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, Abstract

In §1 the condition for the conformally quasi-recurrent manifold
(CQR-manifold for short) is found to be conformally recurrent.In §2
the conformal change of CQR- manifold is disscused and some results
of [6] completed. In §3 some examples of CQR-manifolds are given. In
§4 the umbilical hypersurface of the conformally quasi-recurrent space
is studied.
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1. Introduction

Let (M, g) be an n-dimensional(n > 3) Riemannian space and let VC',?'jk
be its conformal curvature tensor, i.e.

(1.1) Chi = REy — 725(Rhgij — Rigix + 6} Rij — 6} Rir)+

R
+m(52£{ij - 8%9it),
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where Rf‘jk denotes the curvature tensor of (M, g), R;; is the Ricci tensor,
while R is the scalar curvature. It is well known that tensor (1.1) satisfies
the relations

(1.2) , Chqk = ~Cinjk = —=Chikj = Cikhi,
(1.3) CJk + CJhkl + C”:"J' = 0.’
(1.4) Cm'k = ijk = C;kp =0.

(M, g)is said to be conformally recurrent (CR for short) if Ck ik satisfies
the condition

(1.5) VsChijk = asChijk,
where V is the operator of the covariant derivative with respect to metric g

and a, is a vector field.

(M, g) is said to be conformally quasi-recurrent (CQR for short) if

(1.6) v Chc]k = 2asch¢1k + ah.Cach + atchljk + aJChcak + akchqs
If in (1.5) or in (1.6) a; = 0, we have

(1.7) B V;sChijk = 0.

The Riemannian space satisfyng (1.7) is said to be conformally symmet-
ric (CS for short).

Thus, the class of CR-manifolds as well as the class of CQR-manifolds
contains all CS-manifolds. There arises the question: do there exist mani-
folds which are not CS-manifolds but are CR - as well as CQR-manifolds?
And if such manifolds exist, do there exist CQR-manifolds which are not
CR-manifolds and CR-manifolds which are not CQR-manifolds?

To answer these questions, we shall first mention the following

Lemma 1. ([7], Lemma 3) If ¢;,p; and By,;; are numbers satisfying
s Bhijk + PrBsijk + PiBhsjk + PjBhisk + Pk Bhijs = 0,
Buijk = Bjkni = —Bhikj, Bhrijk + Brjki + Brii; = 0,
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then each b; = c; + 2p; is zero or each By;ji is zero.
Now, we can easily prove

Theorem 1. The necessary and sufficient condition for a CR-manifold to
be a CQR-manifold and for a CQR-manifold be a CR-manifold is

(1.8) a,Chijk + @;Chiks + arChisj = 0.

Proof. - Let (M, g) be CR and CQR-manifold. Then, besides (1.6), the
relation v o '
V3Chijk = ksChijk

is satisfied, too. Therefore, we have
(1.9) (2a, — k;)Chiji + anClijk + aiChsjk + a;Chisk + 8xChijs = 0.

In view of (1.2) and (1.3), the conditions of the preceding Lemma are satis-
fied. Supposing that (M, g) is not conformally flat, it follows that k, = 4a,,
Hence, (1.9) takes the form '
(1.10) —2a,Chijk + anCisijk + aiChyjk + 6;Chisk + axChijs = 0.

Permuting the indices s, j,k, cyclically, adding the obtained equations
to the preceding one and using (1.2) and (1.3), we obtain (1.8). Now, let
us suppose that (1.8) holds good. Then, taking into account (1.2), we also
have.

a;Chijk + apCisjk + a;Copji = 0

Adding this to (1.8), we get (1.10). Therefore, (1.6) reduces to
(1.11) Chrijk = 4a5Chijk

and (1.11) reduces to (1.6). This completes the proof of theorem.

As an immediate consequence of (1.8) and (1.4), we have
(1.12) ‘ e, C = 0.

The converse, of course, is not true, i.e. (1.8) does not follow from (1.12).
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On the other hand, relation (1.12) is satisfied for any CQR-manifold [6].
Thus: a CQR-manifold which is not a CR-manifold is that satisfyng (1.6)
(and consequently (1.12)), but not satisfyng (1 8). In §3 we give examples
of such mamfolds

A CR-manifold which is not a CQR-mamfold is that which: ‘does not
satisfy (1.8). Example 2 given in [9] is an example of such a manifolds.

