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Abstract

In this paper we shall give a generalization of Theorem A from [3]
in convex metric spaces.
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1. Introduction

In [1] Assad and Kirk have proved the following theorem: Let (X,d) be
a complete and convex metric space, C a nonempty closed subset of X,T
a contraction mapping of C into CB(X). If T(8C) C C then there exists
u € C such that u € T'u. : ‘

In this theorem the convexity of X means that for each z,y € X with
z # y, there exists z € X, z # 2, y # z, such that d(z,2) + d(2,y) =
d(z,y). | |

There are many fixed point theorems and common fixed point theorems
in convex metric spaces for singlevalued and multivalued mappings and fam-
ily of mappings.
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T.Taniguchi generalized in [3] Theorem 1 from [2] . In this paper we
shall prove a generalization of Theorem A from [3] in the case of a convex
metrics space

2. The common fixed point theorem

Theorem 1. Let (X,d) be a complete, convex metric space, K a nonempty,
closed subset of X, B; : X - X (i € N) and A; : K — X continuous
mappings so that 0K C B{(K)C K, A, KN K C B;;1K and

B;x € 0K = A;ix € K for every i€ N.

Suppose that the following conditions are satisfied for all m,n € N and all
z,y€ K :

a) there ezists a constant k < 1, such that
d(A2n—lx7 A2ny) S kd(B2n—137 B2ny')
d(A2n3’ A2m+1y) < kd(B2nz, B2m‘+1y), fOT al m 2n 2 1.

b)

Ay Bomz = BanA2nxz and A 1By 12 = Bo—1A2m1%

c)
By, Bynz = By Banz and Bam-1Ban-1z = B2n—lB2m—lz,-

Then there erxists a unique common fized point for two sequences {An},eN
and {Bn}.eN-

Proof. Let p € 8K and pyp € K such that p = Bypg. The existence of
such an element follows from the condition 8K C B K. Since Bjpg € 8K it
follows that A;pp € K and so from the condition A3pg € A1 KN K C B K
it follows the existence of an element p; € K such that Bap; = A;pp. Let
Py = A1po and ph, = Aapy. If p, € K it follows that Agpl € A,KNK C B3K
and so the exists p; € K such that Bap, = A2p1 If p5 ¢ K then there exlsts
p2 € K such that Bap, € 0K and

d(B2p1, Bapa) + d(Bapa, A2p1) = d(Bapr, A2py).
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If we proceed in this way we obtain two sequences {pn}.eN and {p}}neN
such that for every n € N, p, € K, pl,; = An41Pn and the following
implications hold for every n € N :

(i) p,2n €K = p,2n = B2n+lp2n ‘

Pin € K = Bany1pan € 0K and

d_(B2np2n-1 y B2n+1p2n) + d(B2n+1P2n y A2np2n—1) =
= d(B2nP2n-1, A2nP2n-1).

(ii) Pon+1 € K = Phuyy = Bant2Pans1
P’2n+1 & K = Bany2p2n41 € 0K and

d(B2n+1P2n; Bangy2P2n+1) + d(B2nt2P2n+1, A2nt1P20) =
= d(B2n+1P2n, A2n+1P2n)-
We shall prove that there exists z € K such that z = lim,, .00 Bnpn-1. Let

Po = {p2n; Pon = Bant1P2n},

P = {P2n; Pén 75 an+1P2n},
Qo = {P2n+1; Pons1 = BoantaPansr )
Q1 = {P2n+1; Poas1 # Bans2P2ns1}-

I pan € P1 then Bany1pan € OK which implies that Azn41p2n = Phpyq €
K. From this it follows that pj, +1 = Bontapang1 and so poayy € Qo. It is
easy to see that we have the following posibilities:

(P2n,P2n+1) € Po X Qo; (P2nyP2n+1) € Po X Q1;

(P2n,P2n41) € P1 X Qo;

a) (P2nsP2nt1) € Po X Qo
d(B2n+1P2n, Bant2pan+1) = d(A2nPan—1, Azms1P2n) <
< ¢d(B2nP2n-1, Bant+1P2n)-

b) (P2, P2n+1) € Po X Q1
d(B2n+1P2n, B2nt2P2nt1) = d(Ban1P2n, A2ns1P20)—
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d(Ban+2P2n+1, Azn41P2n) < @(Bant1P2ny A2041P2n)
= d(A2nPan-1, A2n+1P20) < qd(B2nP2n—1, B2n+1P2n)
c) (p2n,P2n+1) € PL X Qo
d(Ban41P2n, Bang2P2n+1) < d(B2n41P2n, A2nPon-1)+
+d(A2P2n-1, Bant2P2nt1) =
= d(B2n+1P2n, A2nP2n—-1) + d(A2nP2n-1, A2ng1P20) <
< d(B2n+1P2n, A2nP2n-1) + ¢d(B2npan—1, B2ni1P2n) <
< d(B2np2n—1, B2nt1P20) + A(Ban41P2n, A20Pan—1)+
= d(B2nP2n-1, A20P2n-1)-

Since p2, € P; implies that pe,—1 € Qg it follows that Bo,pa,_1 = A2p—1P2n-2
and so

d(B2n41P2ny Bang2P2n+1) < d(BonpPan—1, A2aPon-1) =
= d(A2n-1P2n-2, A2nP2n-1) < qd(Ban-1P2n-2, BanP2n-1).

