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Abstract

We consider the problem of ascertaining the minimum number of
weighings which suffice to determine the counterfeit (heavier) coins in
a set of n coins of the same appearance, given a balance scale and the
information that there are exactly two heavier coins present. Some
results from [8] are improved by construction of a procedute which is
proved to be optimal for all n’s belonging to the set

J (rs*vE + 11,4 - 351U [[3* V2 + 17,20 - 3*-%))

E>2
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1. Introduction

Let § = {c1,¢2,...,¢n} be a set of n coins indistinguishable except that ex-
actly m of them are slightly heavier than the rest (in the sence specified
bellow). Given a balance scale, we want to find an optimal Weighing pro-
cedure, i.e. a procedure which minimizes the maximum number of steps
(weighings) which are required to identify all heavier coins.
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We suppose that all heavier coins are of equal weight, and so are the
light coins. If w is the weight of the light (good) coin, then the weight of
a heavy (defective) coin is the less than %iw, so that the larger of two
numerically unequal subsets of § is always the heavier. It means that no
information is gained by balancing two numerically unequal sets. We also
suppose that the scale reveals which, if either, of two subsets of § is heavier
but not by how much.

For two numerically equal disjoint subsets A,B of S step (A, B) will
mean the balancing of A against B. The possible outcomes are:
(a) The sets balance, symbolized by A = B.
(b) The sets do not balance, symbolized by A # B. We use the notation,
if necessary, A > B, A < B, where > between two sets means ”is heavier
than”.

We denote by P*(!) any algorithm which enables us to identify all heav-
ier coins if there are m of them in a set .S of = coins, ! being the maximum
number of weighings to be required. We write pm(n) = ! if P*(!) is optimal.

It follows by information theoretical reasonings that

(1) pim (m) 2 [logs (,’;)]

where [z] denotes the least integer > z. It is well known that
(2) p1(n) = [logs(n)]

The case m = 1 is a well known puzzle [1}, [2], [3]. There are several
proofs showing that the lower bound (1) is sharp.

There have been some investigations concerning the cases m > 2, [3], [6],
(8], [9], and some related problems (4], [5], [7], [10].

In the case m = 2, we denote two counterfeit coins by z and y.

2. The Results

For m = 2, the following statement holds.
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Theorem 1. (Tosié [8]) - .

o el

The corresponding algorithm is constructed inductivelly.

The proof of Theorem 1. combines the following statements:
(4) n<2-35 =2 uy(n)<2k+1 (k=0,1,..)
(5) n< 3 o uy(n) <2%+2 (k=0,1,..)

In [8] also an infinite set of n’s is determined for which the lower bound
[logy (5)] is reached in the constructed algorithm. So, for those n’s the
constructed algorithm is optimal.

We also use puj(ny,...,n;) to denote the minimum number of weighings
which enable us to identify all heavier coins if there are exactly one of them
in each of the sets Si,..., S, where |Si| = ny,...,|S;| = n,. We denote the
coresponding optimal procedure by PY, . (1), where I = pj(ny,...,n,).

In this paper we improve the results from [8]. First we prove the following
lemma.

Lemma 1.
(6) pi(mny,...,mn,) < pi(n1,...,0e) + pi(m,...,m)

Proof. We partition each set S;, |Si| = mn;, (i = 1,2,...,7) into n; disjoint
subsets of the same cardinality m. Such a subset is said to be counter-
feit if it contains a counterfeit coin. First we apply an optimal algorithm
Plng,...,n.(l), where I = pj(ny,...,n,), to identify the unique counterfeit
subset of each set 5;. Then we apply an optimal algorithm P} (s),
where s = uj(m,...,m), to determine all counterfeit coins (exactly one from
each counterfeit subset). Hence follows (6).

Corollary 1.

(7) ﬂ;(ml : 3ka ceey My 3k) <rk+ p"l.(ml’ ---’mr)
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Proof. Follows from Lemma 1. and the very well known fact that p}(3%,...,3%) =
rk

We shall often use the special case of Corollary 1., when r = 2:

(8) pi(m - 3%,n - 3%) < 2k + pi(m,n)

We shall also use the following equalities, which can be easily verified:

(9) p3(2,3) =2
(10) 13(2,4) = 2
(11) p#1(4,6)=3

The following two theoremes enable us to improve the results from [8].
Theorem 2. If3Ft1 < n <4-3%, k> 0, then py(n) < 2k + 2.

Proof. The proof is by induction. For k = 0, the statement is true. In that
case, the first step is ({c1},{c2}), the second step is ({c2}, {c3}), and it is
obviously sufficient for detection of counterfeits.

Let k > 0. We construct an algorithm P2(2k +2), for 3¥*1 < n < 4.3F,
in the following way.

The first step is (A, B), where A = {¢1,...,¢}, B = {¢r41,--,C2r} and r
is the least even integer > %.

(1.) If A > B, the second step is (C1,C2), where C = S\ (AU B),
Cl g C, ICll = [gl], Cz = C\Cl if ICI is even and Cg = C\Cl U{C,-+1}
if |C] is odd.

