Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20, 2 (1990), 71-80 Review of Research Faculty of Science Mathematics Series # ON A CONSTRUCTION OF CODES BY P-FUZZY SETS Branimir Šešelja and Andreja Tepavčević Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia #### Abstract P-fuzzy sets are considered as mappings from an arbitrary nonempty set S into a partially ordered set P. The necessary and sufficient conditions are given under which a family P of subsets of S represents a collection of level subsets for a fuzzy set $\overline{A}:S\to P$. Thus the conditions are obtained under which a binary block-code V can be ordered, so that it uniquely determines a P-fuzzy set and vice-versa. An explicit description of a Hamming distance for such codes is given, and it is shown that some well known binary block-codes (BCD, Gray's codes) can be represented by P-fuzzy sets. AMS Subject Classification (1980): 03E72, 94D05 Key words and phrases: Decomposition of fuzzy sets, codes # 1. P-fuzzy sets Let S be an arbitrary set which is not empty, and (P, \leq) a partially ordered set. Any function $\overline{A}: S \to P$ is a P-fuzzy set on S. Let also for $p \in P$, $\overline{A_p}: S \to \{0,1\}$, so that for $x \in S$, $\overline{A_p}(x) = 1$ iff $\overline{A}(x) \geq p$. Obviously, $\overline{A_p}$ is a characteristic function of a p-level subset (or, a p-cut) $$A_p = \{x \in S | \overline{A_p}(x) = 1\}.$$ Let $\overline{A}: S \to P$ be a P-fuzzy set on S, and \sim a binary relation on P, such that for $p, q \in P$ $$p \sim q$$ iff $A_p = A_q$. \sim is obviously an equivalence relation on P. Let $$F = \overline{A}(S) = \{ p \in P | p = \overline{A}(x), \text{ for some } x \in S \},$$ and for $p \in P$, let $$[p) = \{q \in P | p \le q\}.$$ **Lemma 1.** If $\overline{A}: S \to P$ is a P-fuzzy set on S, then for $p, q \in P$ $$p \sim q$$ iff $[p) \cap F = [q) \cap F$. Proof. $$p \sim q$$ iff $A_p = A_q$ iff $(\text{for } x \in S)(\overline{A}(x) \ge p \text{ iff } \overline{A}(x) \ge q)$ iff $\{x \in S | \overline{A}(x) \in [p)\} = \{x \in S | \overline{A}(x) \in [q)\}$ iff $[p) \cap F = [q) \cap F$. \square ### Example 1. $$S = \{a, b, c, d, e\}$$ $P = \{p, q, r, s, t, u, v, x, y\}$ $$\overline{A} = \left(\begin{array}{cccc} a & b & c & d & e \\ s & u & v & p & q \end{array}\right)$$ | | а | Ь | с | d | e | |---|---|---|---|------------|------------------| | | s | u | v | ` p | \boldsymbol{q} | | $\overline{A_p}$ | 0 | 0 | 0 | 1. | 0 | | $\overline{A_q}$ | 0 | 0 | 0 | 0 | 1. | | $\overline{A_r}$ | 0 | 0 | 0 | 1 | 0 | | $\overline{A_s}$ | 1 | 0 | 0 | 1 | 1 | | $\frac{\overline{A_r}}{\overline{A_t}}$ $\frac{\overline{A_t}}{\overline{A_u}}$ | 1 | 0 | 0 | 1 | 1 | | $\overline{A_u}$ | 1 | 1 | 0 | 1 | 1 | | $\overline{A_v}$ | 0 | 0 | 1 | 0 | 1 | | $\frac{\overline{A_x}}{A_x}$ | 1 | 1 | 1 | 1 | 1 | | $\overline{A_y}$ | 1 | 1 | 1 | 1 | 1 | $$A_p = A_r = \{d\}; \ A_q = \{e\}; \ A_s = A_t = \{a, d, e\};$$ $A_u = \{a, b, d, e\}; \ A_v = \{c, e\}; \ A_x = A_y = \{a, b, c, d, e\}$ **Lemma 2.