Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 24, 1 (1994), 1-12 Review of Research Faculty of Science Mathematics Series

ON BEST APPROXIMATIONS FOR MULTIVALUED MAPPINGS IN PSEUDOCONVEX METRIC SPACES

Olga Hadžić

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

We prove a generalization of the Ky Fan [1] best approximations theorem for multivalued mappings in pseudoconvex metric spaces.

AMS Mathematics Subject Classification (1991): 47H10
Key words and phrases: Best approximations, multivalued mappings.

1. Introduction

Best approximations theorems for multivalued mappings are proved in [4] and [5] in locally convex Hausdorff topological vector spaces. It is well known that KKM theory is very useful in the fixed point theory and in the best approximations theory. Using a generalization of the KKM principle, proved by Ch. Horvath [3], we shall prove a best approximations theorem for multivalued mappings in pseudoconvex metric spaces. As an application a theorem on the approximate fixed point for multivalued mappings is proved.

2. Preliminaries

In [3] the following definition is introduced.

Definition 1. Let X be a topological space and $h: X \times X \times [0,1] \to X$ so that:

- (i) h(x, y, 0) = y, h(x, y, 1) = x, for every $(x, y) \in X \times X$.
- (ii) For every finite subset $A \subset X$, $h|co_h(A) \times co_h(A) \times [0,1]$ is continuous, where $co_h(A)$ is the convex hull of A with respect to h.

Then h is a pseudoconvex structure on X and (X,h) a pseudoconvex space.

Let (X,h) be a pseudoconvex space and $R:X\to 2^X$ (the family of all nonempty subsets of X). The mapping R is said to be an element of $KKM_h(X)$ [3] if for every finite subset $A\subset X$:

$$co_h(A) \subseteq \bigcup_{x \in A} R(X).$$

In [3] the following theorem is proved.

Theorem A. Let (X,d,h) be a complete pseudometric space and $R \in KKM_h(X)$ such that R(x) is closed for every $x \in X$. If for every $\varepsilon > 0$ there exists a finite set A such that $\alpha(\bigcap_{x \in A} R(x)) < \varepsilon$, where α is the Kuratowski measure of noncompactness, then

$$M = \bigcap_{x \in X} R(x) \neq \emptyset$$

and M is compact.

Every normed space is a pseudoconvex space, if $h(x, y, \lambda) = \lambda x + (1 - \lambda y)$. In 1970. [6] Takahashi introduced the notion of a metric space with a convex structure.

Definition 2. Let (X,d) be a metric space and $W: X \times X \times [0,1] \to X$. The mapping W is a convex structure on X if for all $x, y \in X$ and $\lambda \in [0,1]$

$$d(u, W(x, y, \lambda)) \leq \lambda d(u, x) + (1 - \lambda)d(u, y)$$

for every $u \in X$. Then (X, d, W) is a convex metric space.

If W is continuous or cow(A) is compact for every finite $A \subset X$ then (X, d, W) is a pseudoconvex metric space.

Talman introduced in [7] the notion of a strongly convex metric space in the following way.

Definition 3. Let (X, d) be a metric space and

$$P = \{(t_1, t_2, t_3) \in [0, 1] \times [0, 1] \times [0, 1], \ t_1 + t_2 + t_3 = 1\}.$$

A strongly convex structure (SCS) on X is a continuous function $K: X \times X \times X \times P \to X$ with the property that for each $(x_1, x_2, x_3, t_1, t_2, t_3) \in X \times X \times X \times P$, $K(x_1, x_2, x_3, t_1, t_2, t_3)$ is the unique point of X which satisfies

$$d(y, K(x_1, x_2, x_3, t_1, t_2, t_3)) \le \sum_{k=1}^{3} t_k d(y, x_k),$$

for every $y \in X$.

If (X,d,W) is strongly convex metric space and K its SCS then $W_K: X \times X \times [0,1] \to X$, defined by:

$$W_K(x_1, x_2, t) = K(x_1, x_2, x_1, t, 1 - t, 0)$$

is a Takahashi convex structure.

