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Abstract

Sebastiao e Silva introduced in [7] the ”order of growth” of dis-
tributions, which fitted very well into his axiomatic approach to the
distribution theory. This notion enabled him to define a }imit of distri-
butions (both at finite and infinite points), the Landau ”oh” symbols
for them, and most important, the definite integral which led natu-
rally to the convolution and Fourier transformation. In this paper
the ”equivalence at infinity” (analysed in [10]) is compared with the
”order of growth” of distributions, and using both notions an asymp-
totic expansion of distributions is applied to the distributional Stieltjes
transformation in the sense of [3].
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1. Order of growth and equivalence at infinity of
distributions

The letters m and n will always denote natural, while a@ and p > -1 will
denote real numbers. The set of negative integers will be denoted by Z_.
The distributional detivation operator in = will be denoted by D.

We rewrite Sebastiao e Silva’s extension of the Landau symbols first:
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Definition 1.1. (7], 8.3) Let I be an unbounded interval to the right and
let r € C°(I). We write T = O(r) (respectively T = o(r)) as z — 400 iff
there ezist an a € R, a continuous function F and an n € Ng such that

T =rD"*F on (a,00),

and
F(z) . : . F(z) _
(1) is bounded on (a, o), (respectively tll’1+n°° prad 0)
If r = 1 on I we get the definition of ” _1:“41_00 T = 0”, or, more

li D'
s B, T=ec
As can be expected, this notion generalizes the usual Landau symbols and

limits for continuous functions, while the opposite is not true. For instance,

sinz = o (1) (ie. , li,moo sinz 2 0) in the sense of Definition 1. In the

same manner one can define the Landau symbols and the limits at —oo or
at finite points. The latter was defined by Lojasiewicz in 1957 (see [4]).

generally, if the limit in (1) is equal to 5, then we write

The case r(z) = 2%z > 0 for a > —1 is the archetype of the
functions r. For such an r we have

Lemma 1.1. ([7], 8.4) If T is O(z®) (resp. o(z?)) as £ — o0, then DT is
O(z*"1)) (resp. o(z*1)) as z — oo for any a € R.

A more precise notion was used in [2], [3] and [10], which is an asymptotic
behaviour of distributions:

Definition 1.2. A distribution T is equivalent at infinity with a regularly
varying function r(z) = z*L(z) if
i. for a € Z_ there ezist a € R,n € No,n+ a > 0 and a
continuous function F on R such that T = D™F on (a,o0)
and
. F(z) 1
lim = =:
z—oo gnte[(z) (n+1)...(n+a)

Ca,n
. for a € Z_ there ezist a € R and a continuous function F

on R such that T = F on (a,00) and..

F(z)
c—-r-}r-loo 2" L(z) =1
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We then write T = r(z) as z — oo.

We recall that a function r(z) = z*L(z) is termed regularly varying
at infinity if the function L :(a,00) — (0,00) is measurable and satisfies

the condition
L(\z)

(L is then called slowly varying at infinity.)

lim = 1. for each A > 0.

We shall now prove a few "expected” properties of these notions.

Theorem 1.1. If a distribution T is equivalent at infinity with r(z) = z°,
then T = O(z®) and T # o(z®) as z — oo.

Proof. The statement is obvious for a € Z... So, let T E 2o as
z — oo, € Z_ and let a,n and F be as in Definition 1.2. This means that
on (a,00)
T = D" (Canz®™™(1 + w(z))),

where w is a continuous function such that w(z) -0 asz — oco.

From the Leibniz formula it follows that

T = Do (Capnoi(l +w(@) + CanD(z - w(z)) - ()] =
D*}(z*+"~1 D(w;(=))) on (a, ),

where w; is again a continuous function such that |wi(z)] £ Ciz for z
sufficiently large. Continuiting in this manner, we get

T = z°D™(wn(z))
where the continuous function w,, satisfies
(2) |wn(z)] < Crz™, for z sufficiently large.
So, T = O(z™).

If T = o(z*), then T = z*D™G(z), where G is a continuous function
such that G(z)/z™ — 0 as £ — o0. So, we obtain

T= i(—l)k ( TZ ) a(a—1)...(a—k+1)D™*(z*kG(z))

k=0
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on (a,00) and z**G(z) = o(z®*+t™~*) as 2 — oo in the ordinary sense.
But, then, it is impossible to find an n and a continuous function F such
that ' '

F(z) ~Cz®*" as z — 0.