** Let $\overline{A}: S \to P$ be a fuzzy set. Now for every $x \in S$, if $\overline{A}(x) = p$, then p is a supremum of the class to which it belongs, i.e. $p = \bigvee [p]_{\sim}$. *Proof.* If $q \in [p]_{\sim}$, then $p = \overline{A}(x) \ge q$. Hence, $p = \bigvee [p]_{\sim}$. \square The following statement is a Theorem of decomposition for P-fuzzy sets. **Theorem 1.** If $\overline{A}: S \to P$ is a P-fuzzy set on S, then for $x \in S$, $$\overline{A}(x) = \bigvee (p \in P | \overline{A_p}(x) = 1)$$ (i.e. the supremum on the right exists in (P, \leq) for every $x \in S$, and is equal to $\overline{A}(x)$). *Proof.* Let $\overline{A}(x) = r \in P$. Then, $\overline{A_r}(x) = 1$. Now, if for any $p \in P$ $\overline{A_p}(x) = 1$, then $\overline{A}(x) \ge p$, i.e. $r \ge p$. On the other hand, $r \in \{p \in P | \overline{A_p}(x) = 1\}$, and thus r is the greatest element of that family. Thus, $$\overline{A}(x) = r = \bigvee (p|\overline{A_p}(x) = 1).$$ Let $\overline{A_P} = \{A_p | p \in P\}$, for $\overline{A} : S \to P$. This family of subsets of S has the following properties: **Proposition 1.** For a P-fuzzy set $\overline{A}: S \to P$, - (1) if $p, q \in P$ and $p \leq q$, then $A_q \subseteq A_p$; - (2) if for $P_1 \subseteq P$ there exists a supremum of P_1 ($\bigvee(p|p \in P_1)$), then $\bigcap(A_p|p \in P_1) = A_{\bigvee(p|p \in P_1)}$; - (3) $\bigcup (A_p|p\in P)=S;$ - (4) for every $x \in S$, $\bigcap (A_p|x \in A_p) \in \overline{A_P}$. Proof. - (1) If $p \leq q$, then $\overline{A_q}(x) = 1$ implies $\overline{A_p}(x) = 1$, i.e. $A_q \subseteq A_p$; - (2) Suppose that for $P_1 \subseteq P$ the supremum $\bigvee (p|p \in P_1)$ exists in P. Then for $x \in S$, $$\begin{array}{ll} x \in A_{\bigvee(p|p \in P_1)} & \text{iff} & \overline{A}_{\bigvee(p|p \in P_1)}(x) = 1 & \text{iff} & \overline{A}(x) \ge \bigvee(p|p \in P_1) \\ & \text{iff} & \overline{A}(x) \ge p & \text{for all} & p \in P_1, \\ & & \text{iff} & x \in \bigcap(A_p|p \in P_1) \end{array};$$ - (3) If $x \in S$, then $\overline{A}(x) = p \in P$ and $x \in A_p$. Thus, $x \in \bigcup (A_p | p \in P)$, i.e. $S \subseteq \bigcup (A_p | p \in P)$. Obviously, $\bigcup (A_p | p \in P) \subseteq S$, and the equality holds; - (4) Let $x \in S$. Then, $x \in A_p$ iff $\overline{A}(x) \ge p$, i.e. iff $\overline{A_p}(x) = 1$. By Theorem 1, $\overline{A}(x) = \bigvee (p|\overline{A_p}(x) = 1)$, and by (2) $$A_{\bigvee (p|\overline{A_p}(x)=1)} = \bigcap (A_p|\overline{A_p}(x)=1).$$ Hence, $\bigcap (A_p|x\in A_p)\in \overline{A_P}$. \square Remark. The converse of (2) in Proposition 1 is not true, as shown by the following example. ## Example 2. $(P, \leq)/\sim$ $$S = \{a, b\}$$ $P = \{p, q, r, s\}$ $$\overline{A} = \begin{pmatrix} a & b \\ r & s \end{pmatrix}$$ In this P-fuzzy set, $A_r \cap A_s \in \overline{A_P}$, but (2), (Proposition 1) is not true, since $r \vee s$ does not exist in P. **Theorem 2.** Let S be a nonempty set, and P a family of its subsets $(P \subseteq \mathcal{P}(S))$, such that: (1) $$\bigcup P = S$$; (2) for every $$x \in S$$, $\bigcap (p \in P | x \in p) \in P$. Let $\overline{A}: S \to P$ be defined with $$\overline{A}(x) = \bigcap (p \in P | x \in p).