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Abstract

In this paper the necessary and sufficient conditions for the exis-
tence of solutions of a class of second order functional equations of
alternative functions are considered. These solutions are also given in
their explicit form.
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Let (P2, +,-) be given, where + and - are binary operations of addition
and multiplication (mod 2), L; = {0,1} and (e b = abd).

A function f : L} — Ly is called an alternative function; L} is the
direct power of L.

Definition 1.

(a) Partial derivatives of an alternative function f : L} — Ly at
the variables z;(i = 1,2,...n) are functions

% : Ly — Ly defined by

gif(X): f($17...,(Ei_],a,zi_i_l"._’zn)+ f(X)

a€ Ly, 1<i<n, where X =(z1,...,2y)
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(b) Partial derivatives of a higher order are functions

Mfay, ...oh,

dz;, ... 0z,

_ 3 8 (9fai1 ) )
= g G (o) -+ ) i

11

It is obvious from Definition 1 that for every «,f € L, and for every
couple of alternative functions f and g the following properties hold:

Oc _ o e O
dr; Oz, ¢ oz;’
8(f—{—g)[1 _ Ofa + %
0z; - Oz Oz’
o/ 9 _ Ofa dg0 9 9.
(1) Oz; T Oz g+ / Oz; + Oz; ' Oz;
0% fup ?*faa ., .
ailtia:ltj B a:ltjami’ ¢ # J
0" foc v a 0 fa

= m>1, ca...q
oz oz;’ T N———

m times

Lemma 1. A functional equation with an unknown alternative function f

‘ J at
(2) Oai = g(X) , where o; € Ly
oz;
has a solution if and only if g¢(zy,...,zi-1,2,Zi41,-..,2,) = 0.

functions f that are solutions are determined by the formula
(3) f(X)=c(xla'"axi—laz'H-la""xn)+g(X)’
where ¢ 15 an arbitrary function with the variables

L1522y -3 Ti—15 L4150 9Tn

Proof. First, let us introduce the following abbreviations

(£5) = (215« oy Bim1, Titly-- - » Tn)s () = (T, oy Tiz1y Oy Tig1s - -

All

s T
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Substituing z; with ¢; in equation (2) we get
F(a%) + f(as) = g(@y), the condition g(a;) = 0

Conversely, let us suppose that the given condition is satisfied and let us
determine all functions f.

£(@) + f(X) = C() + (&) + (e(&:) + 9(X)) = 9(X),

because g(&;) = 0. Hence, it remains to prove that every solution f is of
the form (3).
Let f be a solution and let us find the appropriate form of equation (2);

we can conclude that f(X) = f(d;)+ f(X). f(g,-) is a function only of
Z1,Z2, -« Tiz1, Titly--- Zp) (it does not depend on z;), therefore f(X) is
of the form (3).

Lemma 2. A system of functional equations of alternative functions

8f(! Mz + roy + r
- = 1 2¥ T3Iy+ ’
0z '
éfﬁ — gl$+gzy+g3$y+ga(xvy) € 2

(where T1,72,73,7, 91,92, 93,9 are constants from L;), has a solution if and
only if the following conditions are satisfied

rsa+71y =0 T3 +g93 =0
(4.1) T+ (4.2) T2 + g3

92ﬂ+gl:0 7‘3ﬂ+gl =0

92ﬂ+g =0 T2ﬂ+gla=0

All the solutions are determined by the formula

(4.3)  f(zy)=c+mnz+ gz +gy+ g5y +r3fr+g+r3+raf

Proof. According to Lemma 1, as well as Theorem 1 in paper [4] where
the solution for a general system of generalised pseudo-Boolean functional
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equations is given, we have conditions (4.2) and (4.2) and the explicit form
of the solution (4.3).

Let us consider a functional equation of alternative functions of the form

Ofa | ,0fs , 0*fap _
(5) “ozr "By T hzoy = O

where a,b,c, and g are known alternative functions from L2 into Ls, and f
is an unknown alternative function L3 into Ly, o, € Lo.

