Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20, 2 (1990), 153-159 Review of Research Faculty of Science Mathematics Series

A COMMON FIXED POINT THEOREM FOR TWO SEQUENCES OF MAPPINGS IN CONVEX METRIC SPACES

Olga Hadžić

Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

In this paper we shall give a generalization of Theorem A from [3] in convex metric spaces.

AMS Mathematics Subject Classification (1980): 47H10
Key words and phrases: Common fixed point theorems, convex metric spaces.

1. Introduction

In [1] Assad and Kirk have proved the following theorem: Let (X,d) be a complete and convex metric space, C a nonempty closed subset of X,T a contraction mapping of C into CB(X). If $T(\partial C) \subseteq C$ then there exists $u \in C$ such that $u \in Tu$.

In this theorem the convexity of X means that for each $x, y \in X$ with $x \neq y$, there exists $z \in X$, $x \neq z$, $y \neq z$, such that d(x, z) + d(z, y) = d(x, y).

There are many fixed point theorems and common fixed point theorems in convex metric spaces for singlevalued and multivalued mappings and family of mappings. 154 O. Hadžić

T.Taniguchi generalized in [3] Theorem 1 from [2]. In this paper we shall prove a generalization of Theorem A from [3] in the case of a convex metrics space

2. The common fixed point theorem

Theorem 1. Let (X,d) be a complete, convex metric space, K a nonempty, closed subset of X, $B_i: X \to X$ $(i \in \mathbb{N})$ and $A_i: K \to X$ continuous mappings so that $\partial K \subseteq B_i(K) \subseteq K$, $A_iK \cap K \subseteq B_{i+1}K$ and

$$B_i x \in \partial K \Rightarrow A_i x \in K$$
 for every $i \in \mathbb{N}$.

Suppose that the following conditions are satisfied for all $m, n \in \mathbb{N}$ and all $x, y \in K$:

a) there exists a constant k < 1, such that

$$d(A_{2n-1}x, A_{2n}y) \le kd(B_{2n-1}x, B_{2n}y)$$

$$d(A_{2n}x, A_{2m+1}y) \le kd(B_{2n}x, B_{2m+1}y), \quad \text{for all} \quad m \ge n \ge 1.$$

b)
$$A_{2n}B_{2m}x = B_{2m}A_{2n}x \quad and \quad A_{2n-1}B_{2m-1}x = B_{2m-1}A_{2n-1}x$$

c)

$$B_{2n}B_{2m}x = B_{2m}B_{2n}x$$
 and $B_{2m-1}B_{2n-1}x = B_{2n-1}B_{2m-1}x$,

Then there exists a unique common fixed point for two sequences $\{A_n\}_{n\in\mathbb{N}}$ and $\{B_n\}_{n\in\mathbb{N}}$.

Proof. Let $p \in \partial K$ and $p_0 \in K$ such that $p = B_1 p_0$. The existence of such an element follows from the condition $\partial K \subseteq B_1 K$. Since $B_1 p_0 \in \partial K$ it follows that $A_1 p_0 \in K$ and so from the condition $A_1 p_0 \in A_1 K \cap K \subseteq B_2 K$ it follows the existence of an element $p_1 \in K$ such that $B_2 p_1 = A_1 p_0$. Let $p'_1 = A_1 p_0$ and $p'_2 = A_2 p_1$. If $p'_2 \in K$ it follows that $A_2 p_1 \in A_2 K \cap K \subseteq B_3 K$ and so the exists $p_2 \in K$ such that $B_3 p_2 = A_2 p_1$. If $p'_2 \notin K$ then there exists $p_2 \in K$ such that $p_3 p_2 \in K$ and

$$d(B_2p_1, B_3p_2) + d(B_3p_2, A_2p_1) = d(B_2p_1, A_2p_1).$$

If we proceed in this way we obtain two sequences $\{p_n\}_{n\in\mathbb{N}}$ and $\{p'_n\}_{n\in\mathbb{N}}$ such that for every $n\in\mathbb{N}$, $p_n\in K$, $p'_{n+1}=A_{n+1}p_n$ and the following implications hold for every $n\in\mathbb{N}$:

