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Abstract

P—fuzzy sets are considered as mappings from an arbitrary nonem-
pty set S into a partially ordered set P. The necessary and sufficient
conditions are given under which a family P of subsets of S represents
a collection of level subsets for a fuzzy set A : § — P. Thus the
conditions are obtained under which a binary block-code V' can be
ordered, so that it uniquely determines a P—fuzzy set and vice-versa.
An explicit description of a Hamming distance for such codes is given,
and it is shown that some well known binary block-codes (BCD, Gray’s
codes) can be represented by P—fuzzy sets.
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1. P—fuzzy sets

Let S be an arbitrary set which is not empty, and (P, <) a partially ordered
set. Any function A: S — Pisa P—fuzzy seton S. Letalsoforp € P, 4, :
S — {0,1}, so that for z € S, A,(z) = 1 iff A(z) > p. Obviously, 4, is a
characteristic function of a p—level subset (or, a p—cut)

4, = {z € S| Ax(z) = 1.
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Let A : S — P be a P—fuzzy set on S, and ~ a binary relation on P,
such that for p,qg € P
p~gq iff A, =A,.

~ is obviously an equivalence relation on P. Let
F = A(S) = {p € P|p = A(z), for some z € 51,

and for p € P, let
[p) ={q€ Plp < q}.

Lemma 1. If A: S — P is a P—fuzzy set on S, then for p,q € P

p~q iff [p)NF=[g)NF

Proof.
p~g iff Ay = Ay iff (for z € S)(A(2) 2 piff A(z) 2 q)
iff {z € §|A(z) € [p)} = {z € S|A(z) € [q)}
iff P)NF=[)nF. O
Example 1. |

S={a’b’c’d’e} P={p7qar’87t7u’1v1z7y}
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A, = A, ={d}; A, ={e}; A, =A;={a,d,e);
A, = {a,b,d,e}; A, = {c,e}; A; = A, = {a,b,c,d,€}

Lemma 2. Let A: S — P be a fuzzy set. Now for every z € S, if A(z) = p,
then p is a supremum of the class to which it belongs, i.e. p = \/[p]~.

Proof. If g € [p)~, then p = A(z) > ¢. Hence, p = \/[p]~. O

The following statement is a Theorem of decomposition for P—fuzzy
sets, '

Theorem 1. If A: S — P is a P—fuzzy set on S, then for z € S,

A(z) = \/(p € PlAy(z) = 1)

(i.e. the supremum on the right ezists in (P, <) for every z € S, and is equal
to A(z) ).

Proof. Let A(z) = r € P. Then, A,(z) = 1. Now, ifforany p € P A,(z) =1,
then A(z) > p,i.e. r > p. On the other hand, r € {p € P|A,(z) = 1}, and
thus r is the greatest element of that family. Thus,

Az)=r=\(p/4(z)=1). O

Let Ap = {Ap|p € P}, for A: S — P.This family of subsets of S has the
following properties:

Proposition 1. For a P—fuzzy set A: S — P,

(1) f p,q € P and p < q, then A, C Ap;

(2) if for P, C P there ezists a supremum of P, (V(plp € P)), then
N(Aplp € Py) = AV(PIPEPx)’

(3) U(4plp € P) =
(4) for every z € S, N(A,lz € A,) € Ap.
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Proof.

(1) If p € g, then A,(z) = 1 implies A,(z) = 1, ie. A, C A

(2) Suppose that for Py C P the supremum \/(p|p € P;) exists in P. Then
for z € §,

z € A\jpper) ff Ayppen)(z) =1 iff A(z) > V(olp € P1)
iff A(z)>p forall pe Py,
iff z€N(Aplpe Pr);

(3) f z € S, then A(z) = p € P and z € A,. Thus, z € J(4,|p € P),
ie. §CU(A4plp € P). Obviously, U(Aplp € P) C S, and the equality
holds;

(4) Let z € S. Then, z € A, iff A(z) > p, ie. iff A;(z) = 1. By Theorem
1, A(z) = V(p|4p(2) = 1), and by (2)

AV (piFp(z)=1) = ((AplAL(z) = 1).
Hence, ﬂ(Apk, € Ap) €Ap. O

Remark. The converse of (2) in Proposition 1 is not true, as shown by the
following example.

Example 2.

§= {a1b} P = {pv%r"’}

i-(1%)

-

Ap=A, =0
A, = {a}
A, = {b}




On a construction of codes by P-fuzzy sets 75

In this P—fuzzy set, A, N A, € Ap, but (2), (Proposition 1) is not true,
since r V s does not exist in P.