$$ Then, \overline{A} is a P-fuzzy set, where (P, \leq) is a partially ordered set under $p \leq q$ iff $q \subseteq p \ (p, q \in P)$, and for every $p \in P$, $$p=A_p$$. *Proof.* \overline{A} is well defined. Indeed, by (2), for every $x \in S$ the family $\{p \in P | x \in p\}$ is uniquely determined. \overline{A} is obviously a P-fuzzy set, and we have to prove that for every $p \in P$, $p = A_p$ (recall that $A_p = \{x \in S | \overline{A}(x) \ge p\}$). Let $x \in S$. Then, $x \in A_p$ iff $\overline{A}(x) \ge p$ iff (by the definition of \overline{A}) $\bigcap (q \in P | x \in q) \ge p$ iff (by the definition of \le) $\bigcap (q \in P | x \in q) \subseteq p$ iff $x \in p$ (since by (1), the intersection is not empty). **Example 3.** $S = \{a, b, c\}$ $P = \{\emptyset, \{a\}, \{b\}, \{b, c\}\}$ Conditions (1) and (2) are satisfied. Thus, we have the following P-fuzzy set: $$\vec{A} = \begin{pmatrix} a & b & c \\ \{a\} & \{b\} & \{b,c\} \end{pmatrix}$$ $$\begin{vmatrix} \{a\} & \{b\} & \{b\},c\} \\ \{b,c\} & & \overline{A_p} & \{a\} & \{b\} & \{b,c\} & A_p \\ \hline \{b,c\} & & \overline{A_0} & 0 & 0 & 0 \\ \hline (P,\leq) & & \overline{A_{\{a\}}} & 1 & 0 & 0 & \{a\} \\ (p \leq q \text{ iff } q \subseteq p) & & \overline{A_{\{b\}}} & 0 & 1 & 0 & \{b\} \\ \hline \end{pmatrix}$$ As shown in the table, for every $p \in P$, $A_p = p$. # 2. Codes generated by P-fuzzy sets Let $S = \{1, 2, ...n\}$ and let (P, \leq) be a finite partially ordered set. Every P-fuzzy set on S determines a binary block-code V of length n, in the following way: To every class $[p]_{\sim}$ $(p \in P)$, there corresponds a codeword $v_{[p]} = x_1 x_2 \dots x_n$, such that $x_i = j$ iff $\overline{A_p}(i) = j$, for $i \in S$, and $j \in \{0, 1\}$. We shall use the following componentwise defined order on the set of codewords belonging to a binary block-code V: for $x, y \in V$, $x = x_1...x_n$, $y = y_1...y_n$, $$(*) x \leq y iff y_1 \leq x_1, ..., y_n \leq x_n,$$ where \leq on the right is the ordinary ordering relation on the lattice $(\{0,1\},\leq):0<1$. Thus, for example, $101101 \le 001001$. **Theorem 3.** Every finite partially ordered set (P, \leq) determines a block-code V, such that (P, \leq) is isomorphic with (V, \leq) . Proof. Let $P = \{p_1, ...p_n\}$, and let $\overline{A}: P \to P$ be the identity mapping, as a P-fuzzy set on P. The decomposition of \overline{A} gives a family $\{\overline{A_p}|p \in P\}$ which is the required code, under the above defined order (*). Consider the mapping $f: P \to \{\overline{A_p}|p \in P\}$, such that $f(p) = \overline{A_p}$. By Lemma 2 every (\sim)-class contains exactly one element, and thus f is one-to-one. If $p, q \in P$ and $p \leq q$, then $A_q \subseteq A_p$, which by (*) means that $\overline{A_p} \leq \overline{A_q}$, and f is an isomorphism. \square If V is a binary block-code, and \overline{A} is a P-fuzzy set, then we say that \overline{A} corresponds to V if the block-code determined by \overline{A} (as defined at the beginning of the paragraph) is V. **Theorem 4.