(i)
$$p'_{2n} \in K \Rightarrow p'_{2n} = B_{2n+1}p_{2n}$$

$$p'_{2n} \notin K \Rightarrow B_{2n+1}p_{2n} \in \partial K \quad \text{and}$$

$$d(B_{2n}p_{2n-1}, B_{2n+1}p_{2n}) + d(B_{2n+1}p_{2n}, A_{2n}p_{2n-1}) =$$

$$= d(B_{2n}p_{2n-1}, A_{2n}p_{2n-1}).$$
(ii) $p'_{2n+1} \in K \Rightarrow p'_{2n+1} = B_{2n+2}p_{2n+1}$

$$p'_{2n+1} \notin K \Rightarrow B_{2n+2}p_{2n+1} \in \partial K \quad \text{and}$$

$$d(B_{2n+1}p_{2n}, B_{2n+2}p_{2n+1}) + d(B_{2n+2}p_{2n+1}, A_{2n+1}p_{2n}) =$$

We shall prove that there exists $z \in K$ such that $z = \lim_{n \to \infty} B_n p_{n-1}$. Let

 $=d(B_{2n+1}p_{2n},A_{2n+1}p_{2n}).$

$$P_0 = \{p_{2n}; \ p'_{2n} = B_{2n+1}p_{2n}\},$$

$$P_1 = \{p_{2n}; \ p'_{2n} \neq B_{2n+1}p_{2n}\},$$

$$Q_0 = \{p_{2n+1}; \ p'_{2n+1} = B_{2n+2}p_{2n+1}\},$$

$$Q_1 = \{p_{2n+1}; \ p'_{2n+1} \neq B_{2n+2}p_{2n+1}\}.$$

If $p_{2n} \in P_1$ then $B_{2n+1}p_{2n} \in \partial K$ which implies that $A_{2n+1}p_{2n} = p'_{2n+1} \in K$. From this it follows that $p'_{2n+1} = B_{2n+2}p_{2n+1}$ and so $p_{2n+1} \in Q_0$. It is easy to see that we have the following posibilities:

$$\begin{split} (p_{2n},p_{2n+1}) \in P_0 \times Q_0; & (p_{2n},p_{2n+1}) \in P_0 \times Q_1; \\ (p_{2n},p_{2n+1}) \in P_1 \times Q_0; \\ a) & (p_{2n},p_{2n+1}) \in P_0 \times Q_0 \\ d(B_{2n+1}p_{2n},B_{2n+2}p_{2n+1}) &= d(A_{2n}p_{2n-1},A_{2n+1}p_{2n}) \leq \\ &\leq qd(B_{2n}p_{2n-1},B_{2n+1}p_{2n}). \\ b) & (p_{2n},p_{2n+1}) \in P_0 \times Q_1 \\ d(B_{2n+1}p_{2n},B_{2n+2}p_{2n+1}) &= d(B_{2n+1}p_{2n},A_{2n+1}p_{2n}) - \end{split}$$