(M, g) which is a CR-manifold as well as a CQR-manifold is that which
satisfies (1.5) (or (1.6)) and (1.8). We call such a manifold a CRQR {¢on-

formally recurrent and quasi-recurrent) manifold. In §2 we mention examles
of CRQR-manifolds.

We have shown in [6] that if the vector field a; in (1.6) is a gradient
vector field, a CQR-manifold can be conformally related to a CS-one. In this
paper, in §2, we discuss the conformal change of whichever CQR-manifold.
Particularly, we investigate the conformal change of a CQR-manifold into a
CQR-manifold as well as into a CR-one.

In §4 we study the umbilical hyperéurface ofa confofmally
quasi-recurrent manifold. :

2. Conformal change of a CQR-manifold

Let us consider the conformal change
(2.1) Gij = €%7gij.

The Christoffel symbols of metrics § and g are related as follows

i) o h ok o - _h “__,30’ :
{ij }—{ ij }+6iaJ+6ja,—g,Ja , a,-ﬁ,

while the conformal curvature tensor is invariant
(2'2) Cijk = ijk'

Let V be the operator of, the covariant derivative with respect to metric
g. Applying it to (2 2), we get

(2'3) V C]k - V’

i7k
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- 20,C!‘,—k — 0" Chij — o'iC:kj — 0;Cliy - "kc'bja +
+ 6farCirjk + giaa'rcr'-ljk + gjs0"Citp + gk,o'C'-';-,.

Now, let us suppose that both metrics ¢ and § are conformally quasi-
recurrent. This means that beside (1.6) and (1.12), we have

(2.4) e,é.!;k = 2baé'hjk +
+ bhé,,'jk + b,‘éfjk + bjé‘b,k + bké.bjaa

(2.5) b,Cfj) = 0.

Substituting (1.6) and (2.4) into (2.3) and taking into account (2.2), we
find

(2.6) 2(bs — as + 0',)Ci';k + (bh ~ah + O'h)C,,'J'k + (b —a; + Ui)C:ik +

+ (bj —a;+ O'j)C,!:,k + (bk —ai + ak)clbjs =
= 8;0:Cl + 9is0"Cli + 9js0" Clr + gra0” i,

Transvecting with respect to h and s and using (1.12), (2.5) and (2.2),
we get

(n—8)0,Ci; =0
or
(2.7) 0,Cli =0,
because of n > 3. Therefore, (2.6) reduces to

2(b, ~ a, + 0,)Cly + (B — a* + o*)Cuiji + (b; — a; + 0:)CE +

+(bJ -a; + aj)clhsk + (bk - a; + ak)Cihjs =0,

from wich, according to the Lemma of §1, there follows b, — a, + o, = 0.
Thus, we have
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Theorem 2. The conformal change (2.1) transforms a CQR-manifold into
a CQR-manifold if and only if function o satisfies condition (2.7). The
corresponding vector fields are related as follows

b.' = a4 — 0Oy%.
If in (1.6) vector field a; is a gradient vector field, then we can choose

function o in (2.1) such that @; = oy, condition (2.7) being satisfied because
of (1.12). But, then b; = 0, and (M, §) is a CS-manifold. So,

Corollary 1. [6].- A CQR-manifold (1.6) whose vector field a; is a gradient
vector field, can be conformally related to a CS-manifold.

Roter proved in [7] facts which we can summarize as follows:

The conformal change (2.1) transforms a CR-manifold into a
CR-manifold if and only if function o satisfies the condition

(2.8) 0sChijk + 0;Chiks + 0kChisj = 0.
The corresponding vector fields are related as follows

b; = a; — 40;.

If in (1.5), vector field a; is a gradient vector field satisfyng (1.8), we can
choose function o in (2.1) such that o; = 3. Then b; = 0 and (M,g) is a
CS-manifold. Thus, we have

Corollary 2. A CR-manifold (1.5) whose vector field a; is a gradient and
satisfies (1.8), can be conformally related to a CS-manifold.

The CR-manifolds of Corollary 2 are called by Roter [8] SCR (special
conformally recurrent) ma.mfolds According to the results obtained in §1,
we have

Corollary 3. Any SCR-manifold is a CRQR-manifold.

Looking at Corollaries 1 and 2 on the part of a CS-manifold, we can say
as follows:
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Theorem 3. If a CS-manifold allows function o satisfyng (2.8), it can be
conformally related to a CRQR-manifold.

If a CS-manifold allows function o satisfyng (2.7) but not satisfyng (2.8),
it can be conformally related to an essentially CQR-manifold (that is, to a
CQR-manifold which is not a CRQR-manifold).