Theorem 2. Let S be a nonempty set, and P a family of its subsels
(P € P(S)), such that:

(1) UP=S;
(2) for everyz € S, ((p€ Plz € p) € P.
Let A: S — P be defined with
A(z) =[\(p € Plz € p).
Then, A is a P—fuzzy set, where (P, <) is a partially ordered set under p < q
if g Cp (p,q € P), and for every p € P,
P = A,
Proof. A is well defined. Indeed, by (2), for every z € § the family
{p € P|z € p} is uniquely determined.
A is obviously a P—fuzzy set, and we have to prove that for every
p € P, p= A, (recall that A, = {z € §|A(z) > p}).
Let z € S. Then,
z € A, iff A(z)>p iff (by the definition of A4)
N(q € Plz € q) > p iff (by the definition of <)

(¢ € Plz € ¢) Cp iff z € p (since by (1), the intersection is not empty).
o ; :

Example 3. § = {a,b,c} P = {0,{a},{b},{b,c}}
Conditions (1) and (2) are satisfied. Thus, we have the following P—fuzzy
set:

_ a b c
/‘i’\ A= ( @} ) .9 )

;. I b} _ a b c .

tal l{ A, [ {a} {8 {b,c} |4
{b,C} A' 0 0 0 G
(P,<) A | 2 0 0 |{a}
(p<qiff 4Cp) Agy | 0 1 0 |{b)
A{ c} 0 1 1 {b,c}

As shown in the table, for every p€ P, A, =
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2. Codes generated by P—fuzzy sets

Let § = {1,2,...n} and let (P,<) be a finite partially ordered set. Every
P—fuzzy set on S determines a binary block-code V of length n, in the
following way: '

To every class [p]. (p € P), there corresponds a codeword

Y] = T1%2... Zn, such that z; = j iff A,(i) = j, fori € §, and j € {0,1}.

We shall use the following componentwise defined order on the set of
codewords belonging to a binary block-code V: for z,y € V, z = z,...z,,

Yy=4%.Yn

(‘) z S y iff n < Z15--yYn < Ty,

where < on the right is the ordinary ordering relation on the lattice
({0,1},2):0< 1.

Thus, for example, 101101 < 001001.

Theorem 3. Every finite partially ordered set (P, <) determines a block-
code V, such that (P, <) is isomorphic with (V,<).

Proof. Let P = {p1,..pn}, and let A : P — P be the identity mapping,
as a P—fuzzy set on P. The decomposition of A gives a family {4,|p € P}
which is the required code, under the above defined order (*). Consider the
mapping f : P — {A,lp € P}, such that f(p) = 4,. By Lemma 2 every
(~)-class contains exactly one element, and thus f is one-to-one. If p,q € P
and p < g, then Ay C A,, which by (%) means that 4, < 4,, and f is an
isomorphism. O

Example 4. P = {a,b,c,d}
— a b c d
A= ( e bcd ) V = {1100,0100,0111,0001}
0190  0Qo1
b ,d A a b ¢ d
S\ A4, 1 1 00 / \/
a° Qo 4, 01 0 0 1100 0111
A 0 1 1 1
(P, <) i 00 0 1 V<)
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If V is a binary block-code, and A is a P—fuzzy set, then we say that
A corresponds to V if the block-code determined by A (as defined at the
beginning of the paragraph) is V.

Theorem 4. Let V = {v;,..5;} C {0,1}" be a binary block-code, such that
for every i € {1,...n} at least one codeword has a nonzero i—th coordinate.
Then there is a P— fuzzy set which corresponds to V if and only if for every
i€{l1,...n}

(a) - VweVvpG) =1eV.

(The supremum in (a) is induced by < in (*).)

Proof. If we think of the codewords of V' as of the characteristic functions
of the subsets of {1,...n}, then the "if” part follows by Theorem 2, since the
supremum in (a) is in fact the intersection of the corresponding subsets.

The converse is true by Proposition 1. O

Recall that the Hamming weight ||z|| of a codeword z € {0,1}" is the
number of the nonzero coordinates in z, the Hamming distance d(z,y) be-
tween z and y from {0,1}" is the number of coordinates in which z and y
differ. The code distance of V C {0,1}" is the minimum Hamming distance
between two different codewords in V, and is denoted by d(V).

