Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23, 1 (1993), 235 - 243

Review of Research Faculty of Science Mathematics Series

FILTERS IN A WEAK-CONGRUENCE LATTICE

Branimir Šešelja, Andreja Tepavčević¹ Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad. Yugoslavia

Abstract

The necessary and sufficient conditions are given under which a weak-congruence lattice of a factor-algebra of an algebra is isomorphic with the suitable filter in a weak-congruence lattice of the same algebra.

AMS Mathematics Subject Classification (1991): 08A30 Key words and phrases: weak congruences, factor-algebras.

1. Introduction

If $\mathcal{A} = (A, F)$ is an algebra and Θ is a congruence on \mathcal{A} , then the filter $[\Theta)$ is isomorphic with the lattice $\operatorname{Con} \frac{\mathcal{A}}{\Theta}$, under the mapping $\rho \to \frac{\rho}{\Theta}$, where for $\rho \geq \Theta$ and $x, y \in \mathcal{A}$, $[x]_{\Theta} \frac{\rho}{\Theta}[y]_{\Theta}$ if and only if $x \rho y$.

If $C_W \mathcal{A}$ is the weak-congruence lattice of \mathcal{A} (i.e. the lattice of all the congruences on all the subalgebras of \mathcal{A} under \subseteq), then for $\Theta \in \text{Con} \mathcal{A}$, $C_W \frac{\mathcal{A}}{\Theta}$ is not, in general, isomorphic with a filter in $C_W \mathcal{A}$, not even with its sublattice (see [3] for the latter).

Recall that $C_W \mathcal{A}$ is the lattice of all the symmetric and transitive subalgebras of \mathcal{A}^2 . If $\Delta = \{(x, x) | x \in A\}$, then $\operatorname{Con} \mathcal{A} = [\Delta)$ in $C_W \mathcal{A}$, and $\operatorname{Sub} \mathcal{A}$ is isomorphic with $(\Delta]$ under $\rho \longmapsto \{x | x \rho x\}$.

¹Work supported by Fund for Science of Vojvodina.

Recall that an algebra \mathcal{A} has the congruence extension property (CEP) if every congruence on a subalgebra of \mathcal{A} is a restriction of a congruence on \mathcal{A} .

Some lattice characterizations of the CEP were given in [3].

 \mathcal{A} is said to have the congruence intersection property (CIP) if for $\rho \in \text{Con}\mathcal{B}$, $\Theta \in \text{Con}\mathcal{C}$, \mathcal{B} , $\mathcal{C} \in \text{Sub}\mathcal{A}$

$$(\rho \cap \Theta)_A = \rho_A \cap \Theta_A,$$

where ρ_A is a least congruence on \mathcal{A} extending ρ ([5]).

For all $\rho, \Theta \in C_W \mathcal{A}$,

$$(\rho \vee \Theta) \wedge \Delta = (\rho \wedge \Delta) \vee (\Theta \wedge \Delta),$$

which means that Δ is always a codistributive element of $C_W \mathcal{A}$ ([5]).

 \mathcal{A} has the CIP if and only if Δ is a distributive element of $C_W \mathcal{A}$, i.e. if and only if for $\rho, \Theta \in C_W \mathcal{A}$

$$(\rho \wedge \Theta) \vee \Delta = (\rho \vee \Delta) \wedge (\Theta \vee \Delta),$$

since $\rho_A = \rho \vee \Delta$ in $C_W \mathcal{A}$ (see again [5]).

 \mathcal{A} is said to have the infinite congruence intersection property (*CIP) (see [2]), if for $\{\Theta_i, i \in I\} \subseteq C_W \mathcal{A}$

$$(\bigcap_{i\in I}\Theta_i)_A=\bigcap_{i\in I}(\Theta_i)_A,$$

i.e. if Δ is an infinitely distributive element in $C_W \mathcal{A}$:

$$\Delta \vee \bigwedge_{i \in I} \Theta_i = \bigwedge_{i \in I} (\Delta \vee \Theta_i).$$

Some characterizations of the *CIP were given in [2].

2. Results

In paper [3], $C_W \frac{A}{\Theta}$, for $\Theta \in \text{Con} A$, is located in the lattice $C_W A$ as (up to the mapping $\rho \longmapsto \frac{\rho}{\Theta}$) the set

$$||(B^2 \wedge \Theta, B^2)| \mathcal{B} \in \operatorname{Sub} \mathcal{A} \text{ and } B[\Theta] = B),$$

where $[B^2 \wedge \Theta, B^2]$ is an interval sublattice of $C_W A$, and

$$B[\Theta] = \{x \in A | x\Theta b \text{ for some } b \in B\}.$$

Conditions under which $C_{W} \stackrel{A}{\Theta}$ is a sublattice of $C_{W} A$ were given in the above-mentioned paper.

