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Abstract

The aim of the present paper is to study the extensions of the 1-
decomposable measure m, with respect to a continuous ¢-conorm L,
from a ring R to the o-ring L generated by R and to the class R, of
sets which are limits of increasing sequences from R.
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1. Introduction

This paper is a continuation of investigations on 1 -decomposable measures
with respect to a t-conorm L, which were considered in the papers [5] - [8].
The interest for these non-additive set function (non-additive with respect to
the usual addition of the real numbers) is growing. We have proved in pre-
vious papers [5] and [6] the analogies of classical measure theory theorems:
Lebesgue decomposition, Saks decomposition, Darboux property, compact-
ness of the range. In this paper we shall investigate the extension of the
order continuous 1 -decomposable measure m, with respect to a continuous
t-conorm L, from a ring R to the o-ring ¥ generated by R - Theorem 3.2.
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The unique extension is monotone order continuous L-subadditive set func-
tion 7. It is interesting that without the supposition of the order continuity
of m we lose the uniqueness of the extension - Example 3.3. We have proved
in Theorem 3.1. that there exists a unique ¢ L-decomposable extension of
the ¢ L-decomposable measure from R to the class R, of sets which are
limits of increasing sequences from R.

2. l-subadditive set functions

Definition 2.1. A function L :[0,1] x [0,1] — [0,1)] will be called t-conorm
if it satisfies:

(A) L (2,00 =L (0,2) =z (= € [0, 1))

(B) if z3 € z3 and z; < z4 for z1,22,73,74 € [0,1)
then L (z1,22) <L (23,24);

(C) L(z,y)=L(y,2) (=,y€[0,1]);

(D) L (L(z,9),2) =L (2,1 (3,2)) (2,9,2z€][0,1]).

A t-conorm L will be called continuous at zero if it satisfies the condition

(E) for all sequences (z,) and (y,) such that z,,y, € [0,1]

and lim z, = lim y, =0, lim 1 (2,,y,) =0 holds.
n—oo n—0o n—oo

There are many important {-conorms: L,, (z,y) = min(z+y,1), Ux(z,y) =

min(z + y + Azy, 1) for A > —1, Sp(z,y) = (2 + y? — zPy?)/? for fixed

p > 0, etc. (see [5], [8]).

There exist t-conorms which are continuous at zero but they are not
continuous. For example,

maz{z,y} for ;ye,[O, 1/2)
L (z,y) = { maz{z,y} for z €[0,1/2)
1 otherwise
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In the whole paper, R always denotes a ring of subsets of the given
nonempty set X.
Definition 2.2. A set function m : R — [0,1] with m(®) = 0 will be called
1 -subadditive, if
m(AU B) £ m(A) L m(B)

holds for all A,B € R, such that AN B = §.
If in the preceding inequality equality holds, then m will be called 1 -decomposable
measure.

A set function 7 : R — [0,00] is called a submeasure if it is monotone
nondecreasing, subadditive and 7(@) = 0.
Theorem 2.3. If m is a monotone 1 -subadditive set function on a ring R
of sets, then the following hold

(i) m(AuU B) < m(A) L m(B) for arbitrary A,B € R,

(ii) if L is continuous at zero, then m(A,) + m(B,) — 0 as
n — 00, for An, B, € R (n € IN) implies

m(A,UB,)— 0

Proof.
(i) For AN B =0, the inequality is true by Definition 2.2. Let A,B€ R
and AN B # 0. Then, we have

m(AUB) = m(AU((AUB)\A)) £ m(A) L m((AUB)\A) SAm(A) 1 m(B).

(ii) Follows by property (i).

A set function m : R — [0,1] is order continuous (continuous from
above at @), if lim,_,,, m(E,) = 0 for any sequence (E,), E, € R(n € IN),
such that E, \, 0

A set function m : R — [0,1] is exhaustive, if lim,, .o (E,) = 0 for any
sequence (E,) of pairwise disjoint sets from R.

There exists c— 1-decomposable measure with respect to a continuous
t-conorm 1, which is not order continuous.
Example 2.4. Let ¥ be the Borel o-algebra of subsets of the set of real
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numbers and let f be a continuous function on IR such that f(0) # 0 and
0< f(z) <1 (n € IR). Then, the function

m(A) =sup f(z) (A€X)
T€EA

is a 0— L-decomposable measure with respect to the continuous t-conorm
L= sup, but it is not order continuous. Namely, if we take the sequence of
open intervals (0, %), n € IN, then

N, %) =9, but

1
lim m((0,—)) = lim sup f(z)= f(0)#0.
n—co n n—o0 1
IE(O";) )
We have the following generalization of Theorem 3.2. from [5].
Theorem 2.5. Let m : R — [0,1] be a monotone 1 -subadditive set func-
tion with respect to a continuous at zero t-conorm L. Then, there exists a

submeasure 7 on R such that

nlLIIgo m(E,) =0 iffJi_{go n(E,) = 0.