If (X, d, W) is strongly convex metric space $co_W(A)$ is compact for every finite A.

3. A theorem on best approximations

Definition 4. Let (X, d, h) be a pseudoconvex metric space, M a nonempty convex subset of X and $g: M \to X$. The mapping g is said to be generalized h-almost affine if the following condition (a) is satisfied:

For every compact and convex subset $A \subset X$, every $n \in \mathbb{N}$, every $\{z_1, z_2, \ldots, z_n\} \subset A$ and every $\{x_1, x_2, \ldots x_n\} \subset M$:

(a)
$$\min_{z \in A} d(g(y), z) \leq \max_{1 \leq i \leq n} d(g(x_i), z_i),$$

where y is an arbitrary element from $co_h\{x_1, x_2, \dots x_n\}$.

Remark. If $A = \{z\}$, (a) reduces to the condition:

$$d(g(y),z) \leq \max_{1 \leq i \leq n} d(g(x_i),z)$$

i.e. g is also an h-almost affine mapping [2].

Lemma 1. If $(X, ||\cdot||)$ is a normed space, M a nonempty, convex subset of X, and $g: M \to X$ such that (b) holds:

(b) For every
$$\lambda_1, \lambda_2 \geq 0$$
, $\lambda_1 + \lambda_2 = 1$, every $x_1, x_2 \in M$ and every $z_1, z_2 \in X$:
$$||g(\lambda_1 x_1 + \lambda_2 x_2) - \lambda_1 z_1 - \lambda_2 z_2|| \leq \max_{1 \leq i \leq 2} d(g(x_i), z_i)$$

then (a) holds for
$$h(x, y, \lambda) = \lambda x + (1 - \lambda)y$$
 $(x, y \in X; \lambda \in [0, 1])$.

Proof. By induction in $n \in \mathbb{N}$ we shall prove that (b) implies (c):

(c) For every
$$\lambda_1, \lambda_2, \dots \lambda_n \geq 0$$
, $\lambda_1 + \lambda_2 + \dots \lambda_n = 1$, and every $(x_1, x_2, \dots, x_n, z_1, z_2, \dots, z_n) \in M^n \times X^n$:
$$||g(\sum_{i=1}^n \lambda_i x_i) - \sum_{i=1}^n \lambda_i z_i|| \leq \max_{1 \leq i \leq n} d(g(x_i), z_i)$$

Indeed, suppose that (c) holds for n = m and prove (c) for n = m + 1. We have that:

$$||g(\sum_{i=1}^{m+1} \lambda_i x_i) - \sum_{i=1}^{m+1} \lambda_i z_i|| = ||g[(1 - \lambda_{m+1})(\sum_{i=1}^{m} \frac{\lambda_i}{1 - \lambda_{m+1}} x_i) + \lambda_{m+1} x_{m+1}]|$$

$$-[(1 - \lambda_{m+1})(\sum_{i=1}^{m} \frac{\lambda_i}{1 - \lambda_{m+1}} z_i) + \lambda_{m+1} z_{m+1}]||.$$

Since M is convex and $\sum_{i=1}^{m} \frac{\lambda_i}{1-\lambda_{m+1}} = 1$ it follows that $\sum_{i=1}^{m} \frac{\lambda_i}{1-\lambda_{m+1}} x_i = x \in M$ and if $z = \sum_{i=1}^{m} \frac{\lambda_i}{1-\lambda_{m+1}} z_i$ we have that (b) implies:

$$||g[(1-\lambda_{m+1})x+\lambda_{m+1}x_{m+1}]-[(1-\lambda_{m+1})z+\lambda_{m+1}z_{m+1}]||$$

$$\leq \max\{||g(x)-z||, ||g(x_{m+1})-z_{m+1}||\}.$$

Since (c) holds for n = m we have that

$$||g(x) - z|| = ||g(\sum_{i=1}^{m} \frac{\lambda_i}{1 - \lambda_{m+1}} x_i) - \sum_{i=1}^{m} \frac{\lambda_i}{1 - \lambda_{m+1}} z_i|| \le \max_{1 \le i \le m} ||g(x_i) - z_i||$$

and so:

$$||g(\sum_{i=1}^{m+1} \lambda_i x_i) - \sum_{i=1}^{m+1} \lambda_i z_i|| \le \max_{1 \le i \le m+1} ||g(x_i) - z_i||.$$