$$\begin{split} d(B_{2n+2}p_{2n+1},A_{2n+1}p_{2n}) &\leq d(B_{2n+1}p_{2n},A_{2n+1}p_{2n}) \\ &= d(A_{2n}p_{2n-1},A_{2n+1}p_{2n}) \leq qd(B_{2n}p_{2n-1},B_{2n+1}p_{2n}) \\ &c) \qquad (p_{2n},p_{2n+1}) \in P_1 \times Q_0 \\ d(B_{2n+1}p_{2n},B_{2n+2}p_{2n+1}) &\leq d(B_{2n+1}p_{2n},A_{2n}p_{2n-1}) + \\ &+ d(A_{2n}p_{2n-1},B_{2n+2}p_{2n+1}) = \\ &= d(B_{2n+1}p_{2n},A_{2n}p_{2n-1}) + d(A_{2n}p_{2n-1},A_{2n+1}p_{2n}) \leq \\ &\leq d(B_{2n+1}p_{2n},A_{2n}p_{2n-1}) + qd(B_{2n}p_{2n-1},B_{2n+1}p_{2n}) \leq \\ &\leq d(B_{2n}p_{2n-1},B_{2n+1}p_{2n}) + d(B_{2n+1}p_{2n},A_{2n}p_{2n-1}) + \\ &= d(B_{2n}p_{2n-1},A_{2n}p_{2n-1}). \end{split}$$

Since $p_{2n} \in P_1$ implies that $p_{2n-1} \in Q_0$ it follows that $B_{2n}p_{2n-1} = A_{2n-1}p_{2n-2}$ and so

$$d(B_{2n+1}p_{2n}, B_{2n+2}p_{2n+1}) \le d(B_{2n}p_{2n-1}, A_{2n}p_{2n-1}) =$$

$$= d(A_{2n-1}p_{2n-2}, A_{2n}p_{2n-1}) \le qd(B_{2n-1}p_{2n-2}, B_{2n}p_{2n-1}).$$

Similarly we can prove the following implications:

$$(p_{2n-1}, p_{2n}) \in Q_0 \times P_0 \Rightarrow d(B_{2n}p_{2n-1}, B_{2n+1}p_{2n}) \leq$$

$$\leq qd(B_{2n-1}p_{2n-2}, B_{2n}p_{2n-1});$$

$$(p_{2n-1}, p_{2n}) \in Q_1 \times P_0 \Rightarrow d(B_{2n}p_{2n-1}, B_{2n+1}p_{2n}) \leq$$

$$\leq qd(B_{2n-1}p_{2n-2}, B_{2n-2}p_{2n-3});$$

$$(p_{2n-1}, p_{2n}) \in Q_0 \times P_1 \Rightarrow d(B_{2n}p_{2n-1}, B_{2n+1}p_{2n}) \leq$$

$$\leq qd(B_{2n-1}p_{2n-2}, B_{2n}p_{2n-1}).$$

It is easy to prove that

$$d(B_{2n+1}p_{2n}, B_{2n+2}p_{2n+1}) \le q^{n-1} \cdot r$$
$$d(B_{2n+2}p_{2n+1}, B_{2n+3}p_{2n+2}) \le q^n \cdot r$$

where $r = \max\{d(B_3p_2, B_4p_3), d(B_3p_2, B_2p_1)\}$, which imply the existence of $z \in K$ such that

$$z=\lim_{n\to\infty}B_np_{n-1}.$$

There exists at least one sequence $\{B_{2n_k+1}p_{2n_k}\}_{k\in\mathbb{N}}$ or $\{B_{2m_k+2}p_{2m_k+1}\}_{k\in\mathbb{N}}$ such that $p_{2n_k}\in P_0(k\in\mathbb{N})$ or $p_{2m_k+1}\in Q_0(k\in\mathbb{N})$.

Suppose that there exists $\{n_k\}$ such that

$$B_{2n_k+1}p_{2n_k}=A_{2n_k}p_{2n_k-1},$$
 for every $k\in\mathbb{N}$.

