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Abstract

A new metric and structure in the space of integrably bounded
fuzzy random variables is introduced and the notion of conditional ex-
pectation for fuzzy random variable in R" is defined.
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1. Introduction

The concept of a fuzzy set was introduced by Zadeh (1965). Subsequent
developments focused on applications of this concept to pattern recognition
and system analysis among other areas. Puri and Ralescu [9] studied fuzzy
random variables as a generalization of random sets. The purpose of this
generalization was the introduction of statistical techniques. The notion of
conditional expectation is one of steps in that direction.

After some preliminaries on random sets introduced in § 2, we introduce
a new distance on the set of integrably bounded fuzzy random variables in
§ 3. The main purpose of this paper is to present a theory of conditional
expectation for fuzzy random variable and it is done in § 4.

1'This research was supported by Science Fund of Serbia, grant number 0401A, through
Matematicki institut

95



96 M.Stojakovié

2. Preliminaries

In this paper we restrict our attention to the set of fuzzy random variables

on the base space R", adapting in what follows definitions and results from

Feron (3] and Puri, Ralescu [9]. A fuzzy set u € F(R") is a function u :
— {0, 1]} for which

1. uo = e{z € R";u(z) > 0} is compact,
2. the a-level set u, of u, defined by
uy = {z € R" : u(z) > a}

is nonempty, closed and convex subset of R™ for all a € (0,1].

Let (2, A, P) be a probability space where P is a probability measure.
A fuzzy random variable is a function X : @ — F(R") such that

{(w,z): 2 € (X(w))a} € AX B, for every «a € [0,1],

where B denotes the Borel subsets of R".

It is obvious that the function X, : @ — 28" defined by X,(w) =
(X(w))a is the R™-valued random set. If H is Hausdorff metric defined on
P(R"™) (the space of all compact and convex subsets of R")

H(A, B) = max{sup inf ||z - y||, sup inf ||z — y||}, A,B € P(R"),
z€A VEB yeBTEA .
then (P(R™), H) is a complete metric space.
For any multufunction F : 2 — P(R") we can define the set
Sp={f € L(QA): f(w) € F(w) P-a.e}

where L(§2,A) = L denotes the set of all functions A : & — R" whlch are
integrable with respect to the probability measure P.

The set Sg C L is closed with respect to a norm in L defined by

1%l = [ In@)idP, ke L.
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Using S we can now define an integral for F (first introduced by Aumann

[1)
[ FaP = ([ f(u)dP@): [ € Sr).

The integrals [, f(w)dP(w) are defined in the sense of Bochner. F : Q —
P(R") is integrably bounded if there exists integrable real valued function
h : @ — R such that sup,ep(,) llzl] < A(w) P — a.e. The fuzzy random
variable X : @ — F(R") is integrably bounded if X, is integrably bounded
for all a € [0,1]. Let £ = £(R2,.A) denote the set of all integrably bounded
multivalued functions F : @ — P(R") and let A = A(f2,.A) be the set of all
integrably bounded fuzzy random variables X : @ — F(R").

We shall close this section, by recalling a lemma which we shall use in
the sequel.

Lemma 1. ([7]) Let M be a set and let {My : a € [0,1]} be a family of
subsets of M such that

1. Mpy=M

2. alf=>MzC M, _

3 gL .. L]limywon=a=> M, =2 M,,.

n=1
Then, the function ¢ : M — [0,1] defined by ¢(z) = sup{a € [0,1] :
z-€ My} has the property that {z € M : ¢(z) > a} = M, for every
a € [0,1].

3. Space of fuzzy random variables

For all X,Y € A we can define the function D:AxXA— R
D(X,Y) = sup A(Xa, Ya).
a>0

Two fuzzy variables X,Y € A are considered to be identical if
D(X,Y) = 0. It is obvious that D is a metric in A since A is metric
in £ (Th. 3.3 [4)).

Theorem 1. ( A,D ) is a complete meltric space.

Proof. Since A is metric in £ we have that D is metric too. Let {X"}nen
be a Cauchy sequence in A, that is, for every € > 0 there exists ng(c)
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such that D(X™,X*) < ¢ for all n,k > np(g). For every a € [0,1] the
sequence {X}}nen is a Cauchy sequence in complete metric space (£,A)
and limyp_oo X2 = X, € £.Let S = Sxp and S, = Sy . We can define
the random set X, by !

