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Abstract

The necessary and sufficient conditions are given under which a
weak-congruence lattice of a factor-algebra of an algebra is isomorphic
with the suitable filter in a weak-congruence lattice of the same algebra.
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1. Introduction

If A= (A, F)is an algebra and O is a congruence on A, then the filter [Q)
is isomorphic with the lattice Cong, under the mapping p — §&, where for
p >0 and r,y € A, [z]o§[v]e if and only if xpy.

If Cw.A is the weak-congruence lattice of A (i.e. the lattice of all the con-
gruences on all the subalgebras of A under C), then for ® € ConA, (7W%_% is
not, in general, isomorphic with a filter in Cw .4, not even with its sublattice
(see [3] for the latter).

Recall that C'w A is the lattice of all the symmetric and transitive subal-
gebras of A%. If A = {(z,z)|z € A}, then ConA = [A) in Cw.A, and SubA
is isomorphic with (A] under p — {z|xpz}.
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Recall that an algebra A has the congruence extension property (CEP)
if every congruence on a subalgebra of A is a restriction of a congruence on

A.
Some lattice characterizations of the CEP were given in [3].

A is said to have the congruence intersection property (CIP) if for p €
ConBB, © € ConC, B, C € SubA

(pPNBO)sy =paNOBy,
where p4 is a least congruence on A extending p ([5]).
For all p,® € Cw A,
(PVO)ANA=(pAA)V(OAA),
which means that A is always a codistributive element of Cw.A ([5]).

A has the CIP if and only if A is a distributive element of Cw A, i.e. if
and only if for p,® € Cw A

(PAB)VA=(pVA)A(OVA),
since pg = pV A in Cw.A (see again [5]).

A is said to have the infinite congruence intersection property (*CIP)
(see [2]), if for {@;,7 € [} C Cw A

((10)a =[)(®:)a,

el el
i.e. if A is an infinitely distributive element in Cw A :

AV/\@i-——/\(AV@i).

i€l el

Some characterizations of the *CIP were given in [2].

2. Results

In paper [3], ng, for @ € ConA, is located in the lattice Cw.A as (up to
the mapping p —— &) the set

LJ([B* A ©, B*)|B € SubA aud B[O] = B),
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where [B2 A ©, B?] is an interval sublattice of Cw.A, and

B[©] = {z € A|z0©b for some b€ B}.

Conditions under which CW{; is a sublattice of Cw.A were given in the
above-mentioned paper.

O CwA

Fig.1
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In the following example, where A is a cyclic group of order k € N, Cwé
is, for every ©® € Con.A, a filter-sublattice of Cy.A.

Namely,

under p — &, where
9 = Mplpa > 6}

(recall that in CwA pa=pV A).

This example is the motivation for the following problem, which will be
the subject of our consideration for the rest of the paper:

Characterize the algebras A, having a property that for every ® € ConA,

1) Cw = [0),

under the mapping p — §&, where [@) is the principal filter in C'w.A gen- '
erated by the weak congruence

0= A\(peCwAlpvA>0).
Proposition 1. Let A be an algebra satisfying (1). Then

a) A has the *CIP;
b) A has the CEP;

c) if B e SubA , then
B[®] = B if and only if (B> AO)V A = 0.

Proof.

a) It was proved in [2] that an algebra A has the *CIP if and only if the
set {p|p VA > O} has a minimum element © for every ® € Con.A. Since by
assumption O exists for every © € Con.A, 4 has the *CIP.

b) Suppose that A does not satisfy the CEP. Then, there are py,ps €
ConB, for some B € Sub.A, such that p; # p2,and py VA = po VA =
® € ConA. We can assume that p; and p; are comparable, say p; < p2
(otherwise, we could always consider e.g. pyAp; and p3). Then, BZAO > pa,
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and B2A© > py. Thus, p; ¢ CW(“%, but p; € [@), which is impossible
because of (1). Hence, A has the CEP.

¢) Let B be a subalgebra of A.
If B[@®] = B, then B? A © is, up to the isomorphism, in CW(“%, ie. it
belongs to [@). Hence, (BZAQ)V A = 0.

On the other hand, if (B?A0)V A = 0O, then B2A O belongs to [@), and
B is a union of some classes of ©, i.e. B[®] = B, which was to be proved.
0

The converse of Proposition 1 also holds.
Proposition 2. If A is an algebra satisfying the conditions a), b) and c)
from Proposition 1, then for every © € ConA,

A
Yo

1R

C [.@) 3

o
under p — §.

Proof. For every © € ConA, O exists because of the *CIP. We shall prove
that
U([B2 A ©, B*]| B[@] = B, B € SubA) = [09),

for every © € ConA.

. Let p € [B? A ©, B?], where B[®] = B. By c), B? A © belongs to [@),
and thus p € [@). Hence,

LJ((B* A ®, B?]| B[®] = B, B € SubA)C [@).

On the other hand, if p € [@), p € ConB, for some B € SubA, then
pV A > 0, and thereby B2V A > . Hence, by a)

(BPAO)VA=(B*VA)A® =0,

which, by ¢); implies that
(3) B[O] = B.