(1.1.) ¥ C, > Ca, then z € Cy,y € A. Since |Cy| < 2-3%1 and

|A] < 4-3%1, according to (8) and (10), we can find z and y using at most
2k additional steps.

(1.2.) The case C; < C; is quite similar to (1.1.).

(1.3.) If Cy = C;, then =,y € A and we can apply Pﬁﬂ(.‘Zk) which exists
by induction hypothesis, since |A| < 4 -3%-L,

(2.) The case A < B is quite analogous to (1.).
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v (3.) If A = B, then either x € A,y € B or z,y € C. Now the second .
step is (Al,Az) where |A1| = IAzI, AJUVA2 = A, A1 NA = 0.

(3.1.) If A; > Az, thenz € A,y € B, |4 < 2-3*1, |B| < 4-3%¥1, and
according to (8) and (10), we can find z and y using at most 2k additional
steps.

(3.2.) The case A; < A; is quite similar to (3.1.).

(3.3.) If A; = Ay, then z,y € C, then the statement follows by induction
hypothesis, since |C| < 4-3F-1

Theorem 3. If2-3¥1 < n < 20-3F1, k > 1, then us(n) < 2k + 3.
Proof. We adopt the following notations:

A= {c1,...,c6351}, By = {c63k-141, 1 Ca3-1},
By = {cg3x-141,--yC123%1}, B =B1UBy, C=S5\(AUB), C1UC; =C,
Ci1NCy =0, such that 0 < [C1] = |C2] £ 1; C' = Ca U {cgzx—1},
Az = {c1,..yca3x-1}, C3 = {c1a3k-1415 s Cr6.3t-1}

We construct an algorithm P?(2k + 3) in the following way.
The first step is (4, B).

(1.) If A > B, then the second step is (C;,C>) if |C| is even, and (C;,C’)
if C is odd.

(1.1.) K Cy > Cy (C1 > C"), then z € C},y € A, and according to (8)
and (11), we can find z and y using at most 2k + 1 additional steps.

(1.2.) The case C; < C2 (Cy < C') is quite analogous to (1.1.).

(1.3.) If C; = C; (Cy = C'), then z,y € A, and according to (4), we can
determine z and y using at most 2k 4+ 1 additional steps.

(2.) The case A < B is quite analogous to (1.).

(3.) If A = B, then either z € A,y € B or z,y € C. In that case, the
second step is (Asz,C3).

(8.1.) If A3 > Cj3, then z € A3,y € B, and according to (8) and (11), we
can identify z and y using at most 2k + 1 additional steps.
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(8.2.) If Az < C3, then either z,y € Cz or z € C3,y € C \ C3. Now, we ¢
partition C \ C3 into the subsets Dy and Dz such that 0 < |D;| ~|D2| < 1.
The third step is (Dy, D) if |Dy| = | D2] and (D4, D)), where D = DU{e; }
if |Dy| = |D2| + 1.

(3.2.1.) If Dy # D, (D1 # D3), then according to (8) and (10), we can
find = and y using at most 2k additional steps.

(3.22.) i D, = D; (D, = D)), then z,y € Cs, and according to
Theorem 2., we can find z and y using at most 2k additional steps.

(3.3.) If A3 = C3, then either z,y € C\ Cz or z € A\ A3,y € B. Now,
the third step is (B, Bz).

(3.3.1.) If By # By, then z € A\ A3,y € By, and according to (8) and
(9), we can find z and y using at most 2k additional steps.

(3.3.2.) If By = By, then z,y € C'\ C3, and according to Theorem 2. we
can determine z and y using at most 2k additional steps.

Remark 1. In the proofs of Theorems 2. and 3., we often use the algo-
rithms P‘l:l-3k"1,n~3k'l (I). We suppose, when necessary, that we may add
some coins which are proved to be good, in order to obtain the sets Sy and
S of the cardinality m-3*~1 and n-35~1 respectively. It can be easily checked
that in each particular case we have at our disposal a sufficient amount of
good coins.

Theorem 4. (a) If n < 4-3% then pa(n) < 2k + 2.
(b) If n < 20-3%"! then py(n) < 2k + 3.

Proof. Follows from Theorems 1,2 and 3.

Theorem 5. The optimal algorithm P2(l), i.e. such that | = py(n), ezists
at least for all integers belonging to the set

LJ([13*v6 + 11,4 - 3¥] U [[3%V2 + 1,20 - 3¥-2)),

k>2

where [p, q] denotes the set of all integers n such that p < n < gq.

Proof. Follows from Theorems 1,2 and 3 and from the inequalities:

(r3*¢g+ 11) S (rsk\/g + 11) g
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Theorem 5. is also a significant improvement of Theorem 2. from [8].

Conjecture If 3¥=1 < (3) < 3%, then py(n) = k.
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REZIME

NEKI NOVI REZULTATI O DVA NEISPRAVNA NOVCICA

U radu je razmatran problem odredjivanja minimalnog broja merenja koji je
potreban za pronalaZenje neispravnih (tezih) novéi¢a u skupu od n novéiéa
pri Cemu je poznato da su taéno dva novéica neispravna. Neki rezultati iz (8]
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su poboljiani nalazenjem algoritma koji je optimalan 2a beskonaéno mnogo
prirodnih brojeva n.
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