The proof is quite analogous to the proof of Theorem 3.2. from [5], using
Theorem 2.3. instead of Theorem 3.1. from [5].
Theorem 2.6. A L-decomposable measure m on R is ezhaustive iff for
every monotone sequence (Ay) for R holds

m(A, A An)— 0 as n,m — oo,
where AA B = (A\B)U (B\A).

Proof. » =" Suppose that the theorem is not true, i.e. that for nonde-
creasing sequence (Ay,) there exist ¢ > 0 and an increasing sequence (i) of
natural numbers, such that

m(A;n“ AA;,)>e (n€ N).

Since (A;,,, A A;,) is a sequence of pairwise disjoint sets from R, we have
a contradiction with the exhaustivity of m.

» <" Suppose now that m is not exhaustive. Then, there exists a sequence
(Ey) of pairwise disjoint sets from R and € > 0 such that

m(E,)>¢ (n€ ﬂV)
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Let A, = Ui=; Ex- Then, the sequence (A,) is nondecreasing and since m
is monotone, we have for m > n

m(An, AAp) = m( 0 Ey) > m(E,) > e.
k=n

Contradiction.

3. Extensions

Let R, be the class of sets which are limits of increasing sequences from R.
Theorem 3.1. Let m : R — [0,1] be a 0— L-decomposable measure with
respect lo a continuous t-conorm L. Then, the function m* : R, — [0,1]
defined by

(3.1) m+(A) = limy, o0 m(An) (A € Ra’)’ _

where (A,) i8 any sequence in R such that A, / A, is a unique 0 L-
decomposable extension of m on R,.

Proof. First we shall prove that m* is independent from the choice of
the sequence (A4,) in (3.1.). Let (A.) and (A, ) be two increasing sequences
from R such that A, ,” A and A” 7 A. Since m is continuous from below
(Theorem 3.2 (iii) from [8]), we have

(3.2) limy, o0 (limg o0 m(A,, N A})) = limp—o m(A),)
and
(3.3) limg_ o (liMpoo m(A,, N A})) = limy_, o, m(A}).

On the other hand, by the monotonicity of m we have

(3.4) limp oo (limg— 00 (A, N A})) < limg_,o m(A})
and
(3.5) | limvoo (limn—co m(A, N A;)) < limpsoo m(Ay).

Then by (3.2) and (3.4) we have
(3.6) limp—.co m(A,) < limg_0o m(A}),
and by (3.3) and (3.5) we obtain
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(3.7 limg o m(A}) < limy oo m(AL).
(3.6) and (3.7) imply

Ay, () = fim, m{An).
It is obvius that m* is an extension of m to R,. We shall prove that m*
is L-decomposable. Let A,B € R,, such that AN B = 0. Let (A,) and
(Bn) be two sequences from such that A, / A and B, / B. Hence,
ApnN B, =0 (n € IN). Since the t-conorm L is continuous, we have

m*t(AUB) =
= nll.ngo m(A, U B,) = nh_’rr;o(m(A,,) 1 m(B,)) =

- L : —mt +
= JI_.II;O m(A,) L nll_’n(}O m(By) = mT(A) L m™(B).

mt is continuous from below, i.e. if A,A, € R, (n € IN) and A, / A,
then m*(A) = limy—oo m*(A4,). Hence, by Theorem 3.2 (iii) from (8] fol-
lows that mt is 0~ L-decomposable.

Theorem 3.2. Letm: R — [0,1] be an order continuous L -decomposable
measure with respect to a continuous t-conorm and let ¥ be the o-ring gener-
ated by R. Then, m can be eztended to a unique monotone order continuous
1 -subadditive set function ™ : ¥ — [0,1)], iff the following conditions hold:

(a) If (A,) is a sequence from R such that m(A, AA,,) —
0 as n,m — oo, then there ezists the limit of the sequence
(m(Am)),

(b) m is ezhaustive.

Proof First we shall prove that conditions (a) and (b) are sufficient. By
Theorem 2.5. there exists an order continuous submeasure n or R, such
that m(A,) - 0 & n(A4,;) = 0. By 7.2. from [3] there exists an order
continuous extension 7 of n to .

