v)).

Example 2. ([5]) If ¢ > 0, then we define
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u@v=—cln(e"¢ +e"c) and

u@QUv=u+v.

The corresponding integral is

5]
/ f@dm= —cln/ e-Ddz.
R R
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REZIME

INTEGRAL GENERISAN DEKOMPOZABILNOM MEROM

Uveden je integral pomoéu pseudo-sabiranja @, pseudo-mnoZenja ® i @ —-
dekompozabilne mere. Koriiéena je metoda bliska konstrukciji Lebesgueo-
vog integrala.
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