In the following example, where \mathcal{A} is a cyclic group of order $k \in \mathbb{N}, C_W \stackrel{\mathcal{A}}{\Theta}$ is, for every $\Theta \in \text{Con}\mathcal{A}$, a filter-sublattice of $C_W \mathcal{A}$.

Namely,

$$C_W \frac{\mathcal{A}}{\Theta} \cong [\underline{\Theta}),$$

under $\rho \longmapsto \frac{\rho}{\Theta}$, where

$$\underline{\Theta} = \wedge \{ \rho | \rho_A \ge \Theta \}$$

(recall that in $C_W A \rho_A = \rho \vee \Delta$).

This example is the motivation for the following problem, which will be the subject of our consideration for the rest of the paper:

Characterize the algebras A, having a property that for every $\Theta \in Con A$,

$$(1) C_W \frac{\mathcal{A}}{\Theta} \cong [\underline{\Theta}),$$

under the mapping $\rho \longmapsto \frac{\rho}{\Theta}$, where $[\underline{\Theta})$ is the principal filter in $C_W \mathcal{A}$ generated by the weak congruence

$$\underline{\Theta} = \bigwedge (\rho \in C_W \mathcal{A} | \rho \vee \Delta \geq \Theta).$$

Proposition 1. Let A be an algebra satisfying (1). Then

- a) A has the *CIP;
- b) A has the CEP;
- c) if $\mathcal{B} \in Sub\mathcal{A}$, then

$$B[\Theta] = B$$
 if and only if $(B^2 \wedge \Theta) \vee \Delta = \Theta$.

Proof.

- a) It was proved in [2] that an algebra \mathcal{A} has the *CIP if and only if the set $\{\rho | \rho \lor \Delta \ge \Theta\}$ has a minimum element $\underline{\Theta}$ for every $\Theta \in \text{Con}\mathcal{A}$. Since by assumption $\underline{\Theta}$ exists for every $\Theta \in \text{Con}\mathcal{A}$, \mathcal{A} has the *CIP.
- b) Suppose that \mathcal{A} does not satisfy the CEP. Then, there are $\rho_1, \rho_2 \in \mathrm{Con}\mathcal{B}$, for some $\mathcal{B} \in \mathrm{Sub}\mathcal{A}$, such that $\rho_1 \neq \rho_2$, and $\rho_1 \vee \Delta = \rho_2 \vee \Delta = \Theta \in \mathrm{Con}\mathcal{A}$. We can assume that ρ_1 and ρ_2 are comparable, say $\rho_1 < \rho_2$ (otherwise, we could always consider e.g. $\rho_1 \wedge \rho_2$ and ρ_2). Then, $B^2 \wedge \Theta \geq \rho_2$,

and $B^2 \wedge \Theta > \rho_1$. Thus, $\rho_1 \notin C_W \frac{A}{\Theta}$, but $\rho_1 \in [\underline{\Theta}]$, which is impossible because of (1). Hence, A has the CEP.

c) Let \mathcal{B} be a subalgebra of \mathcal{A} .

If $B[\Theta] = B$, then $B^2 \wedge \Theta$ is, up to the isomorphism, in $C_W \frac{A}{\Theta}$, i.e. it belongs to $[\underline{\Theta}]$. Hence, $(B^2 \wedge \Theta) \vee \Delta = \Theta$.

On the other hand, if $(B^2 \wedge \Theta) \vee \Delta = \Theta$, then $B^2 \wedge \Theta$ belongs to $[\underline{\Theta})$, and B is a union of some classes of Θ , i.e. $B[\Theta] = B$, which was to be proved.

The converse of Proposition 1 also holds.

Proposition 2. If A is an algebra satisfying the conditions a), b) and c) from Proposition 1, then for every $\Theta \in ConA$,

$$C_W \frac{\mathcal{A}}{\Theta} \cong [\underline{\Theta}),$$

under $\rho \longmapsto \frac{\rho}{\Theta}$.

Proof. For every $\Theta \in \text{Con}\mathcal{A}$, $\underline{\Theta}$ exists because of the *CIP. We shall prove that

$$| | ([B^2 \wedge \Theta, B^2] | B[\Theta] = B, B \in Sub A) = [\underline{\Theta}),$$

for every $\Theta \in Con A$.