We define the required extension 7 of m to ¥ in the following way: for
A € ¥ we choose a sequence (A,) from R such that (A AA,) — 0 as
n — oo and we take

(3.8) (A) = limp—oo m(An).
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The function 7 is independent of the choice of the sequence (A,). It is
obvious that 7 extends m. We shall prove that m is L-subadditive.” Let
A,B € %, such that AN B = §. Let (A,) and (B,) be two sequences
from R, such that (A A A,;) — 0 and (B A B,) — 0. Then we have
(A) = lim, oo m(Ay) and M(B) = limy .0 m(By).

Using the inclusion

(AU B)A(A, U B,) C (AAA,) U (BAB,),
we have
(AU B)A(An U Br)) < T((AAAR) U (BAB,)) <
S H(AAAIN(BABL)) + T((BAB) <

< H((ADAR) + T((BAB,),

where we have used that 7 is monotone and subadditive. The preceding
inequality implies

(AU B)A(A,UB,)) =0 as n— oo.
By the definition of the set function 7 (3.8), we have
m(AUB) = nl_n_’rr;o m(A, U By,).
Hence, using the continuity of the f-conorm L1
m(AU B} = "l_i_{rolom(fln UB,)< ’}Lmoo(m(An) 1 m(B,)) =
= 111_1_1’1;O m(A,) L nlergo m(B,) = m(A) L m(B).

The set function 7 is monotone. This follows by the fact that m* (for the
definition see (3.1)) is monotone on R, and that for every A € ¥ there exists
a sequence (A,) from R,, such that A C A, (n € IV), A, \, and

TAAA,) = H(A\A) — 0.

Since 7 is monotonc and L-subadditive, by Theorem 2.5., there exists an
order continuous submeasure ¥ on I such that y(A,) — 0] & m(A,) — 0.
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Hence, the restriction of ¥ to R, 4|R, satisfies (y|R)(A,) — 0 & m(4,) —
0. This implies by 7.3 from (3]

¥(Ar) — 0 & 7(An) — 0.

So, we have y ~ 7. Since R is dense in the complete space (E,7) (see {3],
3.1, 5.2 and 7.1), the set function 7 is by the condition (a) a continuous
(unique) 1-subadditive extension of m from (R,n) to (E,7).

Since 7 is 7-continuous, 7 is order continuous.

Using the preceding facts about submeasures we can prove that condition
(a) is also necessary.

If we suppose that 7 is the extension of m to X, then by Theorem 2.5
there exists an order continuous submeasure 7 on X such that

T(Ep) = 0 ¢ F(En) — 0.

Since each order continuous submeasure on o-ring is exhaustive, there fol-
lows by the preceding equivalence the exhaustivity of 7.

The assumption of the order continuity of the set function m in the

preceding theorem is important. Namely, if we drop this assumption, then
it can happen that the extension is not unique, as the following example
shows.
Example 3.3. We are taking the sup-decomposable measure on the algebra
R generated by closed intervals [a,b], where a and b are rational numbers.
We have for special functions f; and f;, which are defined in the following
way

% for z € [0, 1] % for z € [0,1)
HEz)=4 3 for ze (4,1, fi(z)=¢ 3 for z € [4,1)
0 otherwise 0 otherwise

where i is some irational number from (0, 1), the corresponding measures
my(A) = sup fi(z) and m2(A) = sup fa(z) (A € R).
z€A z€A

Measures my and mg are equal on R. The algebra R generates the minimal
o-algebra ¥, Borel g-algebra. m; is extended by 7y defined by

mi(A) = sup f1(z) (A€Z)
z€A
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and m; is extended by 7 defined by

mz(A) = sup f2(z) (A€ L)
T€EA

Although the sup-decomposable measures m; and mq are equal on the alge-
bra R, they have different extensions to the o-algebra . Namely, we have
m1({i}) = § and ma({i}) = 1. As in Example 2.4, we have that 77 and 753
are o-sup-decomposable, but they are not order continuous.
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REZIME

PROSIRENJE NEPREKIDNO t-CONORMA DEKOMPOZABILNE
MERE

U radu se ispituju prosirenja L-dekompozabilne mere (u odnosu na neprekidnu
t-konormu L) sa prstena skupova R na o-prsten ¥ generisan sa R i na klasu
R, koja se sastoji od skupova koji su granice rastucih nizova skupova iz R.
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