We shall prove that

(1)
$$\lim_{k \to \infty} A_{2n_k+1} p_{2n_k} = z.$$

Relation (1) follows from

$$d(A_{2n_k+1}p_{2n_k}, B_{2n_k+1}p_{2n_k}) = d(A_{2n_k+1}p_{2n_k}, A_{2n_k}p_{2n_k-1})$$

$$\leq qd(B_{2n_k+1}p_{2n_k}, B_{2n_k}p_{2n_k-1})$$

since

$$\lim_{k \to \infty} d(A_{2n_k+1}p_{2n_k}, B_{2n_k+1}p_{2n_k})$$

$$\leq q \cdot \lim_{k \to \infty} d(B_{2n_k+1}p_{2n_k}, B_{2n_k}p_{2n_k-1}) = 0$$

and

$$\lim_{k\to\infty}B_np_{n-1}=z.$$

Further, for every $m \in \mathbb{N}$

$$(2) B_m z = B_{m+1} z.$$

In order to prove (2) we shall prove that $B_{2m}z = B_{2m+1}z$, and $B_{2m}z = B_{2m-1}z$ for every $m \in \mathbb{N}$.

Since

$$z = \lim_{k \to \infty} A_{2n_k} p_{2n_k - 1} = \lim_{k \to \infty} A_{2n_k + 1} p_{2n_k}$$

it follows from the continuity of B_n that

$$\begin{split} d(B_{2m}z,B_{2m+1}z) &= d(B_{2m}(\lim_{k\to\infty}A_{2n_k}p_{2n_k-1}),B_{2m+1}(\lim_{k\to\infty}A_{2n_k+1}p_{2n_k})) = \\ &= \lim_{k\to\infty}d(B_{2m}A_{2n_k}p_{2n_k-1}B_{2m+1}A_{2n_k+1}p_{2n_k}) \\ &= \lim_{k\to\infty}d(A_{2n_k}B_{2m}p_{2n_k-1},A_{2n_k+1}B_{2m+1}p_{2n_k}) \leq \\ &\leq q\lim_{k\to\infty}d(B_{2n_k}B_{2m}p_{2n_k-1},B_{2n_k+1}B_{2m+1}p_{2n_k}) \\ &= q\lim_{k\to\infty}d(B_{2m}B_{2n_k}p_{2n_k-1},B_{2m+1}B_{2n_k+1}p_{2n_k}) = \end{split}$$

$$= qd(B_{2m}z, B_{2m+1}z).$$

Since q < 1 it follows that $B_{2m}z = B_{2m+1}z$, for every $m \in \mathbb{N}$. We shall prove that $B_{2m}z = B_{2m-1}z$, for every $m \in \mathbb{N}$. Since $z = \lim_{k \to \infty} A_{2n_k}p_{2n_k-1} = \lim_{k \to \infty} A_{2n_k+1}p_{2n_k}$ it follows that

$$\begin{split} d(B_{2m}z,B_{2m-1}z) &= d(B_{2m}(\lim_{k\to\infty}A_{2n_k}p_{2n_k-1}),B_{2m-1}(\lim_{k\to\infty}A_{2n_k+1}p_{2n_k})) \\ &= \lim_{k\to\infty}d(B_{2m}A_{2n_k}p_{2n_k-1},B_{2m-1}A_{2n_k+1}p_{2n_k}) = \\ &= \lim_{k\to\infty}d(A_{2n_k}B_{2m}p_{2n_k-1},A_{2n_k+1}B_{2m-1}p_{2n_k}) \\ &\leq q\lim_{k\to\infty}d(B_{2n_k}B_{2m}p_{2n_k-1},B_{2n_k+1}B_{2m-1}p_{2n_k}) \\ &= q\lim_{k\to\infty}d(B_{2m}B_{2n_k}p_{2n_k-1},B_{2m-1}B_{2n_k+1}p_{2n_k}) \\ &= qd(B_{2m}z,B_{2m-1}z) \end{split}$$

and so $B_{2m}z = B_{2m-1}z$. Further, we have that $A_{2n}z = B_{2n+1}z$, $n \in \mathbb{N}$. Indeed for $n_k \neq n$ we have that

$$d(B_{2n+1}A_{2n_k+1}p_{2n_k}, A_{2n}z) = d(A_{2n_k+1}B_{2n+1}p_{2n_k}, A_{2n}z)$$

