Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 22, 2 (1992), 39-45 Review of Research Faculty of Science Mathematics Series

GENERALIZED CONTRACTIONS FOR MULTIVALUED MAPPINGS IN PROBABILISTIC METRIC SPACES.

Olga Hadžić

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

In this paper a generalization of Hicks result from [3] for multivalued mappings is proved.

AMS Mathematics Subject Classification (1991):47H10
Key words and phrases: Generalized contractions, fixed point.

1. Introduction

There are many fixed point theorems for singlevalued and multivalued mappings in probabilistic metric spaces([1],[2],[3],[4],[5],[7],[8]). In [3] T.Hicks proved a fixed point theorem for the C-contractions.

Definition 1. Let (S, \mathcal{F}) be a probabilistic semimetric space and $f: S \to S$. The mapping f is a C-contraction if and only if there is a $k \in (0,1)$ such that for every $p, q \in S$ and x > 0 the following implication holds:

$$F_{p,q}(x) > 1 - x \Rightarrow F_{fp,fq}(kx) > 1 - kx$$
.

40 O. Hadžić

If (S, \mathcal{F}, t) is a probabilistic metric space with $t \geq t_m$, where $t_m(x, y) = \max\{x + y - 1, 0\}$, then V.Radu proved that f is a C- contraction if and only if f is a metric contraction on the metric space (S, β) . Here β is defined by

$$\beta(p,q) = \inf\{h; F_{p,q}(h^+) > 1 - h\}.$$

Hence, if $t \geq t_m$ and (S, \mathcal{F}, t) is a complete Menger space the existence of a fixed point of a C- contraction follows from the Banach fixed point theorem.

V.Radu proved also the existence of a fixed point of a C-contraction $f: S \to S$ if (S, \mathcal{F}, t) is a complete Menger space and T- norm t is such that $\sup_{a < 1} t(a, a) = 1$.

In this paper we shall prove a multivalued version of the fixed point theorem of Radu, using some additional conditions for the mapping f.

2. Preliminaries

Definition 2. Let (S, \mathcal{F}) be a probabilistic semimetric space and $f: S \to \mathcal{P}(S) \setminus \emptyset$. The mapping f is weakly demicompact if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ from S such that $x_{n+1} \in fx_n (n \in \mathbb{N})$ and $\lim_{n\to\infty} F_{x_{n+1},x_n}(u) = 1$, for every u > 0, there exists a convergent subsequence $\{x_{n_k}\}_{k\in\mathbb{N}}$.

If t is a T- norm and $x \in [0,1]$ then $T_p(x)$ is defined by the relations:

$$T_1(x) = t(x, x), T_p(x) = t(T_{p-1}(x), x), p \ge 2.$$

A nontrivial example of a T-norm t such that the family of mappings $\{T_p(x)\}_{p\in\mathbb{N}}$ is equicontinuous at the point x=1 can be constructed easily. For example, let t_1 be a continuous T- norm and let for every $m \in \mathbb{N} \cup \{0\}$, $I_m = [1-2^{-m}, 1-2^{-m-1}]$. Further, let for $(x,y) \in I_m \times I_m$

$$t_2(x,y) = 1 - 2^{-m} + 2^{-m-1}t_1(2^{m+1}(x-1+2^{-m}), 2^{m+1}(y-1+2^{-m}))$$

and for $(x,y) \notin \bigcup_{m \in \mathbb{N} \cup \{0\}} I_m \times I_m, t_2(x,y) = \min\{x,y\}$.

It is easy to see that the family $\{T_p(x)\}_{p\in\mathbb{N}}$ is equicontinuous at the point x=1 for $t=t_2$.

It is well known that every B- contraction (in the sense of Sehgal and Bharucha-Reid) $f: S \to S$ has a fixed point if the family $\{T_p(x)\}_{p \in \mathbb{N}}$ is equicontinuous at the point x = 1.

3. Fixed point theorem

Theorem 1. Let (S, \mathcal{F}, t) be a complete Menger space, t a continuous T-norm, M a closed subset of S, $f: M \to \mathrm{Cl}(M) \setminus \emptyset$ a closed mapping such that the following condition holds:

There exists $k \in (0,1)$ such that for every $p,q \in M$ and every x > 0:

(1) $F_{p,q}(x) > 1 - x \Rightarrow \text{ for every } u \in fp \text{ there exists } v \in fq \text{ such that }$

$$F_{u,v}(kx) > 1 - kx.$$

If one of the conditions (i) and (ii) holds then there exists $x \in M$ such that $x \in fx$ where

- (i) f is weakly demicompact.
- (ii) The family $\{T_p(x)\}_{p\in\mathbb{N}}$ is equicontinuous at the point x=1.