Xo(w) = cd{f(w) : f€ Sa}.

It is obvious that A(X,,,Xa) = 0 which implies that lim,_,.o X, € L. Let
X(w)(z) = supysp {z € Xo(w)}. We shall show that for every w € Q all
the conditions of Lemma 1 are satisfied which will mean that X is a fuzzy
random variable.

1. By Xj(w) we denote the set {zx € R* : X™(w)(z) > 0}. Since
X3(w) = R" for all n € N and all w €  we have that lim,_,o. X} (w)
R" for all w € 1.

2. For every w € 2 and every n € N,X"(w) is a fuzzy set. The in-
equality a < § implies X3(w) C X3(w), that is, §§ C S3. Since
S5 = limyoe 53 C limpoo 55 = Sa wWe have

Xo(w) = c{f(w) : f€ S} C {f(w) : fe€ S} = Xp(w),
for all w € .

3. Let {ai}ien C (0,1] be anondecreasing sequence and let lim;o, a; =

a. In" order to prove that for every w € @ X,(w) = NR; Xa;(w)
we shall prove that S, = (\2; Sa,. As it was already proved, from

a; < aweget Sy C 54,5 C N21 S Using the Hausdorff semimet-
ricr (r(A,B) = sup,e4 infoep ||a—b||, A,B C L) we get

r(ﬂ SoiySa) < r(ﬂ So;s ﬂ 53 )+r(ﬂ §3.,83) + (8%, 8,)

i=1 1_1 i=1

for a fixed j. But, (N2, S Sa) = 0, consequently, for every £ > 0, there
exists jo such that

T(ﬂ Sa.-,S) < €+T(n Saiasg,-)
=1 =1
for 3 > jo, since Sg, — 4 uniformly in a € [0,1].

Now

r(() Seir [) 52 < 7([) SairSan) + 7(San, $2,) ++7(S5,, [ S2)

i=1 i=1 i=1 =1
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for any n > 1. Since N2, So; € Sa,, We obtain

() Sais [} $%) < ™(SansSin) +1(Shas [ S4)-

=1 i=1 =1

Now 1(Sa,, 5% ) < € for j > jo. Note that (since the convergence S — S
is uniform in a) Jjo does not depend on n. Since 52 decreases to ﬂ,_.l 53
when n — o0, it follows that

r(.S'{,,"0 n s2 .) < € for some no (depending on j).

Thus

00
r(n Sa,.,Sf;'.) < 2¢ for j > jo, thatis,
=1

r(ﬂ Sa.'vsa) < 3 = ﬂ Sa; C S,.
=1 i=1

So we have proved that S, = (2, Sa;-

Now we have to prove that X,(w) = N2 Xoy(w) forall w € Q We know
that Xp(w) is compact for all 8 € (0,1} and w € . Let Z(w) = N2 Xa;(w),
w € ). Since the family of sets X4,(w) has the finite intersection property
(every finite subsystem has a non-void intersection), Z(w) # 0 and Z(w)
is a compact set. Further, we have the next implication

a>a; 2> Xa(w) C Xy (w) = Xo(w) C ﬁ Xo; (W),
i=1

that is
(1) Xo(w) € Z(w) for all we

Since Z € L it follows (Lemma 1.1 [4]) that there exists the sequence
{fa} C L such that Z(w) = cl {fn(w)} for all w € N ,and we get

Z(w) € Xay(@) = {(fa) € Sas = {fa) € () Sas = Sa =

i=1
o {fa(w)} C cl {g(w):g€ S} if wER\A

and

d {faw)) =B if we A,
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which means that

(2) Z(w) € Xa(w).

Lemma 1 is applicable and there exists fuzzy random variable X with
[X(w)la = Xa(w) for every a € [0,1]. From the completness of (£,A)
it follows that X, € £ for all & € (0,1], which shows that X € A.

It remains to show that X" — X in (A, D). For € > 0 there exists ng(¢)
such that D(X™, X*) < &, n,k > no(e). Let n > ng be fixed. Then

A(X3,Xa) = lim A(X3,X7) <

lim sup A(X?,XF) = klim D(X", X*) <e.
— 00

—0o0  a>0

Hence sup,59 A(XZ,X,) £ ¢ for all n > no(¢), implying that X» — X
in the metric D. That completes the proof.

