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Abstract

The numerical solution of the system of linear equations Az = b, in
the sense min, ||Az — b]|, where the matrix A can be even rectangular
is considered. By introducing some parameters or continuous func-
tion the Method of Optimal Basic Descent is accelerated. Sufficient
convergence conditions for the modified method are given. Numerical
examples confirm the eficiency of the proposed algorithm.
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1. Introduction

In this paper we shall investigate the numerical solution of the system
(1) Az = b,

where A is n X n real matrix and b is a column vector from R". The only
condition on system (1) is that the solution exists, which means that matrix
A can even be singular. Such systems often arise in economic models and
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have none of the usual features of physical systems, such as symmetry, di-
agonal dominance or nonnegativity, so research in this area is concentrated
on determing the convergence conditions as generally as possible.

The solution of system (1) is investigated in the sense

(2) min |4z — bl

where || - || is Euclidean vector norm, and that is equivalent to the solution
of system

(3) AtAz = A%.

Algorithm of Optimal Basic Descent was proposed by Pospelov, [6]. That
algorithm generates a class of methods, but their convergence is often very
slow. We propose some modifications of that algorithm which can accelerate
convergence significantely.

One modification is given by introducing some parameters. Nonstation-
ary modification is also considered for one special class of matrices. In both
cases convergence conditions are given and theoretical results are confirmed
by numerical experiments.

2. The Method of Optimal Basic Descent

Let {w;},i = 1,...,n be a base for the space R™, which satisfies the con-
ditions (wj, w;) = &j, ,j = 1,...,n, where §;; are Croneker symbols. We
also request that Aw; # 0, for at least one j.

For solving problem (2) following algorithm is proposed, [6].

(4) 2% =0,7=b
, M5, Aw)))
5 Jk = argmax{ ———=: Aw; #0
rF =b— A"
k .
(6) Ik+1 — Ik + (T ’AwJ) .

w;, .
”Awikllz o

If there is more than one j which satisfies (5) then the choice of ji is
arbitrary.
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For the algorithm defin2¢ by (4) - (6) the following convergence theorem
has been proved.

Theorem 1. [6] The sequence generated by iterations (§) - (6) is conver-
gent, its limit point, >, is the solution of system (3) and the inequality

llz* — 2|l < Cg¢*,

where 0 < ¢ < 1 and C are some constants, which depend on the set {w;}
and malriz A, i3 satisfied.

Using different sets of {w;} we can get a class of methods, which we shall
discuss later.

3. Modifications of the Method of Optimal Basic
Descent

First, we shall prove one lemma, which is the generalization of the results
from [6].

Lemma 1. Let g1,...,9m be a set of vectors from R™ with the property
llg:ll = 1,i = 1,...,m. Then for every vector z € L(g), where L(g) is a linear
space generated by the vectors g;,i = 1,...,m, and for every continuous
function ¢(z) € (0,2), inequality

(M llz — ¢(=)(=, gi)grll < gll=zll, ¢ < 1, k = argmax|(z,g:)l,

is satisfied.

Proof. Suppose that there exists no ¢ < 1, so that inequality (7) is satisfied.
That means that

llz — (2)(, 9x)grl| 2 ]zl

because the functions ||z — ¢(z)(z, gk )gk|| 2nd ||z|| are continuous functions.

So,
llz — ¢(z)(z, gi)gll* 2 llz]|*
which is equivalent to

(:D,:L‘) - 230(2:)(17915)2 + ¢($)2($,gk)2(gk,gk) 2 (2?,1:).



4 D. Herceg, N. Krejié

As llgy] = 1, we et

(—2¢(z) + ¢(2)*)(z, ¢ )* 2 0.

By the assumption, k¥ = argmax;|(z,¢:)|, and z € L(g), so (x,gx)* > 0,
which gives us

(8) o(z)(p(z) - 2) 2 0.

If we choose ¢(z) € (0,2) then inequality (8) cannot be satisfied, and we
get contradiction with our assumption, so inequality (7) is satisfied, which
completes the proof.

Now, consider the following algorithm.

(9) 22=0,r"=b
. I(rk,ij)l
10 =argmax{—— : Aw; £ 0
r* = b - Az*
k .
(11) zk+l - xk +‘P(zk)(r ,A'w_.,) .

w;, .
|| A |12

Using Lemma 1 convergence theorem for algorithm (9) - (11) can be
given.

Theorem 2. The sequence generated by tterations (9) - (11) is convergent,
its limit point, ™, is the solution of system (3) and the ineguality

”zk - zoo” < qu’

where 0 < ¢ < 1 and C are some constants, which depend on the set {w;}
and the matriz A, is satisfied.

Proof. As ||Awj,|| # 0, it is obvious that there exists a constant § such that

Aw;, || 2 8, for every k.

Using the definition of iterative method (11) we get

(rk’ Aka)Aw

b— AzFtl = p— AzF — o(zF ,
w2 A
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ie.,
r*, Aw;,)

|[Aw;, |12

Now, with ¢g; = “ﬁ{", Lemma 1 can be applied and we achieve the
relation
(12) =41 < glie*l-

e

From (11) and (12) it follows that

k1 _ K o [
B [l < lle(z )“||A ik

which means that X
k1 _ ke 0
e+ - 25 < o7,
where C is a constant depending on A,r°,§ andy(z¥). Using this fact we can
conclude that the sequence {z*} is Cauchy sequence and hence convergent
and its limit point, z° solves system (3). This completes the proof.