Let $\rho \in [B^2 \wedge \Theta, B^2]$, where $B[\Theta] = B$. By c), $B^2 \wedge \Theta$ belongs to $[\underline{\Theta})$, and thus $\rho \in [\underline{\Theta})$. Hence,

$$\bigcup ([B^2 \wedge \Theta, \ B^2]| \ B[\Theta] = B, \ \mathcal{B} \in \operatorname{Sub} \mathcal{A}) \subseteq [\underline{\Theta}).$$

On the other hand, if $\rho \in [\underline{\Theta})$, $\rho \in \text{Con}\mathcal{B}$, for some $\mathcal{B} \in \text{Sub}\mathcal{A}$, then $\rho \vee \Delta \geq \Theta$, and thereby $B^2 \vee \Delta \geq \Theta$. Hence, by a)

$$(B^2 \wedge \Theta) \vee \Delta = (B^2 \vee \Delta) \wedge \Theta = \Theta,$$

which, by c), implies that

(i)
$$B[\Theta] = B$$
.

Moreover, $\rho \geq B^2 \wedge \Theta$. Indeed, by a),

$$(\rho \wedge B^2 \wedge \Theta) \vee \Delta = (\rho \wedge \Theta) \vee \Delta = (\Delta \vee \rho) \wedge \Theta = \Theta,$$

(ii)

since
$$\Delta \vee \rho \geq \Theta$$
. Thus,

$$(\rho \wedge \Theta) \vee \Delta = (B^2 \wedge \Theta) \vee \Delta = \Theta$$
, and since $(\rho \wedge \Theta) \wedge \Delta = (B^2 \wedge \Theta) \wedge \Delta$, i.e. $\rho \wedge \Theta$ and $B^2 \wedge \Theta$ are congruences a subalgebra of A , it follows by A , that

on the same subalgebra of A, it follows by b) that

$$\rho \wedge \Theta = B^2 \wedge \Theta, \text{ i.e.}$$
 $(B^2 \wedge \rho) \wedge \Theta = B^2 \wedge \Theta, \text{ and finally}$
 $\rho \geq B^2 \wedge \Theta.$

By (i) and (ii)

$$[\underline{\Theta}) \subseteq \bigcup ([B^2 \wedge \Theta, B^2] | B = B[\Theta], B \in Sub A),$$

and the proof is complete. \Box

Summing up Propositions 1 and 2, we obtain the following theorem.

Theorem 1. Necessary and sufficient conditions under which for every congruence Θ of an algebra \mathcal{A}

(1)
$$C_{W} \stackrel{A}{\Theta} \cong [\underline{\Theta}]$$
 under $\rho \longmapsto \frac{\rho}{\Theta}$, where $\underline{\Theta} = \bigwedge \{ \rho \in C_{W} \mathcal{A} | \rho \lor \Delta \geq \Theta \}$ are:

- a) A has the *CIP;
- b) has the CEP;
- c) if $B \in SubA$ and $\Theta \in ConA$ then

$$\mathcal{B}[\Theta] = B \text{ if and only if } (B^2 \wedge \Theta) \vee \Delta = \Theta. \quad \Box$$

For some particular classes of algebras, not all of the listed conditions are necessary in order that (1) should hold.

Recall that an algebra A is **coherent** if it satisfies the following:

If $\mathcal{B} \in \operatorname{Sub} \mathcal{A}$, and \mathcal{B} contains a class of a congruence Θ on \mathcal{A} , then \mathcal{B} is a union of classes of Θ , i.e. $B = B[\Theta]$.

An algebra A is **regular** if every congruence on A is uniquely determined by any of its classes.

Proposition 3. If A is a coherent algebra, then (1) holds if and only if A satisfies a), b) and

c') for every $\mathcal{B} \in Sub\mathcal{A}$ and $\Theta \in Con\mathcal{A}$,

 \mathcal{B} contains a class of Θ iff $(B^2 \wedge \Theta) \vee \Delta = \Theta$.

Proof. Straightforward.□

Proposition 4. If A is a regular algebra, then (1) holds if and only if A satisfies a), b) and

c") if $B \in SubA$ and $\Theta \in ConA$, then

$$(B^2 \wedge \Theta) \vee \Delta = \Theta \text{ implies } B[\Theta] = B.$$

Proof. To prove the "only if" part of c), let $B[\Theta] = B$. Then, since $(B^2 \wedge \Theta) \vee \Delta \leq \Theta$, the congruence $(B^2 \wedge \Theta) \vee \Delta$ contains a class of Θ . Hence, by the regularity of A, $(B^2 \wedge \Theta) \vee \Delta$ is not different from Θ . \square

It is known ([1]) that any coherent variety is congruence regular. Thus, Propositions 3 and 4 yield the following.