Suppose now that A is a compact and convex subset of X, $\{z_1, z_2, \ldots, z_n\}$ $\subset A$, $\{x_1, x_2, \ldots, x_n\} \subset M$ and $y = \sum_{i=1}^n \lambda_i x_i$. Then

$$\min_{z \in A} ||g(y) - z|| \le ||g(\sum_{i=1}^n \lambda_i x_i) - \sum_{i=1}^n \lambda_i z_i|| \le$$

$$\le \max_{1 \le i \le n} ||g(x_i) - z_i||$$

since $\sum_{i=1}^{n} \lambda_i z_i \in A$.

Lemma 2. If (X, d, h) is a convex metric space, where h = W satisfies (d):

(d)
$$d(W(x_1, x_2, \lambda), W(z_1, z_2, \lambda)) \le \lambda d(x_1, z_1) + (1 - \lambda)d(x_2, z_2),$$

for every $x_i, z_i \in X$ $(i \in \{1, 2\}), \lambda \in [0, 1]$

then (a) holds for g(x) = x, for every $x \in X$.

Proof. Let A be a compact and convex subset of X. It is known that for every $B \subset X$:

$$coB = \bigcup_{n \in \mathbf{N}} \tilde{W}^n(B)$$

where $\tilde{W}^n(B) = W(\tilde{W}^{n-1}(B)), n \geq 2,$

$$\tilde{W}^{1}(B) = \{W(x, y; \lambda); \ \lambda \in [0, 1]; \ x, y \in B\}.$$

It is easy to see that for $B = \{x_1, x_2, \ldots, x_m\}, z \in \tilde{W}^n(B)$ if and only if z is of the form:

$$z = \overline{W}(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_{2^n}; \lambda_1, \lambda_2, \dots, \lambda_{2^n-1}),$$

for some $\lambda_i \in [0,1]$ $(i \in \{1,2,\ldots,2^n-1\})$, where $\bar{x}_i \in B$ $(i \in \{1,2,\ldots,2^n\})$ and $\bar{W}(\bar{x}_1,\bar{x}_2,\ldots,\bar{x}_{2^n};\lambda_1,\lambda_2,\ldots,\lambda_{2^{n-1}})$ is defined by:

$$\bar{W}(\bar{x}_1,\bar{x}_2,\lambda)=W(\bar{x}_1,\bar{x}_2,\lambda)$$

$$\begin{split} \bar{W}(\bar{x}_1, \bar{x}_2, & \dots, \bar{x}_{2^n}; \lambda_1, \lambda_2, \dots, \lambda_{2^{n}-1}) = \\ & \bar{W}(\bar{W}(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_{2^{n-1}}; \lambda_1, \lambda_2, \dots, \lambda_{2^{n-1}-1}), \\ & \bar{W}(\bar{x}_{2^{n-1}+1}, \bar{x}_{2^{n-1}+2}, \dots, \bar{x}_{2^n}; \lambda_{2^{n-1}}, \lambda_{2^{n-1}+1}, \dots, \lambda_{2^{n}-2}), \lambda_{2^{n}-1}). \end{split}$$

We shall prove that for every $\{x_1, x_2, \ldots, x_m\} \subset X$, every $y \in cow\{x_1, x_2, \ldots, x_m\}$ and $\{z_1, z_2, \ldots, z_m\} \subset A$:

$$\min_{z \in A} d(y, z) \leq \max_{1 \leq i \leq m} d(x_i, z_i).$$

If $y \in co_W\{x_1, x_2, \ldots, x_m\}$ then

$$y \in \tilde{W}^n(\{x_1, x_2, \ldots, x_m\})$$

for some $n \in \mathbb{N}$, which means that

$$y = \bar{W}(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_{2^n}; \lambda_1, \lambda_2, \dots, \lambda_{2^n-1}),$$

$$\bar{x}_i \in \{x_1, x_2, \dots, x_m\} \ (i \in \{1, 2, \dots, 2^n\}) \text{ and } \lambda_i \geq 0 \ (i \in \{1, 2, \dots, 2^n - 1\}).$$