$$\leq qd(B_{2n_k+1}B_{2n+1}p_{2n_k}, B_{2n}z) = qd(B_{2n+1}B_{2n_k+1}p_{2n_k}, B_{2n}z)$$

and so

$$\lim_{k\to\infty} d(B_{2n+1}A_{2n_k+1}p_{2n_k}, A_{2n}z) \le$$

$$\le q \lim_{k\to\infty} d(B_{2n+1}B_{2n_k+1}p_{2n_k}, B_{2n}z).$$

Hence

$$d(B_{2n+1}z, A_{2n}z) \le qd(B_{2n+1}z, B_{2n}z)$$

and since we can prove easily that $B_{2n+1}z = B_{2n}z$ we have that $B_{2n+1}z = A_{2n}z$, $n \in \mathbb{N}$. From the inequality

$$d(A_{2n-1}z, A_{2n}z) \le qd(B_{2n-1}z, B_{2n}z)$$

we conclude that $A_{2n-1}z = A_{2n}z$, for every $n \in \mathbb{N}$.

Further, since $B_j: K \to K$ it follows that $A_j z \in K$, $j \in \mathbb{N}$ and

$$d(A_{2n-1}z, A_{2n}A_{2n}z) \le qd(B_{2n-1}z, B_{2n}(A_{2n}z))$$
$$= qd(A_{2n-1}z, A_{2n}(B_{2n}z))$$

$$= qd(A_{2n-1}z, A_{2n}(A_{2n}z)).$$

This implies that $A_{2n-1}z = A_{2n}z = A_{2n}(A_{2n}z) = A_{2n}(B_{2n}z) = B_{2n}(A_{2n}z)$ and similarly

$$d(A_{2n}z, A_{2n+1}A_{2n+1}z) \le qd(B_{2n}z, B_{2n+1}(A_{2n+1}z))$$

$$= qd(A_{2n}z, A_{2n+1}(B_{2n+1}z))$$

$$= qd(A_{2n}z, A_{2n+1}(A_{2n+1}z))$$

$$A_{2n}z = A_{2n+1}(A_{2n+1}z) = A_{2n+1}(A_{2n}z) = A_{2n+1}(B_{2n+1}z) = B_{2n+1}(A_{2n+1}z) = B_{2n+1}A_{2n}z.$$

Hence $u = A_{2n}z$ is a common fixed point for the families $\{A_n\}_{n \in \mathbb{N}}$ and $\{B_n\}_{n \in \mathbb{N}}$. The uniqueness of the common fixed point of the families $\{A_n\}_{n \in \mathbb{N}}$ and $\{B_n\}_{n \in \mathbb{N}}$ follows immediately since from $u = A_n u = B_n u$ and $w = A_n w = B_n w$ for every $n \in \mathbb{N}$ we have:

$$d(u, w) = d(A_{2n-1}u, A_{2n}w) \le kd(B_{2n-1}u, B_{2n}w) \le kd(u, w)$$

which implies u = w.

References

- [1] Assad, N.A., Kirk, W.A.: Fixed point theorems of set-valued mappings of contractive type, Pacific J. Math. Vol. 43, No. 3 (1972), 553-562.
- [2] Hadžić, O.: Common fixed point theorems for family of mappings in complete meric spaces, Math. Japan, 29 (1984), 127-134.
- [3] Taniguchi, T.: A common fixed point theorem for two sequences of self - mappings, Internat. J. Math. Math. Sci. Vol. No. 3 (1991), 417-420.

160 O. Hadžić

REZIME

120000

TEOREMA O ZAJEDNIČKOJ NEPOKRETNOJ TAČKI ZA DVA NIZA PRESLIKAVANJA U KONVEKSNIM METRIČKIM PROSTORIMA

Dokazano je uopštenje teoreme iz [3] u konveksnim metričkim prostorima.

Received by the editors June 12, 1990.