** Let $V = \{v_1, ... v_k\} \subseteq \{0, 1\}^n$ be a binary block-code, such that for every $i \in \{1, ... n\}$ at least one codeword has a nonzero i-th coordinate. Then there is a P-fuzzy set which corresponds to V if and only if for every $i \in \{1, ... n\}$ (a) $$\bigvee (v \in V | v(i) = 1) \in V.$$ (The supremum in (a) is induced by \leq in (*).) **Proof.** If we think of the codewords of V as of the characteristic functions of the subsets of $\{1, ...n\}$, then the "if" part follows by Theorem 2, since the supremum in (a) is in fact the intersection of the corresponding subsets. The converse is true by Proposition 1. \square Recall that the Hamming weight ||x|| of a codeword $x \in \{0,1\}^n$ is the number of the nonzero coordinates in x, the Hamming distance d(x,y) between x and y from $\{0,1\}^n$ is the number of coordinates in which x and y differ. The code distance of $V \subseteq \{0,1\}^n$ is the minimum Hamming distance between two different codewords in V, and is denoted by d(V). Let $\overline{A}: S \to P$ be a P-fuzzy set. We say that the number of elements of S which are mapped into the same element p of P is a *degree* of the class $[p]_{\sim}$, or of the corresponding codeword $v_{[p]}$, and we denote it by $s(v_{[p]})$. In the following four propositions, let V be a code corresponding to a P-fuzzy set $\overline{A}: S \to P$. As it was done in [3] for lattice valued fuzzy sets, we shall describe the above-mentioned parameters in terms of P-fuzzy sets. ### Proposition 2. $$d(V) \ge \min_{p \in \overline{A}(S)} s(v_{[p]}).$$ (Recall that $\overline{A}(S) = \{p \in P | p = \overline{A}(x), \text{ for some } x \in S\}$.) Proof. If two codewords from V differ in the coordinate mapped onto p, they differ in at least $s(v_{[p]})$ coordinates. \square Proposition 3. If $v_{[p]} \in V$, then $$||v_{[p]}|| = \sum (s(v_{[q]})|q \in \overline{A}(S), \text{ and } v_{[p]} \leq v_{[q]}).$$ **Proof.** If $i \in S$, and $v_{[p]} \in V$, then $v_{[p]}(i) = 1$ if $q = \overline{A}(i) \ge r$, for every $r \in [p]_{\sim}$. Every $q \in \overline{A}(S)$ represents one class $[q]_{\sim}$ (by Lemma 2), and the number of these classes coincides with $||v_{[p]}||$. \square Proposition 4. If $v_{[p]} \leq v_{[q]}$, then $$\begin{split} d(v_{[p]},v_{[q]}) &= \sum (s(v_{[r]})|v_{[r]} \in K), \\ where \quad K &= \{v_{[r]} \in V|v_{[r]} \geq v_{[p]}, \ and \ \rceil (v_{[r]} \geq v_{[q]})\}. \end{split}$$ *Proof.* If $v_{[r]} \geq v_{[p]}$, and $(v_{[r]} \geq v_{[q]})$, $r \in \overline{A}(S)$, then for every $i \in S$ such that $\overline{A}(i) = r$, $v_{[p]}(i) = 1$, and $v_{[q]}(i) = 0$. Moreover, every nonzero coordinate in $v_{[q]}$ is nonzero in $v_{[p]}$ as well. \square Theorem 5. For any $v_{[p]}, v_{[q]} \in V$, $$d(v_{[p]}, v_{[q]}) = \sum (s(v_{[r]})|v_{[r]} \in K)$$ $$K = \{v_{[r]} \in V | v_{[r]} \ge v_{[p]} \quad and \quad | (v_{[r]} \ge v_{[q]}), \quad or \quad v_{[r]} \ge v_{[q]} \quad and \quad | (v_{[r]} \ge v_{[p]}) \}.$$ where **Proof.