From the proof of Theorem 1.1. we get

Theorem 1.2. IfT £zt asz — 0o, then on some interval (a,00) we have
T = :ci + R,

where R € D’ satisfies R = o(z) as £ — oo.

As usual, z9 is the tempered distribution which regularizes the function
H(z) -z, H is the Heaviside function.

If z« is replaced with a regularly varying function, then we can only
prove

Theorem 1.3. If T & z®L(z) asz — oo, then T = o(z°**) and T =
o(z®~¢) for any ¢ > 0, such that a + € (resp. a — ¢ ) is not a negative
integer ifa & Z_.

Proof. It is well known ([6]) that for a given ¢ > 0 a slowly varying
function L at infinity satisfies the inequalities

(3) -C127° < L(z) £ Caz® for z > a

for some positive constants a;,Cy and C; which depend on .
We shall give only the proof for a & Z_ of the statement *T = O(z**+*)”,
the others are similar. We can write on (a, 00)

T = D"(z"""""'"(Ca,n'I:z(—jl + I;(j)w(z)))

for @ > a; and n > —a as in Definition 1.2. and w(z) — 0 as z — oo ( we
choose 0 < ¢’ < min(1,¢) such that & + n + ¢’ € N). In the same way as in
the proof of Theoren 1.1, using (3), we get

T = 2% D™ (wn(z))
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where w,,(z) is a continuous function satisfying (2).

A regularly varying function does not need to be continuous. However,
by [6], p.17, for a given slowly varying function L there exists another,
infinitely diflerentiable slowly varying function L such that L(z) ~ L(z)
as z — oo and Lyi(n) = L(n) for all sufficiently large integers n. If L; has
this property, then we have

Theorem 1.4. If ri(z) = z*Ly(z) is an infinitely differentiable regularly

varying function at infinity, and T £ ry as T — oo, then T = O(ry) as
T — 00.

Proof. As in the proof of Theorem 1.1, we can write T = D"F on
(a,00) for some a,n > —a and some continuous function F such that
F(z) = Canz®tLi(z)(1 + w(z)), where w(z) — 0 as z — o0. So we
obtain (compare to the proof of Theorem 1.1)

T=D"F =z*Li(z)D"wn(x)

where w;, is a continuous function such that |w,(z)} < Crz* for z sufficiently
large; we used the fact that lim, .o %’r(f)-) =0 (see [6)], pp.6-7).

2. Asymptofic expansion of distributions at infi-
nity

Let a distribution T’ and an increasing sequence of real numbers ()3, be
given. We say that T has the asymptotic expansion 3 2, A ™ at oo
related to (7™ )2, if

i. either T X Agz~"0 as z — 00, or T = o(z7"°) (by definition
we put Ag = 0);

ii. if the conplex numbers Ag,..., Am(m € Ny) are already cho-
sen, then either

m
(1) T =T = 3 Agz™™ R Ay ~"mt
k=0

as £ — 0o or
T = o(z™™m™+1); we put then A, 4; = 0.
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Then we write

(2) T4 Z Agz™"™* as  — oo.
k=0

It is clear that the asymptotic expansion of a distribution T is unique,
provided it exists; however two different distributions can have the same
expansion. In view of Definition 1.2 it is clear that if

(o e]
T 48 Z Anpz™™™ as z — oo,
m=0
and at least one of the numbers n,, is a natural number with A, # 0,
then T,, is a locally integrable function on some interval (a,o0) and the
asymptotic expansion of T, can be taken in the usual sense.

Similarly as the equivalence at infinity, this asymptotic expansion is a
local property of a distribution which generalizes the classical asymptotic
expansion and preserves some “expected” properties of an asymptotic ex-
pansion. For instance, the distribution T, from (2) is o(z~™™") as ¢ — o0.
Furthermore, the asymptotic expansion can be added or multiplied with
nonzero constants. As in the classical case, it is possible to "integrate” the
asymptotic expansion (i.e. to convolve it with the Heaviside function), pro-
vided that T € D/, , which means that the support of T is in [0, 00]. However,
in general, one can not differentiate it.