So, to construct examples of essentially CQR-manifolds, it is sufficient
to find a CS-manifold allowing function o, such that the conditions of the
second part of Theorem 3 are satisfied. We shall show in §3 that such SC-
manifolds exist.

In the remaining part of this §, we shall investigate the conformal change
of a CQR-manifold into a CR-manifold. In other words, we shall suppose
that metric g satisfies (1.6), while metric § satisfies

(2.9) V,Ch, =

Substituting (1.6) and (2.9) into (2.3) and taking into account (2.2), we
find

(2.10) C,C.-hjk = 2(a, — U,)C:{',-k + (a" - ah)C’,,-jk + (a; —- U;)ijk +

+ (a; — 0;)Chi + (ax — 0x)CH, +

+ 8%0,Cjji + 9ia0"Clit + 9js0"Cli + grsCh 0.
Now, following step by step the way described in 7], we can conclude:

If the conformal change (2.1) transforms a CQR-manifold into a CR-
manifold, function o satisfies condition (2.7).

Substituting (2.7) into (2.10), we get
(28, — ¢s — 20,)Cly =

= (a" — 6")Cuiji + (ai = 0:)CEy + (aj — 0;)Chy + (ak — 04)CE, = 0,

ije

from which follows, according to the Lemma of §1,

(2.11) ' ¢, = 4(a, — a,).
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Therefore, the preceding relation reduces to
—2(a; — 05)Chijk + (an — 0n)Chijk + (ai — 0:)Chsjr +
+ (@ — 0;)Chisk + (ak — 0k)Chijs = 0.

Permuting the indices j, s,k cyclically, adding the obtained equations to
the preceding one and using (1.2) and (1.3), we get

(2.12) (a5 — 03)Chisk + (ar — 0x)Chijs + (a5 — 0,)Chijx = 0.
Reversely, suppose that the vector field a; and function o satisfy the
conditions (1.6) and (2.12). Then, the condition
(an — on)Csijk + (ai — 0:)Chsjk + (as — 05)Cinjx = 0

is satisfied, too, so that, adding, we can find

(2.13) 4(a, — 0,)Chiji = 2(a, — 0,)Chijx+

+ (an — 01)Csijk + (ai — 0;)Chajk + (aj — 0;)Chisk + (ax — 0k )Chijs-
Transvecting (2.12) with g"*, we get
(a5 —0,)Ci = 0,
which, because of (1.12), reduces to (2.7). Now, substituting (1.6) and (2.7)
into (2.3), we have
V.Clx = 2a, — 0.)Ch + (a* — o*)Coijic + (ai - 0i)CEy +
+ (aj = 0;)Cl + (ax — 01)Ch,.
This can, taking into account (2.13) and (2.2) be rewritten in the form
V.Chy = 4(a, - 0,)Cl.
Thus,

Theorem 4. Let (M,g) be a CQR-manifold (1.6) and let (2.1) be a confor-
mal change. Then (M,§) is a CR-manifold if and only if a condition (2.12)
is satisfied and (2.11) is the corresponding recurrence vector.

The conditions (2.11) and (2.12) show that (M,§) is, in fact, CRQR-
manifold.
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3. Examples of CQR-manifolds

Investigating CS-manifolds, Derdzinski and Roter [4] proved that any es-
sentially CS-manifold (i.e. a manifold which is neither conformally flat nor
locally symetric), admits a unique function F (called the fundamental func-
tion) such that

FChrijx = RijRpy — RixRy;.

Also, Derdzinski proved [1] that if (M,g) is an essentially CS-manifold
with a non-recurrent Ricci tensor and whose fundamental function F is a
constant, then one of the following cases hold.

1. F #0, rankR;; =2 andR;; is semidefinite at each point of M;

2. F#0, rankR;; =2 everywhere andR;; is semidefinite at no point
of M;

3. F=0; thenrank R;; <1 everywhere.

These three cases are called elliptic, hyperbolic and parabolic, respec-
tively. Derdzinski determined the metrics for all those manifolds ([1], [2],
[3]). For example, he proved thet if (M,g) is an n-dimensional (n > 4 )
elliptic CS-manifold and p € M is a point at which V. R;; # 0, there ex-
ists a coordinate system (u',u?,...,u") in a neighbourthood of p such that
u!(p)=...=u"(p) = 0 and

(9 12 0...0 0 91n
921 922 0...0 gon—1 O
0 0 0 0
(3.1) (gi)=1]: Gz : :
: 0 0 0 0
B 0 gn-12 0...0 0 0
\ gu1 0 0...0 0 0 /

where z,y run over 3,...,n — 2;



204 Mileva Prvanovié

¢ g1 = 2une—-T + 241 Tg"r nl2€e2T Ez 5;(‘“:)2
—(n—2)eF 1T,
(3.2) 922 = 2un(eT 55 — e T) — Lyee™ T eo(u7)?
' ﬁ —(n —2)eT 1?7,

gi2 = —u eTgT _ .u'n.—l(eT aT + 26—T),

\ Jin = G2n-1 = eT, Yzx = Ex, |€z' =1.