** If $v_{[p]} \leq v_{[q]}$, then the proof follows by Proposition 4. Now,let $v_{[p]}$ and $v_{[q]}$ be uncomparable. If $v_{[r]} \geq v_{[p]}$, and $v_{[q]} \geq v_{[q]}$, then for every $i \in S$ such that $\overline{A}(i) = r$, $v_{[p]}(i) = 1$ and $v_{[q]}(i) = 0$. On the other hand, if $v_{[r]} \geq v_{[q]}$, $v_{[r]} \geq v_{[q]}$, and $\overline{A}(i) = r$, then $v_{[q]}(i) = 1$, and $v_{[p]}(i) = 0$. Hence, $$d(v_{[p]}, v_{[q]}) \ge \sum (s(v_{[r]})|v_{[r]} \in K).$$ Now, if $v_{[p]}$ and $v_{[q]}$ differ in i-th coordinate, for example $v_{[q]}(i) = 1$ and $v_{[p]}(i) = 0$, then for $\overline{A}(i) = r$, $v_{[r]} \ge v_{[q]}$ and $|(v_{[r]} \ge v_{[p]})$. Thus, $v_{[r]} \in K$, and the equality (b) holds. \square Some well known codes can be represented by P-fuzzy sets, i.e. they satisfy the conditions of Theorem 4. **Example 5.** a) For a BCD-code $V = \{0000, 0001, ...1001\}$, there is a corresponding P-fuzzy set, as shown in the sequel. $$\overline{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 8 & 4 & 2 & 1 \end{pmatrix},$$ $S = \{1, 2, 3, 4\}, P = \{1, 2, ...9\}$ | | 1 | 2 | 3 | 4 | |---|---|---|---|---| | p | 8 | 4 | 2 | 1 | | 0 | 0 | 0 | 0 | 0 | | 1 | 0 | 0 | 0 | 1 | | 2 | 0 | 0 | 1 | 0 | | 3 | 0 | 0 | 1 | 1 | | 4 | 0 | 1 | 0 | 0 | | 5 | 0 | 1 | 0 | 1 | | 6 | 0 | 1 | 1 | 0 | | 7 | 0 | 1 | 1 | 1 | | 8 | 1 | 0 | 0 | 0 | | 9 | 1 | 0 | 0 | 1 | The construction is based on Theorem 4. b) The following Gray's code can be represented by a P-fuzzy set in a similar way. $$V = \{0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101\}$$ $$S = \{1, 2, 3, 4\}$$ $$P = \{0, 1, ...9\}$$ $$\overline{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 8 & 7 & 3 & 1 \end{pmatrix}$$ $$P = \{0, 1, ...9\}$$ $$\overline{A} = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 8 & 7 & 3 & 1 \end{array}\right)$$ | | 1 | 2 | 3 | 4 | |---|---|---|---|---| | p | 8 | 7 | 3 | 1 | | 0 | 0 | 0 | 0 | 0 | | 1 | 0 | 0 | 0 | 1 | | 2 | 0 | 0 | 1 | 1 | | 3 | 0 | 0 | 1 | 0 | | 4 | 0 | 1 | 1 | 0 | | 5 | 0 | 1 | 1 | 1 | | 6 | 0 | 1 | 0 | 1 | | 7 | 0 | 1 | 0 | 0 | | 8 | 1 | 1 | 0 | 0 | | 9 | 1 | 1 | 0 | 1 | ## References - [1] G. Birkhoff, T.C. Bartee, Modern Applied Algebra, McGrawHill, New York, 1970. - [2] B. Šešelja, G. Vojvodić, Fuzzy sets on S as closure operations on P(S), Review of Research, Fac. of Sci. Univ. of Novi Sad, Vol. 14, 1 (1984), 117-127. - [3] B. Šešelja, A. Tepavčević, G. Vojvodić, L-fuzzy Sets and Codes Fuzzy Sets and Systems (to appear). #### REZIME # O KONSTRUKCIJI KODOVA POMOĆU P-RASPLINUTIH SKUPOVA Posmatraju se P-rasplinuti skupovi, kao funkcije iz proizvoljnog nepraznog skupa S u parcijalno uredjeni skup P. Daju se potrebni i dovoljni uslovi pod kojima familija podskupova skupa S predstavlja kolekciju na koju se razlaže dati rasplinuti skup na S. Time se dolazi do uslova pod kojima se binarni blok-kod može opisati pomoću P-rasplinutog skupa. Eksplicitno se opisuje norma, Hemingovo i uopšte kodno rastojanje, a daju se i primeri poznatih kodova (BCD, kodovi Greja) izraženih pomoću P-rasplinutih skupova. Received by the editors May 25, 1990.