On using Theorem 1.2, we obtain

Theorem 2.1. If T € D) satisffies T AF Y il Akz™™ as z — oo where
ng € Z_ for each k = 0,1,..., and ng < n; < ..., then on some interval
(am,oo) (0 a<Laq < )

3 T= Z Arz{™ + Rp(z), where Rpn(z) = o(z™"™) as z — oo.
k=0

From Theorem 1.2 and Theorem 3 form [10] we get an important pro-
perty of the asymptotic expansion:

Theorem 2.2. If T satisties the conditions of Theorem 2.1., then R,, =
o(z~™™) satisfies

3 z/A
@ Jim (Fn(2), 2Ly = 0

for each ¢ € D with a support in (am,0).
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A special case of the asymptotic expansion gives

Theorem 2.3. A distribution T € E’ has the asymptotic expansion at in-
finity related to any sequence (7 "*)32y,m0 < ny < ..., just zero.

This statement remains true if T is rapidly decreasing at infinity, i.e.
for each o < 0 there exist continuous functions F; and natural numbers
n;,l =1,...,m such that

m
T =) D™F) on some interval (a, o)
=1

and
Fi=o0(z*)forl=1,...,m.

3. Integrals of distributions

The limit of distributions from Section 1 allows a definition of their integral.

Definition 3.1. Let[a,b] C R be interval and T a distribution. The integral
of T over [a,b] is defined by

b
S - / T(z)dz := T~ (b+) — T~ (a~),
where T~ is a primitive of T (i.e. D(T~) = T)), provided that the limits
T (b+) = ]jﬂoT‘l(a:), lim 7" (a-) = limoT‘l(a:).

extst in the distributional sense.

(The letter ”S” stands for Sebastiao E Silva, since he gave this definition in

[7]).
Especially the integral over [a, 0] is defined as

(1) § - A“’ T(z)dz := T_l(-{-oo) - T'l(a_),
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where
T~ (+00) := }LngoT'l(z).

It was shown in [7] that this integral generalizes properly the usual def-
inite one. We need the following two statements.

Lemma 3.1. ([7], Section 9) The integral (1) ezists if T = O((z ~ a)®)
as z — a+0 for somef > —1and T = O(z*) as ¢ — oo for some
a< -1,

Lemma 3.2. (Compare to [8], Section 2.) Let T € D', and ¢ € C*(R).
If T = 0(z%) and o) = O(z~*) as z — o0, for k = 0,1,..., and some
a,B € R, then T - ¢ = O(z°*P) and for each n < 0 with the property
a+ 8 <n—1 we have

(2) S—/j @D"T = (_1)n(5_/_°: ST

Observe that ¥(z) = Fi_-;lw satisfies the conditions of this lemma.

4. Distributional Stieltjes transformation

The classical Stieltjes transformsof a function f is defined by the integral

oo(f)(s) = /Ooo ;f%);dz, s € A:=C/(-00,0],
or more generaly

* _ f=z)

z -lis)P+1dz’ S €A,

(1) Ca@=
where p > —1 is called the order of the transform. A sufficient condition for
the convergence of (1) is that f is locally integrable on [0,00) and satisfies
the condition

(2) f=0(z"%) as z — oo for some £ > 0.

There are several definitions of the Stieltjes transform of a distribution T
from D/ . In 2] the following one was given:
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Definition 4.1. If T € D', can be written as T = D*F for some k € N,
continuous function F' on R which is zero on (—00,0) and satisfies the
condition.

(3) sup{|F(z)z~***|,z > b} < C < oo,
then the Stieltjes transforms of T is given by
©  F(z)dz
(4) o,(T)(8) =(p+ 1)k '[) (2§ 8)FFFT? s€A.

Here (p+1)o:=1,(p+ 1) =(p+1)...(p+ k) and p > a. As usual,
we use the same letter in (1) and (4) for the classical and the distributional
("generalized™) transform o,; this makes sense, since if T is defined by a
locally integrable function f on [0, 00) satisfying condition (2), then the two
notions coincide.

(In a later paper ([3]), a slightly more general condition on F' was given,
namely that the integral [ g—(fl-lﬁf converges. However, in what follows
condition (3) is sufficient.)