Let $z = \overline{W}(\bar{z}_1, \bar{z}_2, \dots, \bar{z}_{2^n}; \lambda_1, \lambda_2, \dots, \lambda_{2^n-1})$, where $\bar{z}_i = z_{k(i)} \in \{z_1, z_2, \dots, z_m\}$ if and only if $\bar{x}_i = x_{k(i)} \in \{x_1, x_2, \dots, x_m\}$.

We shall prove that (d) implies:

(1)
$$d(\bar{W}(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_{2^n}; \lambda_1, \lambda_2, \dots, \lambda_{2^{n-1}}), \\ \bar{W}(\bar{z}_1, \bar{z}_2, \dots, \bar{z}_{2^n}; \lambda_1, \lambda_2, \dots, \lambda_{2^{n-1}})) \leq \max_{1 \leq i \leq m} d(x_i, z_i).$$

From (d) it follows that:

$$d(\bar{W}(\bar{x}_1, \bar{x}_2, \lambda_1), \bar{W}(\bar{z}_1, \bar{z}_2, \lambda_1)) = d(W(\bar{x}_1, \bar{x}_2, \lambda_1), W(\bar{z}_1, \bar{z}_2, \lambda_1))$$

$$\leq \lambda_1 d(\bar{x}_1, \bar{z}_1) + (1 - \lambda_1) d(\bar{x}_2, \bar{z}_2) \leq \max_{1 \geq i \leq m} d(x_i, z_i).$$

Suppose that (1) holds for n = k and prove (1) for n = k + 1.

We have that

$$d\left(\begin{array}{cccc} \bar{W}(\bar{x}_{1},\bar{x}_{2},\ldots,\bar{x}_{2^{k+1}};\lambda_{1},\lambda_{2},\ldots,\lambda_{2^{k+1}-1}), \\ \bar{W}(\bar{z}_{1},\bar{z}_{2},\ldots,\bar{z}_{2^{k+1}};\lambda_{1},\lambda_{2},\ldots,\lambda_{2^{k+1}-1})\right) = \\ = d\left(\begin{array}{cccc} \bar{W}\left(\begin{array}{cccc} \bar{W}(\bar{x}_{1},\bar{x}_{2},\ldots,\bar{x}_{2^{k}};\lambda_{1},\lambda_{2},\ldots,\lambda_{2^{k}-1}), \\ \bar{W}(\bar{x}_{2^{k}+1},\ldots,\bar{x}_{2^{k+1}};\lambda_{2^{k}},\ldots,\lambda_{2^{k+1}-2}),\lambda_{2^{k+1}-1}), \\ \bar{W}\left(\begin{array}{cccc} \bar{W}(\bar{z}_{1},\bar{z}_{2},\ldots,\bar{z}_{2^{k}};\lambda_{1},\lambda_{2},\ldots,\lambda_{2^{k+1}-2}),\lambda_{2^{k+1}-1}), \\ \bar{W}(\bar{z}_{2^{k}+1},\ldots,\bar{z}_{2^{k+1}};\lambda_{2^{k}},\ldots,\lambda_{2^{k+1}-2}),\lambda_{2^{k+1}-1}) \right) \leq \\ \leq \lambda_{2^{k+1}-1}d\left(\begin{array}{cccc} \bar{W}(\bar{x}_{1},\bar{x}_{2},\ldots,\bar{x}_{2^{k}};\lambda_{1},\lambda_{2},\ldots,\lambda_{2^{k}-1}), \\ \bar{W}(\bar{z}_{1},\bar{z}_{2},\ldots,\bar{z}_{2^{k}};\lambda_{1},\lambda_{2},\ldots,\lambda_{2^{k}-1}), \\ \bar{W}(\bar{z}_{1},\bar{z}_{2},\ldots,\bar{z}_{2^{k}};\lambda_{1},\lambda_{2},\ldots,\lambda_{2^{k}-1}) \right) + \\ +(1-\lambda_{2^{k+1}-1})d\left(\begin{array}{cccc} \bar{W}(\bar{x}_{2^{k}+1},\ldots,\bar{x}_{2^{k+1}};\lambda_{2^{k}},\ldots,\lambda_{2^{k+1}-2}), \\ \bar{W}(\bar{z}_{2^{k}+1},\ldots,\bar{z}_{2^{k+1}};\lambda_{2^{k}},\ldots,\lambda_{2^{k+1}-2}), \\ \bar{W}(\bar{z}_{2^{k}+1},\ldots,\bar{z}_{2^{k}+1};\lambda_{2^{k}},\ldots,\lambda_{2^{k+1}-2}), \\ \bar{W}(\bar{z}_{2^{k}+1},\ldots,\bar{z}_{2^{k}+1};\lambda_{2^{k}},\ldots,\lambda_{2^{k}+1}-2}), \\ \bar{W}(\bar{z}_{2^{k}+1},\ldots,\bar{z}_{2^{k}+1};\lambda_{2^{k}},\ldots,\lambda_{2^{k}+1}-2}), \\ \bar{W}(\bar{z}_{2^{k}+1},\ldots,\bar{z}_{2^{k}+1};\lambda_{2^{k}},\ldots,\lambda_{2^{k}+1}-2}), \\ \bar{W}(\bar{z}_{2^{k}+1},\ldots,\bar{z}_{2^{k}+1};\lambda_{2^{k}},\ldots,\lambda_{$$