Proof. Let $x_0 \in M$ and $x_1 \in fx_0$. If h > 1 then we have that $F_{x_1,x_0}(h) > 1-h$, since $F_{x_1,x_0}(h) \ge 0$. From (1), taking that $p = x_0, q = x_1$ and $u = x_1 \in fx_0$, we obtain that there exists $v = x_2 \in fx_1$ such that $F_{x_2,x_1}(kh) > 1-kh$.

If we proceed in this way we obtain that there exists a sequence $\{x_n\}_{n\in\mathbb{N}}$ from M such that

(2)
$$F_{x_{n+1},x_n}(k^n h) > 1 - k^n h, \text{ for every } n \in \mathbb{N}.$$

From (2) it follows that for every r > 0 and $s \in (0,1)$ there exists $n_0(r,s) \in \mathbb{N}$ such that for every $n \geq n_0(r,s)$

(3)
$$F_{x_{n+1},x_n}(r) > 1 - s.$$

Indeed, since k < 1 there exists $n_0(r,s) \in \mathbb{N}$ such that $k^n h \leq r$ and $k^n h \leq s$, for every $n \geq n_0(r,s)$ and so

$$F_{x_{n+1},x_n}(r) \ge F_{x_{n+1},x_n}(k^n h) > 1 - k^n h > 1 - s.$$

Inequality (3) implies that

(4)
$$\lim_{n\to\infty} F_{x_{n+1},x_n}(r) = 1, \text{ for every } r > 0.$$

If f is weakly demicompact from (4) it follows that there exists a convergent subsequence $\{x_{n_k}\}_{k\in\mathbb{N}}$ of the sequence $\{x_n\}_{n\in\mathbb{N}}$. We shall prove that if (ii) is satisfied then we can take that $\{x_n\}_{n\in\mathbb{N}} = \{x_{n_k}\}_{k\in\mathbb{N}}$ is convergent.

First, we shall prove that $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence, which means that for every r>0 and $s\in(0,1)$ there exists $n_1(r,s)\in\mathbb{N}$ such that

$$F_{x_{n+p},x_n}(r) > 1 - s$$
, for every $n \ge n_1(r,s)$ and $p \in \mathbb{N}$.

Since the inequality

$$1 > \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{(p+1)(p+2)}$$

holds for every $p \in \mathbb{N}$ it follows that for every r > 0, every $n \in \mathbb{N}$ and every $p \in \mathbb{N}$ we have that

$$\begin{split} F_{x_{n+p+1},x_n}(r) &\geq t(F_{x_{n+p+1},x_{n+1}}(\sum_{i=2}^{p+1}\frac{r}{i(i+1)}),\\ F_{x_{n+1},x_n}(\frac{r}{2})) &\geq \ldots \geq t(t(\ldots t(F_{x_{n+p+1},x_{n+p}}(\frac{r}{(p+1)(p+2)}),\\ F_{x_{n+p},x_{n+p-1}}(\frac{r}{p(p+1)})),\ldots,F_{x_{n+2},x_{n+1}}(\frac{r}{6})),F_{x_{n+1},x_n}(\frac{r}{2})). \end{split}$$

We shall prove that for every $n \ge n(r, h)$ and every $m \in \mathbb{N} \cup \{0\}$

$$\frac{r}{(m+1)(m+2)} \ge k^{n+m}h.$$

Since $\lim_{p\to\infty} \frac{r}{k^p(p+1)(p+2)} = \infty$, for every r>0 there exists $p_0(r,h)\in \mathbb{N}$ such that

$$\frac{r}{k^m(m+1)(m+2)} \ge h$$
, for every $m \ge p_0(r,h)$.

Then for every $n \in \mathbb{N}$ and every $m \geq p_0(r,h)$

$$\frac{r}{(m+1)(m+2)} \ge k^m h \ge k^{n+m} h.$$

For every $m \in \{0, 1, ..., p_0(r, h) - 1\}$ there exists $n_m(r, h)$ such that

$$k^n \leq \frac{r}{hk^m(m+1)(m+2)},$$

for every $n \geq n_m(r, h)$.

Then for every $n \ge \max\{n_m(r,h); 0 \le m \le p_0(r,h) - 1\} = n(r,h)$ we have that $k^n \le \frac{r}{hk^m(m+1)(m+2)}$, for every $m \in \{0,1,...,p_0(r,h)-1\}$ and so $\frac{r}{(m+1)(m+2)} \ge k^{n+m}h$, for every $n \ge n(r,h)$ and every $m \in \mathbb{N}$.