If F = O(zt#+*¢) as z — oo for some £ with the property p +
1>€&>0, then T = DF = O(2*%). Since, M, D'F = 0,

T —

z _1_:"_}_00 F(—:,&-;)—(ﬂ =0 for {=0,1,...,k, we have by partial integration

(see Lemma 3.2)

©  T(z) _ o [® DFF(z) . =
S - - -————(z+s)p+1dz—3 - __(z+s)ﬂ+ld =
g o«  F(z)dz _ [ F(z)dz = 0,(T)(s).

0— (z + s)P+k+1 0 (Z + 3)P+1

This suggests defining the Stieltjes transform of T € D/, as

(5) oo(T)(s) 1= § — /o = = T(=)

_ —Tg—)_lﬂ'_ldz’ s€A.

Formula (5) can be used for a greater set of distributions than (4); namely
T = O(zf~°) as ¢ — oo is a sufficient, but not a necessary condition for
the existence of (5). We remark that if T = B € E! (distributions with a
compact support in [0,00)), then

ow(BY) =5~ [~ (B(””)"””

T 4 3)P+1

= B 2,
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where 7 € C°(R) has the properties n{(z) = 0 for z < —2¢ and n(z) = 1 for
z > —¢,& > 0. Furthermore if T = zJ, then (see [2])

) 05(z5(s) = Blp— a0+ 1)s°*,p > a,

and fora € Z_,s € A. Asusual I and B are the gamma and beta functions,
more precisely their analytic continations. From now on we suppose that s
is real and positive.

The following theorem was proved in 5] (compare with (6)):

Theorem 4.1. IfT € D, is equivalent at infinity with the regularly varying
function r(z) = z*L(z) as z — oo, then

UP(T)(S) ~ B(p —o,p+ 1) ) sa—pL(s) as s — oo,

provided that —1 < a < p.

Remark 4.1. The condition a > —1 is essential; if & < —1, then the
”quasiasymptotic behaviour” from.[1] of distributions is more appropriate
for this analysis than equivalence at infinity. Especially if T = B € F/, 4
then using the structural theorem from [1] one can show that it has a qua31-

asymptotic behaviour of some order —mg(mo € N) and
(7) 0,(B)(8) ~ C-s~(Ft™) 35 5 5 oo

(see the Abelian theorem from [9]).

We can now prove

Theorem 4.2. If -1 < a < p and T € D! satisfies T = o(z®), then
0,(T) = 0,(s**) as 8 — oo.

Proof. From T = o(z®) as z — oo it follows T = z®* D" F(z) on some
interval (a, 00), for some continuous function F on R and some n € N such
that limz_,o0 %(,?l = 0. We put G(z) = F(z) forz > a,G(z) =0forz < a
and Ty = T — z*D"G(z). The support of T} is a compact subset of [0,a],
so bu Lemma 3.1 from [3] follows

(8) lo,(T1)(8)] € C - s~(#*1) as s — oo for some C > 0
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(see also (7)). From (3.2) it follows that

o a:"D"G(a:)d _

5 e Grapn T

[-*) o e po—l PN Eg
=S—/ Coz +Cl $-Z + +Cn3 z G(z)dz.

(z + 3)P+ﬂ+1

for some constants C;,i = 0,1,...,n. The last S-integral is also an ”ordi-
nary” integral, hence, from Theorem 4.1. it follows that

9 lop(z*D"G(z))(s)] < C - **7,

s sufficiently large, since G(z) = z"w(z) and w(z) — 0. Hence (7) and (8)
imply
lim $#%0,(T)(s) = 0, or o,(Ts) = o{s"~*)

as 8 — 0.

In a similar way one can prove

Theorem 4.3. If -1 < a < p and T e D!, satisfies T = O(z®), then
0,(T)=(s*"?) as s — 00,8 € R.

A consequence of these statements is

Theorem 4.4. Let T ¥ Y keoAkz™™ as z — oo (in the sense of Defini-
tion 2.1) for —p < mg<my <...< 1. Then :

(10) oo T)(s) ~ 3 Axs~*
k=0

as 8 — oo in the ordinary sense.
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REZIME

O SEBASTIAO E SILVA "REDU RASTA” DISTRIBUCIJA

U ovom radu se uporedjuje "red rasta” koji je uveo Sebastiao E Silva sa
"ekvivalencijom u beskonaénosti” za distribucije. Pomocu ova dva pojma se
uvodi asimptotski razvoj distribucija, koji se primenjuje na uopstenu Stielt-
jesovu transformaciju.
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