T is a function of the first two variables u!,u? and is given by
1

T = —Elog S,

where
25(p) = max{V, R;;v'vivf|v' € To(M), Rijv'v? = €,e = £},

and satisfies the quasi-linear elliptic partial equation

(3.3) SOEr + gk ~ 2671 + Ly = 0.
Reversely, given the real number F # 0,¢,e.with|e| = |¢z] = 1 and a

function T of two real variables (u!, u?) satisfyng (3.3). Then, (3.1) and (3.2)
define an essentially CS-Riemannian metric with a fundamental function
equal to F, which is elliptic (namely, its Ricci tensor is e-semidefinite).

With respect to this coordinate system, the only non-zero components
of the conformal curvature tensor are Cjz12 and C7y,5,Cya. Now let us
consider the function

(3.4) o =o(ul,...,u""2).
The

n—-1 — aun_l - Yiy¥n — aun — Y
and

do
O = a‘; #0,:1::3,...,n-2.

Therefore,
0:C1212 + 01C122; + 02C1221 = 0,C1212 # 0,
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but
-1
O'rC;lz = G“C;‘lz =0 and UrCIlz = a'n—]_Cn 112 = 0.

So, condition (2.7) is satisfied while (2.8) is not. According to Theorem 3,
the conformal change (2.1), (3.4) of the metric (3.1), (3.2), (3.3) is essentially
CQR-metric. But if

o = a(u',u?),

then condition (2.8) is satisfied too, and (M, §) is CRQR-manifold.

Proceeding in a similar manner in the case of a CS-manifold of the hy-
perbolic type [2] or of the parabolic type [3], we can obtain new examples
of essentially CQR-manifolds.

4. Totally umbilical hypersurface of conformally
quasi-recurrent space

Let (M, §) be an (n + 1)-dimensional Riemannian space covered by a system
of coordinate neighbourhoods {U,y*}. Let (M,g) be a hypersurface of M,
defined in a locally coordinate system by means of a system of parametric
equations y® = y®(z‘). Here and in the sequel, Greek indices take values
1,2,...,n 4+ 1 and Latin indices - the values 1,2,...,n. Let N® be a local
unit normal to (M, g). Then, we have

(4.1) gii = GapBE B,
(4.2) GapN*B? = 0,GosN*NP = g,e = +1
and
(4.3) By BY g = gof — eNoNP,
where Y
Bf = o

The (M,g) is called a totally umbilical hypersurface of the (M,g) if its
second fundamental form h;; satisfies.

hi; = Hgij,
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where H is a scalar function. For a totally umbilical hypersurface (M, g) of
(M, g), the equations of Gauss and Codazzi, respectively, can be written in
the forms

(4.4) Rag_,,ng’Bf BYBf = Rijii — H*(gugjk — gixgit),
(4.5) Rag,,,;N"’BfB;'Bf = gjkli — gj1 Hi.

Here, Rops are the components of the curvature tensor of (M,§) and H; =
ViH.

Contracting (4.4) with g and taking into account (4.3), we find
(4.6) R—g,,BJpBZ = ERagquaBjaBZN's + Rjp — e(n - I)Hzgjk. Con-
tracting (4.6) with ¢F and using (4.3), we obtain -

(4.7) Rz N°N" = £(R - R) + 21 g2,

On the other hand, contracting (4.5) with g’*, we find
(4.8) "RosN*Bf = (n - 1)H,.
Now, let us consider the conformal curvature tensor of the space (M, g):

. _ 1
Copys = Rapys —

n— I(Rmﬁgﬁ'v - Rawgﬁzf +

—_— _ R L o
+ RpyGas — RpsGory) + m(gmigﬁq — Gav3p6)-
Then we have [5}:

(4.9) Caprs N*BY BYBf = 0.