From (1) we have that:

$$\min_{u\in A}d(y,u)\leq d(y,z)=d(\bar{W}(\bar{x}_1,\bar{x}_2,\ldots,\bar{x}_{2^n};\lambda_1,\lambda_2,\ldots,\lambda_{2^n-1}),$$

$$\bar{W}(\bar{z}_1,\bar{z}_2,\ldots,\bar{z}_{2^n};\lambda_1,\lambda_2,\ldots,\lambda_{2^n-1}))$$

since A is convex and $z = W(\bar{z}_1, \bar{z}_2, \dots, \bar{z}_{2^n}; \lambda_1, \lambda_2, \dots, \lambda_{2^n-1}) \in coA$. Hence (1) implies that

$$\min_{u \in A} d(y, u) \leq \max_{1 \leq i \leq m} d(x_i, z_i).$$

In the next theorem $\mathcal{K}(X)$ is the family of all nonempty, convex and compact subsets of X.

Theorem 1. Let (X,d,h) be a pseudoconvex metric space, $\emptyset \neq M$ a convex and complete subset of X, g a continuous generalized h-almost affine mapping of M onto M and $F: M \to \mathcal{K}(X)$ a continuous mapping such that:

$$\inf_{x \in M} \alpha[\{y; y \in M, d(g(y), F(y)) \le d(g(x), F(y))\}] = 0.$$

Then there exists $y_0 \in M$ such that

$$d(g(y_0), F(y_0)) = \inf_{x \in M} d(x, F(y_0)).$$

Proof. We shall prove that all the conditions of Theorem A are satisfied for R(x) $(x \in M)$ defined by:

$$R(x) = \{y; y \in M, d(g(y), F(y)) \le d(g(x), F(y))\}.$$

First, we shall prove that R is a $KKM_h(M)$ mapping. Let $\{x_1, x_2, \ldots, x_m\} \subset M$ and $y \in co_h\{x_1, x_2, \ldots, x_m\}$. If $y \notin \bigcup_{i=1}^m R(x_i)$ i.e. $y \notin R(x_i)$, $i \in \{1, 2, \ldots, m\}$ then

(2)
$$d(g(y), F(y)) > d(g(x_i), F(y)), i \in \{1, 2, \dots, m\}.$$

From (2) it follows that there exists $\{v_1, v_2, \ldots, v_m\} \subset F(y)$ such that