Similarly we can prove the following implications:
(P2n~1,P2n) € Qo X Po = d(BznP2on-1, B2ni1P20) <

< 9d(B2n-1P2n-2; B2nPan-1);
(P2n-1,D2n) € Q1 X Py = d(B2npn-1, Bant1P24) <
< 9d(B2n-1P2n-2, B2n-2Pn~3);
(P2n~1,P2n) € Qo X Py = d(Banpan-1, B2ns1P24) <
< qd(Bzn-1P2n-2, Bnp2n-1)-

It is easy to prove that
d(B2n+lp2n, B2n+2P2n+1) < qn-l -7

d(Ban4+2P2n+1, BansaPony2) < q° -1

where r = max{d(B3pz, Bsps), d(Bspa, B2p1)}, which imply the existence
of z € K such that
z= nlL“olo B,,p,,_l.
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There exists at least one sequence { B2n, +1P2n, }keN OF { B2m,+2P2m,+1 }reN
such that pa,, € Po(k € N) or pam,+1 € Qo(k € N).

Suppose that there exists {n;} such that
Ban,+1Pn, = A2n,Pn, -1, forevery ke N.

We shall prove that
(1) kl_l_f{.lo Azny+1P2n, = 2.

Relation (1) follows from
d(A2nu+lP2nuBZnu+lP2m) = d(A2nu+lP2nnA2nuP2nk—l)

S qd(Ban+lp2nk ’ B2m.p2n|,—l)

since :
klll{.lo d(Azn, +1P2n, > B2ny+1P2n, )
<q- ;}HEO d(Ban+lp2’,‘k’ Bzﬂkmﬂk—l) =0
and

lim B,pn-1 = 2.
k—o0

Further, for every m € N
(2) Bmz = Bm+lz.

In order to prove (2) we shall prove that Bojm2z = Bam412, and Bz =
B2 for every m € N,

Since
z= lim A2n,,P2n,,—l = lim A2'nk+lp2ﬂ,,
k—oo0 k—o0

it follows from the continuity of B,, that
d(B2mz, Bamy12) = d(Bzm(klil{.lo Aznkpzn,,-l),BzmH(kllIgo Aony41P2n,)) =

= klgrolo d(B2m A2n, P2ny -1 Bam41A2n, +1P2n, )
- = lim d(Azn, Bampan,-1, A2ny+1Bams1Pam,) <
<gq klgfolo d(Ban, BamPan, -1, B2ny+1B2m+1P2n, )

= qkllfgo d(Bam BanyP2n, -1, B2m+1B2n, +1P2n,) =
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= qd(Bamz, Bami412).

Since ¢ < 1t follows that B,z = Bap412, for every m € N. We shall prove
that Bymz = Bym_12, for every m € N. Since z = limg_ o Ao, P2n,—1 =
limg o0 A2n, +1P2n, it follows that

d(B2mz, Bam-12) = d(Bzm(kliH;o Any P2ng-1), B2m——l(kllngo A2ny+1D2n,))

= kli»n;o d(Bam A2n,P2ng-1, Bam—1A2n,41P2n,) =
= kl-l-»n;o d(Aan, BamPong -1, A2n,+1B2m—-1P2n,)

< qkll{go d(B2n, B2mpPan, -1, Boany+1Bam—1P2n, )
= qJLH;o d(B2m B2ny P2nk—1, Bam—1B2ng+1P2n,)

= qd(Bamz, Bam-12)

and so B2,z = B2py_12. Further, we have that As,z = Bon412, n € N,
Indeed for n;, # n we have that

d(B2n+lA2nk+lp2nk ’ A2nz) = d(A2nk+lBZn+lP2n|, ’ A2nz)

< qd(Ban, +1B2n+1P2n, » B2nz) = qd(Ban41Ban,+1P2n,» Banz)

and so
Jim d(Ban+1Azny+1P2ny, A2n2) <
<gq kli»n;o d(B2n+1Ban, +1P2n, » B2n2).
Hence

d(B2n+12,A2n2) < qd(B2nt12, B2n2)

and since we can prove easily that Ba,412 = By, 2 we have that By, 112 =
A2,2, n € N. From the inequality

d(A2n-12, A2n2) £ qd(B2n-12, B3n2)

we conclude that A, _12 = Aj, 2, for every n € N,

Further, since B; : K — K it follows that Ajz € K, j € N and
d(A2n—lza A2'n.A2nz) < qd(B2n—lz9 BZn(AZnZ))

= qd(A2n_12, A2n(B‘2nz))
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= qd(Azn_12, A2n(A2a2))-
This implies that A1z = A2nz = A2q(A2a2) = Azp(B2mz) = Ban(A2m2)
and similarly

d(A2n2, Azas1A2n412) < 9d(B2nz, Bony1(A2n112))

= qd(Aznz, A2n41(B2m412))
= qd(A2n2, A2a+1(A2n412))

Agnz = Az 41(A2m412) = A2ns1(A2nz) = A2a41(B2n412) = Banp1(A2mir12) =
Bzu+1 Az,.z.

Hence u = A,z is a common fixed point for the families {Ap}.eN
and {B,},eN- The uniqueness of the common fixed point of the families
{An}uen and {B.}.en follows immediately since from u = Apu = Bau
and w = A,w = B,w for every n € N we have:

d(u, w) = d(Ah_lu, Az.,w) S kd(B},.-]‘u, B,,.w) _<_

< kd(u,w)
which implies u = w.
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- REZIME

TEOREMA O ZAJEDNICKOJ NEPOKRETNOJ TACKI ZA DVA
NIZA PRESLIKAVANJA U KONVEKSNIM METRICKIM
PROSTORIMA

Dokazano je uopstenje teoreme iz [3] u konveksnim metri¢kim prostorima.
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