Let A : § — P be a P—fuzzy set. We say that the number of elements
of § which are mapped into the same element p of P is a degree of the class
[P}~ or of the corresponding codeword vy}, and we denote it by s(vp,).

In the following four propositions, let V' be a code corresponding to a
P—fuzzy set A: S — P.

As it was done in [3] for lattice valued fuzzy sets, we shall describe the
above-mentioned parameters in terms of P—fuzzy sets.

Proposition 2.
d\v) > minpez(s)s(‘v[p]).

(Recall that A(S) = {p € P|p = A(z), for some z € §}.)
Proof. If two codewords from V differ in the coordinate mapped onto p,
they differ in at least s(v,)) coordinates. O

Proposition 3. If v, € V, then
ol = Y- (s(vgg)le € A(S), and vy < vyy)).
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Proof. 1f i € §, and vy € V, then vp)(¢) = 1if ¢ = A(i) > r, for every
r € [p]~. Every ¢ € A(S) represents one class [g]. (by Lemma 2), and the
number of these classes coincides with ||vy||. O

Proposition 4. If v < vy, then

d(vpg)s v)) = D (s(vp)lvp) € K),
where K = {v[,] € Vlv[,] 2 V) and](v[,] > vg)}-

Proof. If vy > vp, and (v > vyg)), © € A(S), then for every i € §
such that A(i) = r, vp(i) = 1, and vy(i) = 0. Moreover, every nonzero
coordinate in v, is nonzero in v as well. O

Theorem 5. For any vp), v, €V,

(b) d(v), vig)) = D_(s(vp))lops) € K)

K = {vy) € Vivy 2 v and (v 2 g
where or v > v and ](”[r] 2 v))}-

Proof. 1f vy, < vyg), then the proof follows by Proposition 4. Now,let v,
and v, be uncomparable. If v > vy, and (v > vy)), then for every
i € § such that A(#) = r, v(i) = 1 and vyg)(i) = 0. On the other hand, if
V] 2 VY[q) ](v[,] > v[p]) and A(i) = r, then v[q](i) =1, and v[p](l) =0.
Hence,
(v, v) 2 Y (s(vplope) € K).
Now, if v, and vy, differ in i—th coordinate, for example vj,)(i) = 1 and

vp)(¢) = 0, then for A(R) =, V) 2 v} and |(vf] 2 vp))- Thus, vy € K,
and the equality (b) holds. D

* % %

Some well known codes can be represented by P—fuzzy sets, i.e. they satisfy
the conditions of Theorem 4.



On a construction of codes by P-fuzzy sets 79

Example 5. a) For a BCD-code V = {0000,0001,...1001}, there is a cor-
responding P—fuzzy set, as shown in the sequel.

—- 1 2 3 4
A_(8421)’

§ ={1,2,3,4}, P={1,2,..9}

0 123 4
|8 4 2 1

010 0 0 0

81/{&" 1/0 0 o0 1
20 0 1 0

/X X s|o o1
9 5 /6 410 1 0 0
3\/ 510 1 0 t
X 6lo 1 1 0
710 1 1 1

8{1 00 0

(P, <) 9|1 0 0 1

The construction is based on Theorem 4.

b) The following Gray’s code can be represented by a P—fuzzy set in a
similar way. .
Vv = {0000, 0001, 0011,0010,0110,0111,0101,0100,1100,1101} .
S = {1,2,3,4) K:(l 2 3 4
P ={0,1,..9} 8 731

0

7/[.&1
/XX
NX”

9

8

7
(P,<)

WO ~3DHG W -~ O

[l B — I — N — I — i~ Y — I — I — 1 ) . 3
P»—tr—t»—w—-»--coocqw
O O OO = s i OO W
0 O e OO = = O
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REZIME

O KONSTRUKCIJI KODOVA POMOCU P—-RASPLINUTIH
SKUPOVA

Posmatraju se P—rasplinuti skupovi, kao funkcije iz proizvoljnog nepraznog
skupa S u parcijalno uredjeni skup P. Daju se potrebni i dovoljni uslovi pod
kojima familija podskupova skupa S predstavlja kolekciju na koju se razlaze
dati rasplinuti skup na §. Time se dolazi do uslova pod kojima se binarni
blok-kod moze opisati pomoéu P—rasplinutog skupa. Eksplicitno se opisuje
norma, Hemingovo i uopste kodno rastojanje, a daju se i primeri poznatih
kodova (BCD, kodovi Greja) izraZzenih pomoéu P-rasplinutih skupova.
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