4. Conditional expectation

Motivated by definition of conditional expectation for random set we intro-
duce the notion of fuzzy conditional expectation for fuzzy random variable.

Let (92, A, P) be a probability space and F a sub—o-algebra of A and
F € L. The conditional expectation of F with respect to F, which is in
L(), F), is determined by setting

Serir) = cl{g€ LN, F) : g = E(f|F), fe€SF}

Finally if X is a fuzzy random set we can define the conditional expectation
of X € A in such a way that the following conditions are satisfied:

E(X|F) € A@, F),
{z € R* : E(X|F)w)(z) 2 a} = E(Xa(w) |F).

The next theorem shows that there exists a unique fuzzy random variable
satisfying these requirements. The proof is based on Lemma 1.

Theorem 2. If X € A(R,.A), then there exists a unique fuzzy random vari-
able Y € A(2, F) such that

Ya(w) = E(Xa(w) |F).
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Proof.

1. Since Xg(w) = R™ for every w € Q then Sx, = L(Q,A) and
SE(XelF) = So = L(Q, F), which means that {f(w): f € L(Q,F)} = R* =
Y (w) for all w € Q.

2. If a < B, then, clearly, Sx, = Sa 2 S = Sx, which implies that
Sa = SE(x.F) 2 SExXaF) = Sp, and Ya(w) 2 Y, (w) for allw € Q.

3. Now, we suppose that a; < az...,lim, 4. a, = a. We denote
SX,.‘,SX,.,SE(X,.'J}') and Sg(x,r) by Si, 5, S;and § respectively. Our aim
is to show that § = (2, §;. Since § C §; it follows § C NX, S;. But,
from the nonexpansivity of conditional expectation for every ¢ > 0 there
exists ig(¢) such that h(S;,5) < h(S:,S) < ¢ for all i > ig(e).

In order to prove that Y,(w) = ({24 Yo, (w) for all w € Q we proceed as
follows. If w € Q, then Yp(w) C Yo(w) € Kco(X) wich implies that Yg(w) # @
is compact for all 8 € [0,1]. Let

Z(w) = ﬁ Yo;(w) forall we

i=1

(that is H(Ya,(w), Z(w)) — 0 for all w € © ), and let {f,} € Sz(F) be the
sequence (Lemma 1.1 [4]) such that

Z(w)= o {fa(w)} forall weN.
Since Z(w) C Y,,(w) for all w € 2, we have that
{fa} € Sa; forall i€ N,

that is

{fn}g '=§

‘38

..
I
]

Then »
Z(w) = c {fa(w)} C cl {g(w):g € S} = Ya(w).
On the other hand, from a > «; for all i € N, we get

Yaw) € Yau(e) = Yalw) € [ Yerl®) = Z0).

i=1
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From last two relations we get that

Yo(w) = n Yo, (w) for all w e Q.

=1

Since Y, = £[X,|F] we have ( Th. 5.6. {4] ) that Y, € L£(£,F,) which
implies that Y is integrably bounded. The uniqueness of Y follows from the
uniqueness of conditional expectation of random sets.

The fuzzy random variable Y € A(R2,F,) defined below is fuzzy condi-
tional expectation of X € A(f,.A,). We shall use notation Y = E(X|F).

Theorem 3. The fuzzy conditional expectation has the following properties:
1. D(E(X,|F), E(X3|F)) < D(X1,X3) far all X;,X; € A.

2 If A CcFCAand X € A, then E(X|F) taken on the base
space (2, A, P) is equal to E(X|Fy) taken on the base space (2, F, P).

8. If CFCA and X €A, then E(E(X|F)|R)= E(X|F).

4. If X, :9 — F(R™) are uniformly integrable bounded and X,, 2x ,
then E(X,|F) 3 E(X|F).

This theorem is a fuzzy generalization of Th. 5.2. (1), Th. 5.3. [4] and
Th. 6.2. [8]. The proof is quite similar to the case of random sets so it is
omited.
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REZIME

RASPLINUTA SLUCAJNA PROMENLJIVA SA VREDNOSTIMA
UR

Nad skupom integrabilno ogranicenih fazi slu¢ajno promenljivih je definisa-
na metrika i dokazano je da je prostor kompletan. Dalje se definise i ispituju
se osobine uslovnog matematickog ocekivanja fazi slu¢ajne promenljive.
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