Moreover, p > B? A ©. Indeed, by a),

(pAB*AO)VA=(pAO)VA=(AVP)AO =0,
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since AV p > 0. Thus, N ,
(pPAO)VA=(B*AO)VA =0, and since
(pPAG)AA = (B2AB)AA,i.e. pA® and B2A B are congruences
on the same subalgebra of A, it follows by b) that
pAO =DB2IAO,ie.
(B2 Ap)A O = B?A O, and finally
(44) p>B*A0O.
By (¢) and (%)

[©) C (B> A0, B%)| B = B[6), B € SubA),

and the proof is complete. O

Summing up Propositions 1 and 2, we obtain the following theorem.

Theorem 1. Necessary and sufficient conditions under which for every con-
gruence © of an algebra A

(1) Cwg = [0)
under p — (’:)-, where @ = A{p € CwAlpV A > 0O} are:

a) A has the *CIP;
b) has the CEP;
c) if B € SubA and © € ConA then
B[®]) = B ifand only if (B?°A®)VA =0. O
For some particular classes of algebras, not all of the listed conditions
are necessary in order that (1) should hold.
Recall that an algebra A is coherent if it satisfies the following:

If B € SubA, and B contains a class of a congruence © on A, then B is
a union of classes of ©, i.e. B = B[O].

An algebra A is regular if every congruence on A is uniquely determined
by any of its classes.

Proposition 3. If A is a coherent algebra, then (1) holds if and only if A
satisfies a), b) and

¢’) for every B € SubA and © € ConA,
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B contains a class of © iff (BAO)VA=0.

Proof. Straightforward.O

Proposition 4. If A is a regular algebra, then (1) holds if and only if A
satisfies a), b) and

c”) if B € SubA and © € ConA,then
(B2AO)V A = 0O implies B[®] = B.

Proof. To prove the "only if” part of ¢), let B[®] = B. Then, since (B? A
©) V A < 0, the congruence (B2 A ©) V A contains a class of ©. Hence, by
the regularity of A, (B2 A @)V A is not different from ©. O

It is known ([1]) that any coherent variety is congruence regular. Thus,
Propositions 3 and 4 yield the following.

Corollary 1. Let A be an algebra in a coherent variety, with conditions
(B*AO)V A =0 implies B[®] = B.
Then, for every © € ConA, '

A ~
CW@' =~ [0)

if and only if A has the *CIP and the CEP. O

It was proved in [2] that the *CIP is a necessary and sufficient condi-
tion under which a group is Hamiltonian, and thus Hamiltonian groups are
the only ones having the property (1), since they have the CEP, as well.
Obviously, if all groups in a variety satisfy (1), then this variety consists of
Abelian groups.

As a negative example for the algebras in a coherent variety (all in the
light of Corollary 1), we have Boolean algebras. Among bounded lattices,
the only one satisfying the CIP (and thus the *CIP) is a two-element chain
([4]). Hence, no other Boolean algebra satisfies (1).

The following proposition is from [2]. Note that A,, is a minimal subal-
gebra of an algebra A, and that A is A,, —regular if every congruence on
A is uniquely determined by the class containing A,.
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Theorem 2. ([2]) If |An| = 1, then the following are equivalent for an
algebra A :

(i) A is Hamiltonian and every subalgebra of A is A,,—regular;

(ii) the mapping C — C?Vv Ag (C € SubB, Ag = {(z,z)|lx € B}) is an
isomorphism from SubB3 to ConB3, for every B € SubA;

(i1i) A satisfies the *CIP, the CEP, and the set of minimal weak congru-
ences in the classes induced by p — pV A 1is the set of all the squares
B? B € SubA. O

The algebras characterized in the last theorem have property (1). To
prove this, we need the following two propositions.

Lemma 1. If A is a Hamiltonian algebra, then A satisfies ¢’} (from Propo-
sition 4).
Proof. Let /3 be a subalgebra of 4, © € ConA, and let

(B°AO)VA=0.

Obviously, BVA > 0. A is Hamiltonian, i.e. B is a class of a congruence
on A, namely of BV A, and thus B[®] = B. O

Lemma 2. If A is Hamiltonian and A,,—regular for which |A,,| = 1, and
has the CIP, then it satisfies ¢) (from Theorem 1).

Proof. By Lemma 1, we have to prove the converse of ¢”). Let B[O] = B,
then
(BEA@)VA=(B2VA)AO,

by the CIP. Obviously,
(B*V AYA QO <0,

and since A is Hamiltonian, B[B? V A] = B. By A, —regularity it follows
that (B?V A) A © can not be different from O, that is

(BPAO)VA=0. O
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Theorem 3. If A is an algebra for which |A,,| = 1, and with isomorphic
lattices of subalgebras and congruences for every B € SubA, then A has the
property (1) i.e. for every @ € ConA

A
Cwg 2[0).

Proof. By Theorem 1, since A has the *CIP, the CEP (Theorem 2), and
since it satisfies ¢) (Lemmas 1 and 2). O
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REZIME

FILTRI U MREZI SLABIH KONGRUENCIJA

Posmatraju se algebre koje imaju svojstvo da je mreza slabih kongruen-
cija svake faktor-algebre izomorfna sa odgovarajuéim filtrom u mrezi slabih
kongruencija te algebre. Daju se potrebni i dovoljni uslovi pod kojima to
svojstvo vazi.
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