(3)
$$d(g(y), F(y)) > d(g(x_i), v_i), i \in \{1, 2, \dots, m\}.$$

Since F(y) is compact and convex subset of X and g is generalized h-almost affine it follows that

$$d(g(y), F(y)) = \min_{z \in F(y)} d(g(y), z) \leq \max_{1 \leq i \leq m} d(g(x_i), v_i),$$

which contradicts (3). Hence

$$co_h\{x_1,x_2,\ldots,x_m\}\subset \bigcup_{i=1}^m R(x_i)$$

which means that $R \in KKM_h(M)$. In order to prove that R(x) is closed for every $x \in M$ we shall prove that the mapping $y \to d(g(y), F(y))$ $(y \in M)$ is lower semicontinuous and for every $x \in M$, $y \to d(g(x), F(y))$ is upper semicontinuous.

Since F(y) is compact it follows that for $\gamma > 0$:

$$\begin{array}{ll} P_{\gamma} = & \{y; \ y \in M, \ d(g(y), F(y)) > \gamma\} = \\ & \{y; \ y \in M, \ (g(y), F(y)) \subset \{(z, v); \ (z, v) \in M \times X; \ d(z, v) > \gamma\}\}. \end{array}$$

The set $\{(z,v); (z,v) \in M \times X; d(z,v) > \gamma\}$ is open and the mapping $y \to (g(y),F(y))$ is upper semicontinuous, hence P_{γ} is open and so $y \to d(g(y),F(y))$ is lower semicontinuous.

Similarly, if

$$egin{array}{ll} Q_{\gamma} = & \{y; \; y \in M, \; d(g(x), F(y)) < \gamma\} = \ & \{y; \; y \in M, \; F(y)) \cap \{v; \; v \in X; \; d(g(x), v) < \gamma\}
eq \emptyset \} \end{array}$$

then Q_{γ} is open, since F if lower semicontinuous and $\{v; v \in X; d(g(x), v) < \gamma\}$ is open.

Hence $y \to d(g(x), F(y))$ $(y \in M)$ is upper semicontinuous.

From Theorem A it follows that $\bigcap_{x\in M} R(x) \neq \emptyset$. If $y_0 \in R(x)$, for every $x \in M$ then

$$d(g(y_0), F(y_0)) \leq d(g(x), F(y_0))$$

for every $x \in M$ and so

$$d(g(y_0), F(y_0)) = \inf_{x \in M} d(x, F(y_0)).$$

Corollary 1. Let $(X, ||\cdot||)$ be a normed space, $\emptyset \neq M$ a convex and complete subset of X, g a continuous mapping from M onto M such that (b) holds and $F: M \to \mathcal{K}(X)$ a continuous mapping such that

$$\inf_{x\in M}\alpha[\{y;\;y\in M,\;d(g(y),F(y))\leq d(g(x),F(y))\}]=0.$$

Then there exists $y_0 \in M$ such that

$$d(g(y_0), F(y_0)) = \inf_{x \in M} d(x, F(y_0)).$$

Corollary 2. Let (X,d,W) be a convex metric space such that (d) holds, and W is continuous or cow(A) is compact for every finite $A \subset X$. Let $\emptyset \neq M$ be a convex and complete subset of X, and $F: M \to \mathcal{K}(X)$ a continuous mapping such that

$$\inf_{x \in M} \alpha[\{y; y \in M, d(y, F(y)) \le d(g(x), F(y))\}] = 0.$$

Then there exists $y_0 \in M$ such that

(4)
$$d(y_0, F(y_0)) = \inf_{x \in M} d(x, F(y_0)).$$

Proof. Since W is continuous or $co_W(A)$ is compact for every finite $A \subset X$ it follows that $W|co_W(A) \times co_W(A) \times [0,1]$ is continuous and so (X,d,W) is a pseudoconvex metric space, where h = W. From Lemma 2 it follows that g(x) = x, $x \in M$ is a generalized h-almost affine mapping and so from Theorem 1 it follows the existence of an element $y_0 \in M$ such that (4) holds.