Corollary 1. Let A be an algebra in a coherent variety, with conditions

$$(B^2 \wedge \Theta) \vee \Delta = \Theta \text{ implies } B[\Theta] = B.$$

Then, for every $\Theta \in ConA$,

$$C_{\mathbf{W}} \frac{\mathcal{A}}{\Theta} \cong [\underline{\Theta})$$

if and only if A has the *CIP and the CEP. \(\sigma\)

It was proved in [2] that the *CIP is a necessary and sufficient condition under which a group is Hamiltonian, and thus Hamiltonian groups are the only ones having the property (1), since they have the CEP, as well. Obviously, if all groups in a variety satisfy (1), then this variety consists of Abelian groups.

As a negative example for the algebras in a coherent variety (all in the light of Corollary 1), we have Boolean algebras. Among bounded lattices, the only one satisfying the CIP (and thus the *CIP) is a two-element chain ([4]). Hence, no other Boolean algebra satisfies (1).

The following proposition is from [2]. Note that A_m is a minimal subalgebra of an algebra A, and that A is A_m -regular if every congruence on A is uniquely determined by the class containing A_m .

Theorem 2. ([2]) If $|A_m| = 1$, then the following are equivalent for an algebra A:

- (i) A is Hamiltonian and every subalgebra of A is A_m -regular;
- (ii) the mapping $C \to C^2 \vee \Delta_B$ ($C \in SubB$, $\Delta_B = \{(x, x) | x \in B\}$) is an isomorphism from SubB to ConB, for every $B \in SubA$;
- (iii) A satisfies the *CIP, the CEP, and the set of minimal weak congruences in the classes induced by $\rho \longmapsto \rho \lor \Delta$ is the set of all the squares B^2 , $\mathcal{B} \in Sub\mathcal{A}$. \square

The algebras characterized in the last theorem have property (1). To prove this, we need the following two propositions.

Lemma 1. If A is a Hamiltonian algebra, then A satisfies c") (from Proposition 4).

Proof. Let \mathcal{B} be a subalgebra of \mathcal{A} , $\Theta \in \text{Con}\mathcal{A}$, and let

$$(B^2 \wedge \Theta) \vee \Delta = \Theta.$$

Obviously, $B^2 \vee \Delta \geq \Theta$. \mathcal{A} is Hamiltonian, i.e. B is a class of a congruence on \mathcal{A} , namely of $B^2 \vee \Delta$, and thus $B[\Theta] = B$. \square

Lemma 2. If A is Hamiltonian and A_m -regular for which $|A_m| = 1$, and has the CIP, then it satisfies c) (from Theorem 1).

Proof. By Lemma 1, we have to prove the converse of c"). Let $B[\Theta] = B$, then

$$(B^2 \wedge \Theta) \vee \Delta = (B^2 \vee \Delta) \wedge \Theta,$$

by the CIP. Obviously,

$$(B^2 \vee \Delta) \wedge \Theta < \Theta$$

and since \mathcal{A} is Hamiltonian, $B[B^2 \vee \Delta] = B$. By \mathcal{A}_m -regularity it follows that $(B^2 \vee \Delta) \wedge \Theta$ can not be different from Θ , that is

$$(B^2 \wedge \Theta) \vee \Delta = \Theta. \quad \Box$$

Theorem 3. If A is an algebra for which $|A_m| = 1$, and with isomorphic lattices of subalgebras and congruences for every $B \in SubA$, then A has the property (1) i.e. for every $\Theta \in ConA$

$$C_{\mathbf{W}} \frac{\mathcal{A}}{\Theta} \cong [\underline{\Theta}).$$

Proof. By Theorem 1, since \mathcal{A} has the *CIP, the CEP (Theorem 2), and since it satisfies c) (Lemmas 1 and 2). \square

References

- [1] Geiger, D., Coherent algebras, Abstract 74T-A130, Notices Amer. Math. Soc. 21 (1974) A-436.
- [2] Šešelja,B., Tepavčević,A., Infinitely distributive elements in the lattice of weak congruences, General Algebra 1988, (R. Mlitz, ed.), Elsevier Publishers B. V. (North-Holland) 1990, 241-253.
- [3] Šešelja,B., Tepavčević,A., Weak congruences and homomorphisms, Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat., 20,2 (1990), 61-69.
- [4] Šešelja, B., Vojvodić, G., Weak congruences of a lattice, Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat., 18,2 (1988), 205-209.
- [5] Vojvodić, G., Šešelja, B., On the lattice of weak congruence relations, Algebra Universalis, 25 (1988), 121-130.

REZIME

FILTRI U MREŽI SLABIH KONGRUENCIJA

Posmatraju se algebre koje imaju svojstvo da je mreža slabih kongruencija svake faktor-algebre izomorfna sa odgovarajućim filtrom u mreži slabih kongruencija te algebre. Daju se potrebni i dovoljni uslovi pod kojima to svojstvo važi.

Received by the editors June 18, 1990.