Remark. The vectors {w;} need not be orthonormal and the number
of these vectors could be less that n. The same remark stays valid for the
original Method of Optimal Basic Descent.

It should be noticed that that proposed algorithm is very effective in such
problems where we have a priori information about the solution’s structure,
for example if we know the basic functions with which the solution can be
represented.

For different sets of {w;} and functions ¢(z) we can generate various
methods for solving problem (2).

Let us denote by e;,¢ = 1,...,n the usual orthonormal base for the space
R", by a;,i = 1,...,n columns of the matrix A, and by b;,i = 1,...,n rows
of the matix A. '

We are going to consider three sets of {w;}.
l. wy=e¢,1=1,...,n.

In such a case iteration rule (11) becomes

(13) =2 + oz *)‘,’I :fﬁ)
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2. w;=a;t=1,...,n.

Now, we get iterations

¥, Aaj,)

(14) gt = gF 4 SD(Jk)(“A N @y s

i.e., a sort of column iterations, depending on the function ¢.
3. wy=b;i=1,...,n

For the vectors w; the method is given by

(r Ab]k)

(15) -—Z +(ID( k) “Abknz Jk

This can be considered as row relaxation method.

The simpliest way to define the function ¢(z) is

o(z) =8, Be(0,2).

Using such function ¢ we get convergent column and row relaxation meth-
ods. This case was also analysed in paper [2]. Numerical examples show
that the convergence of rclaxed iterations is usually much faster than the
convergence of iterations with 8 = 1, i.e., Optimal Basic Descent.

Here, we give numerical results for the system Az = b, where A4 is the
matrix of random numbers and vector b is choosen such that the exact
solution is vector z with all components z; = 1,7 = 1,...n. Figure 1 shows
the graph of —Log(eps) versus  and k, where eps = ||zF — z||, for the
column iterations given by (14). In that case n = 10.

4. Nonstationary Modifications

If the function ¢(z*) is not a constant, then the iterations given by (13),
(14) and (15) become nonstationary. Nonstationary iterative methods have
obvious attractions because they can be adapted to handle solution auto-
matically, without any interventions by the user. This property is very
important in economic models because systems which arise in these models
can be impossible to see and analyse.



On a nonstationary modification of an iterative method ... 7

-Leg(eps)

Figure 1

For these methods the function ¢(z) could be written as

(P(zk) = ﬂka
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where S € (9,2), and function ¢ is continuos.

We are going to give one nonstationary modification of the Method of
Optimal Basic Descent for a class of strictly diagonal dominant matrices.
Such modification was given in the paper [1] for one row relaxation method.
First of all, we need the following theorem.

Theorem 3. [7] Let A be a strictly diagonal dominant matriz and let
ap = min{|ai;| - Ela,-jl, t=1,...,n}
J#i

Then 1
Mo < —.
147 o <

As the convergence theorem for modified method assumes that ¢(z¥) €
(0,2), using Theorem 3, we are able to consider iterations with

(16) (p(a:k)=,3k=2—w+wfk-,
where w € (0,2) and
(17) fe =

aflz* — ¥ jo
lIr*lloe + 1lr* oo™

Theorem 4. Let A be a strictly diagonal dominant matriz. Then for p(z*) =
2 — w+ wfk, where w € (0,2), fi is defined by (17), and a < «p, iterative
method (9) - (11) is convergent.

Proof. To apply Theorem 2 we need to prove that f, < 1,k = 1,2,... Using
the definition of residual vectors, r* = b — AzF, r¥~1 = b— Az*~1, we get

Tk - Tk—l — Azk_l _ Ak

.'L‘k _ :l:k_l — —A_I(Tk _ Tk_l),

50
l12* = 25 oo < 1A loolIr* ~ 757 loo.

Now, by Theorem 3, we have

1

201]

A leo <

1
< =
a
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and it follows that

- 1 -
llz* = z*" Yl < ;(IIf"IIoo + 17 lo),
what gives us
fi<lE=12,..
To finish the proof we simply apply Theorem 2.

Applying (17) and (18) on the iteration rule (11) in case 2 and 3 we get
the nonstationary column relaxations

2
k41 _ Lk (T ’Aajk)
T =z" + (2 - w+ wfi)~——3*Ea;,,
a2 %
and the nonstationary row relaxations
k
E+1 _ _k (r*, Ab;,)
T =z 4+ 2~-wHwfi)——=5%b; .
( s,

To illustrate this modification we present one test problem. Consider
the system Az = b, where

A= Coe ,b=103,2,...,2,3]".

The exact solution is z = [1,1,...,1]'. The error vector is defined by eps(k) =
z¥ — z. Termination criterium was [|eps(k)|| < 10~3. Results for different
values of w are given in Table 1. The last row in Table 1 shows the number
of iterations acheived by the Method of Optimal Basic Descent. In this case
the dimension of the system was n = 10.

w|01/02)025/03)04|05|061]07]| 08| OBD
k | 356 | 188 | 145 | 207 | 238 | 225 | 274 | 359 | 461 | 913

Table 1
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REZIME

O NESTACIONARNOJ MODIFIKACIJI ITERATIVNOG
POSTUPKA

Posmatra se numeri¢ko resenje sistema linearnih jednatina Az = b, u smislu
min, ||Az — b]|, pri é¢emu matrica A moZe biti i pravougaona. Uvodjenjem
parametra ili neprekidne funkcije ubrzan je metod optimalnog pada po bauzi.
Dati su dovoljni uslovi za konvergenciju tako modifikovanog postupka, a
efikasnost modifikacije je potvrdjena numeri¢kim primerima.
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