Also
C'apquanBZNs = Rag,,sNaBJ'-GBZNG -

1 D a ard . D B R
n—l(Ra6N Nng +€RmBjBk)+-n—(n—_—1—)'€ng.
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Substituting (4.6) and (4.7), we obtain

- n-—2-
CaprsN*B} BIN® = e— Rs,BPBY —eRji +
n-2 - 1 n—2
- R . *lgik-
tegmo it ot =3 o
This can be rewritten in the form
(4.10) s RoyBY BY = 5Qu + 7R +
1 - 1 € .2
+ [2n(n - 1)R T 2(n—1)(n - 2)R - EH Jose
where we have put
(4.11) CaprsN*BY BIN® = £Qj.

Substituting (4.10) into

Copys BY B BY B} = Rapys B BY B Bf -

1 - _ _ _
— ——(Has B Bigjk — RayBZB]gji + RpyBY Blga — RssBY B] git) +
R
+ n_(n___l)‘(!]il!]jk — Gikgjl)
and taking into account (4.4), we find
(4.12) C‘aaqu?B?BZBf = Cijit — 75(Qigjk — Qikgjt + Qjxgit — Qj19ik ),

where Cjjiis the conformal curvature tensor of the hypersurface (M, g).

We note that
(413) . Qik = Qi; and Q;rg’* =0,
and

(4.14) Caprs BB} BY B{g" = —Qjx.
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Let V be the operator of the van der Wearden-Bortolotti covariant
derivative. Then
' V.B? = ¢h,;N°.

Applying the operator V to (4.12) and using (4.9), we have

Vo Copys B BE B} By B} = V,Ciju —
(4.15) — (956 V- Qit — 95V-Qik + 94V Qjk ~ 9ik V- Q1)

Now, let us suppose that ( M ,§) is conformally quasi-recurrent. Then,
V_,,C"amg = 2a,,C_'agn,5 + aaC',,gw + agéamg + aWC—'aﬁpg + agC'aﬁw,,
and we have
V,Copys BE BE BOBY Bf = 2a,B2Cp,s B*B° B} B +
+ o B*Copys B2 BY B} Bf + agBYCoprs BYBY BB +
+ a,B)Copos B BY B2 B} + asB{C.p,,B¥B’ B} B?.

As for vector field a4, it can be decomposed, at the points of (M, g), as
follows

(4.16) Ay = Jopd* = Jor(Bfal + aNT).

Substltutmg this, (4.15) and (4.12) into the precedmg relation and putting
a, = grat, we find

(4.17) V:Cijki = 2a,Cijk1 + aiCrjii + a;Cirpt + axCijrt + aiCijkr +

+ _—‘5{(9jerQi1 — 91V, Qik + 9uV-Qjx — 9V, Q1) —
— 2a,(9;xQit — 9;1Qix + 9uQjx — 9ix Q1) —
— ai(9;5kQr1 = 951Qrk + 911Q ik — 9k Q1) —
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— aj(9rkQit — 9r1Qik + 9:1Qrk — 9ikQ@r1) —
— ar(g;rQit — 9j1Qir + 90Qjr — 9ir Q1) —
— ai(9;kQir — 95+ Qix + 9irQjk — 9ixQjr )}

The space (M, ) being conformally quasi-recurrent, the condition of the
form (1.12) is satisfied, i.e. *C,n5, = 0. Thus,

a*Co5,sBYBYB) = 0
which can, taking into account (4.16) and (4.9), be rewritten in the form
a"Cop,s B2 BY BY Bf = 0.
Substituting (4.12) into this equation, we find

(4.18) a:Cly = 750" (9ix@rt — 951Q+k + 9:1Q ik — 9rkQjt)-

Contracting (4.18) with ¢g’* and using (4.13). we get

(4.19) arQ,; = 0.

Therefore, (4.18) reduces to
(4.20) @ Crjkt = 75 (@Q ik — axQji).

On the other hand, contracting (4.17) with ¢’*, and using (1.2). (4.13),
(4.19) and (4.20), we have

V:Qi =2a,Qit + a;Qr + 0,Q;r.