(6) a(z,y) = a1z +axzy+asy +aq

b(z,y) = biz+bazy+bsy+ by

oz,y) = caar+czy+tesy+eca

9(z,y) = G124+ gavy+gsy+9s, (2,9) € L}
where a4, az, a3, a4, ..., 91,92, g3, g4 are constants from L,.

For various values of o and 3 from Ly and for the given functions a,b,c
and g there are four different functional equations of alternative functions
which have the form (5).

In our further work, we shall consider the following equation

2o WO 0o
(7) F.aaz-{—bay-{-caxay_

Theorem 1. A functional equation (7) has a solution if and only if the
‘conditions

(81) g4 = 0
a4b4 =1

(82) ay + b4 + Cq = 1
a;+bi+ec =0

(az + ba+c2)(asbs+ asbs+ ashs+1)=0
(a3 + bs+ec3)(asbs+asbs+ ashs+1)+az+bs+e3 =0

are satisfied. Then, all functions f that are solutions are determined by the
formula

9) flz,y)=co+ X + Yaa—zyl,co € {0,1}, where
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X = % and Y:%—];
X = [(a_+ +b+c)a_+b+b +(b+c)](a +b)agl
(10) + b(a“‘1 )ag"
Y = [(%b°+ +b+c)T+a+ac]+(a+c)(-a——+ )890
+ (‘?;"’H;)ag1

The ezplicit form of solution (9) is
(11) f(z,y) = co+ gl(a + ¢+ b3y + bs)(a1z + a2z + a3 + a4 + a + ac)]
+(b + c)(azz + a3 + azzy + a3y) (917 + 922Y) + a(brz + bazy)
+(g22 + 93 + 922y + 93y) + (912 + 927 + 93 + g4)[az + a4 + b1
+boz + b3+ by + 17 + oz + c3 + c4) + (012 + bez) + b1z + b
+b3 + by + (517 + baz + b3 + by)(c12 + €22 + €3+ ¢4)]
+(b1Z + boz + b3 + b4) + (a1 + azz)(glx + g2$),

co s a constant from L.

Proof. If we find the partial derivatives 222 28 apd PEn of 5 functlonal
P oz ozdy

o
equation (7), then we get the following systemyof functlona.l equations:
afo afl 9? f01 =
“Br T oy T ozay =
dfo 0bo 3f1 9bo *for _ dg0
1) egr + wt Ty et e T 956y ~ be
day 9 fo 3f1 da, Pfo1 _ O
gy oz T Yoy Tt Gy T 5ay T By
da1 dfo 0bo 0 f1 0by ~ Oay Ffor _ 9%gm
Svor T oy Tttt 5, Y9520, = aray

Denote by M and M’ the matrix and the augmented matrix of system (12),
respectively.The considered system (12) has a solution for %%and%%, if rang
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M = rang M’ = 3 and

_ 9 .
(13) (a) (‘“+ )( T tb)(ctatb)=1
390 g 3901 _
®) 2zt %y Tamay T9=0

From these two conditions, when appropriate partial derivatives are found,
follow conditions (8.1) and (8.2).

There remains to prove that function f is of the form (9). First, system
(12) has to be solved. From the given conditions

of y _ 9

A= Yoy

is obtained. Finally according to Lemma 2 the solution of equation (7) has

the explicit form (11).

Example. We shall give a solution for a functional equation of alternative
functions of the form (7), i.e.

3fo
“ oz +b8y

0fi | 0*fo _
te 3x8y =9

where

a(z,y) = z+zy+1

b(z,y) = =zy+1

c(z,y) = z+1

9(z,9) = z+azy, (e,9)€ L]

The constants from these functions satisfy conditions (8.1) and (8.2). If the
values of these constants are substituted in (11), then

f(xvy)z c0+z+zy,(:v,y)e L2a

co is a constant from L2, is the form of the solution.
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REZIME

O JEDNOJ KLASI FUNKCIONALNIH JEDNACINA DRUGOG
REDA ALTERNATIVNIH FUNKCIJA

U radu su dati potrebni i dovoljni uslovi za postojanje resenja jedne klase
funkcionalnih jednatina drugog reda alternativnih funkcija, kao i sama njena
reSenja u eksplicitnom obliku.
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