If $n \geq n(r,h)$ we have that

$$F_{x_{n+p+1},x_n}(r) \ge t(t(...t(F_{x_{n+p+1},x_{n+p}}(k^{n+p}h), F_{x_{n+p},x_{n+p-1}}(k^{n+p-1}h)),...), F_{x_{n+2},x_{n+1}}(k^{n+1}h), F_{x_{n+1},x_x}(k^nh)).$$

From this inequality we obtain for $n \ge \max\{n(h), n(r,h)\}$ and $p \in \mathbb{N}$ that

$$F_{x_{n+p+1},x_n}(r) \ge t(t(...t(1-k^{n+p}h,1-k^{n+p-1}h),...,1-k^nh)),$$

where n(h) is such that $k^n h < 1$, for $n \ge n(h)$. Hence

$$F_{x_{n+n+1},x_n}(r) \geq T_p(1-k^nh)$$

for every $p \in \mathbb{N}$ and $n \ge \max\{n(h), n(r, h)\}.$

Since the family $\{T_p(x)\}_{p\in\mathbb{N}}$ is equicontinuous at the point x=1 for every $s\in(0,1)$ there exists $\delta(s)\in(0,1)$, such that $T_p(1-\delta(s))>1-s$, for every $p\in\mathbb{N}$. Hence, if $k^nh<\delta(s)$ for $n\geq n'(h,s)$ we have for

$$n \ge \max\{n(r,h), n(h), n'(h,s)\} = n(r,h,s)$$

that

$$F_{x_{n+n+1},x_n}(r) > 1-s$$
, for every $p \in \mathbb{N}$.

This means that $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence and since S is complete it follows that there exists $\lim_{n\to\infty} x_n = z$.

It remains to be proved that if $\lim_{k\to\infty} x_{n_k} = u$ then $u \in fu$.

We have from (4) that $\lim_{k\to\infty} x_{n_k+1} = u$ and since $x_{n_k} \in fx_{n_k+1} (k \in \mathbb{N})$ and f is closed we conclude that $u \in fu$.

O. Hadžić

Remark: If $t(a,b) \ge ab$, for every $a,b \in [0,1]$ then for every $n \ge \max\{n(h), n(r,h)\}$ we obtain that

$$F_{x_{n+p+1},x_n}(r) \geq \prod_{m=n}^{\infty} (1-k^m h)$$

which implies that

$$F_{z,x_n}(r) \ge \prod_{m=n}^{\infty} (1 - k^m h).$$

This gives an exit criteria for the sequence $\{x_n\}_{n\in\mathbb{N}}$ since $F_{z,x_n}(r) > 1-s$ if $\prod_{m=n}^{\infty} (1-k^m h) > 1-s$ $(n \geq \max\{n(h), n(r,h)\})$.

References

- [1] Hadžić, O.: Some theorems on the fixed points in probabilistic and random normed spaceds, Boll. Unione Mat. Ital. (1982), 381-391.
- [2] Hadžić, O.: Some fixed point theorems in probabilistic metric spaces, Univ. u Novom Sadu, Zb. Rad Prirod.- Mat. Fak. Ser. Mat., 15,1 (1985), 23-35.
- [3] Hicks, T.L.: Fixed point theory in probabilistic metric spaces, Univ. u Novom Sadu, Zb. Rad. Prirod.- Mat. Fak. Ser. Mat. 13 (1983), 63-72.
- [4] Radu, V.: A family of deterministic metrics on Menger spaces, Sem. Teor. Prob. si Apl. 78, Timisoara, 1985.
- [5] Radu, V.: Some fixed point theorems in probabilistic metric spaces, Lecture Notes in Math. 1233, Springer Verlag (1987), 125-133.
- [6] Schweizer, B., Sklar, A.: Probabilistic metric spaces, North-Holland, 1983.
- [7] Schweizer, B., Sherwood, H., Tardif, M.: Contractions on probabilistic metric spaces; examples and counterexamples, Stochastica XII-1 (1988), 5-17.
- [8] Sehgal, V.M., Bharucha-Reid, A.T.: Fixed point of contraction mapping on PM spaces, Math. Systems Theory 6 (1972), 97-100.

REZIME

UOPŠTENA KONTRAKCIJA ZA VIŠEZNAČNA PRESLIKAVANJA U VEROVATNOSNIM METRIČKIM PROSTORIMA

U ovom radu dokazano je uopštenje rezultata Hicksa iz [3] za višeznačna preslikavanja.

Received by the editors December 4, 1991