Substituting this into (4.17), we find

V:Cijrt = 2a:Cijri + a;Crjpt + ¢;Cirpg + akcij{l + aiCijkr +

(4.21) +-(901(a;Qik — aiQjk) + gri(2: Q1 — a;Qu) +



210 Mileva Prvanovié

+ grj(a1Qik — akQit) + 9ri(arQji — a1Q k)]
Thus, if

(4.22) a;Qir = a;Q jx

then (M, g) is conformally quasi-recurrent. Conversely, if (M, g) is confor-
mally quasi-recurrent, then (4.21) reduces to

gr1(ajQik — aiQjx) + 9-x(aiQ i — a; Qi)+
9ri(@1Qik — ax Qi) + 9ri(axQji — a1Qjx) = 0,

from which, contracting with g™, we obtain (4.22). Thus, we have

Theorem 5. Let (M,§) be CQR-manifold and let (M, g) be its totally um-
bilical hypersurface. The (M,g) is CQR-manifold if and only if the vector
field a; = a,BY satisfies (4.22). If a; = 0,1i.e. if at the points of (M,g), the
vector field a* is orthogonal to (M,g), (M, g) is CS-manifold.

Now, let us suppose that (Mg) is CRQR-manifold. Then, the condition

(4.23) a5Capys + 4Capso + a5Capoy = 0

is satisfied, too, Contracting it with N ”Bf’Bf B} Bf and using (4.9),
we find
T anfpypé _
a,N Cag,,gB,- Bj BkBl =0.

If, at the points of (M, g), vector filed a* satisfies a, N” # 0 the preceding
relation reduces to _
Capys B BYB] B = 0,

from which, using (4.14), we obtain Q;x = 0. Therefore, (4.12) reduces to
C,'jk, =0. '

On the other hand, contracting (4.23) with B¢ BfBYBYB{ we get

5Capys BE BY BYBf + axCopso B BY B B +
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+ a/Capoy B BY B B =

which, in view, of (4.12), can be written in the form
(4.24) asCijki + axCijis + aiCijsk+
1

n—2
+ gik(asQji — a1Q;s) + 9it(ak Qs — asQjk + gis(aiQjx — ar Q1)) = 0

+ [gjz(flaQik — axQis) + 9is(ak Qi — a1Qik) + gjx(aiQis — a,Qut) +

According to Theorem 5, the hypersurface is conformally
quasi-recurrent if and only if condition (4.22) is satisfied. But in this case,
(4.24) reduces to

a,Ciikt + axCijis + aiCijsx = 0.

This means that the hypersurface is CRQR-manifold. Thus, we have

Theorem 6. Let (M,§) be a CRQR-manifold and let (M,g) be its totally
unbilical hypersurface. If at the points of (M,g) the vector field a* is not
tangetial to (M, g), (M, g) is conformally flat. If at the points of (M,g) the
vector field a* is tangential to (M, g) and (M, g) is a CQR-manifold, it is a
CRQ@QR-manifold, too.

References

[1] A.Derdziriski, The local structure of essentially conformally symmet-
ric manifolds with constant fundamental function I, The elliptic case,
Colloquium Mathematicum 42 (1979), pp. 59-81

[2] -, The local structure of essentially conformaliy symmetric manifolds
with constant fundamental function II, The hyperbolic case, ibidem 44
(1981), pp.77-95

[3] -, The local structure of essentially conformally symmetric manifolds
with constant fundamental function III, The parabolic case, ibidem 44
(1981), pp. 249-263

[4] - and W. Roter, Some properties of conformally symmetric manifolds
which are not Ricci-recurrent, Tensor, 34 (1980), pp. 11-19



212 Mileva Prvanovié

[5] Z. OLszak, Remarks on manifolds adnitting umbilical hypersurfaces,
Demonstratio Math. 11 (1978), pp.695-702

[6] M. Prvanovi¢. Some theorems on conformally quasi-recurrent mani-
folds, Univ. u Novom Sadu Zb. Rad. Prirod. - Mat. Fak. Ser. Mat. 19,2
(1989), 21-31.

[7] W. Roter, On conformally related conformally recurrent metrics I,
Some general results, Colloquium Mathematicum 47 (1982), pp. 39-46

[8] -, On a class of confofmally recurrent manifolds, Tensor, 39 (1982), pp.
207-217

[9] -, On the existence of certain conformally recurrent metrics, Colloquium
Mathematicum, 51 (1987), pp. 315-327

REZIME

PRIMEDBA O KONFORMNO KVAZI REKURENTNIM
MNOGOSTRUKOSTIMA

Ispitani su uslovi pod kojima se konformno kvazi rekurentna mnogostrukost
svodi na konformno rekurentnu. Dati su primeri konformno kvazi rekurent-
nih prostora koji nisu ni konformno simetri¢ni ni konformno rekurentni.
Ispitane su totalno ombili¢ne hiperpovrsi konformno kvazi

rekurentnih prostora.
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