Remark. If in Theorem 1 we suppose that $F: M \to \mathcal{K}(X)$ so that $F(y) \cap M \neq \emptyset$, for every $y \in M$ then we obtain the existence of an element $y_0 \in M$ such that $g(y_0) \in F(y_0)$.

Hence, if in Corollary 2 we suppose that $F(y) \cap M \neq \emptyset$, for every $y \in M$ we obtain that $y_0 \in F(y_0)$.

4. A theorem on approximate fixed points

In the next theorem $N_{\varepsilon}(K) = \{x; x \in X, d(x,K) < \varepsilon\} \ (K \subset X, \varepsilon > 0).$

Theorem 2. Let (X,d,W) be a convex metric space such that (d) holds, and $co_W(A)$ is compact for every finite $A \subset X$. Let $\emptyset \neq M$ be a convex and complete subset of X, $\varepsilon > 0$ and $F: M \to 2^{N_{\varepsilon}(M)} \cap \mathcal{K}(X)$ a continuous mapping such that F(M) is bounded. Then

(5)
$$\inf_{x \in M} d(x, F(x)) \le \varepsilon + \alpha [F(M)].$$

Proof. Let $\delta > 0$ and $\{u_1, u_2, \dots u_n\} \subset F(M) \ (i \in \{1, 2, \dots, n\})$ be an $\alpha[F(M)] + \frac{\delta}{2}$ -net of the set F(M). Let $u_i \in F(x_i)$, $i \in \{1, 2, \dots, n\}$. Since $\{u_1, u_2, \dots u_n\}$ is an $\alpha[F(M)] + \frac{\delta}{2}$ -net of the set F(M)

$$F(M) \subseteq \bigcup_{i=1}^{n} L(u_i, \alpha[F(M)] + \frac{\delta}{2})$$

and from $F(x_i) \subseteq N_{\varepsilon}(M)$, $i \in \{1, 2, ..., n\}$ it follows the existence of $\{v_1, v_2, ..., v_n\} \subset M$ such that

$$d(u_i, v_i) < \varepsilon + \frac{\delta}{2}, i \in \{1, 2, \ldots, n\}.$$

The set $H = co_W(\{x_1, x_2, \dots x_n, v_1, v_2, \dots v_n\})$ is a compact and convex subset of M and from Corollary 2 it follows the existence of an $y_0 \in H$ such

that

(6)
$$d(y_0, F(y_0)) = \inf_{x \in H} d(x, F(y_0)).$$

We shall prove that $\inf_{x \in H} d(x, F(y_0)) \le \varepsilon + \alpha[F(M)]$ which implies (5). For every $u \in F(y_0)$ there exists $u_i (i \in \{1, 2, ..., n\})$ such that $u_i \in F(x_i)$ and $d(u, u_i) < \alpha[F(M)] + \frac{\delta}{2}$, and v_i $(i \in \{1, 2, \dots, n\})$ such that $d(u_i, v_i) < \varepsilon + \frac{\delta}{2}$. Then $d(u, v_i) < \alpha[F(\overline{M})] + \varepsilon + \delta$ and so $d(v_i, F(y_0)) < \alpha[F(M)] + \varepsilon + \delta$. Hence

$$\inf_{x\in H}d(x,F(y_0))<\alpha[F(M)]+\varepsilon+\delta.$$

and since δ is an arbitrary positive number we obtain (5).

Corollary 3. Let (X, d, K) be a strongly convex metric space and for $W_K(d)$ holds. Let $\emptyset \neq M$ be a convex and complete subset of X, $\varepsilon > 0$ and $F: M \to 2^{N_{\epsilon}(M)} \cap \mathcal{K}(X)$ a continuous mapping such that F(M) is bounded. Then (5) holds.

Proof: In a strongly convex metric space $cow_K(A)$ is compact, for every finite subset of X.

References

- [1] Fan, Ky, Extensions of two fixed point theorems of F.E.Browder, Math.Z.,112(1969),234-240.
- [2] Hadžić, O., Some remarks on a theorem on best approximations, Anal.Num.Théor.Approx.,15,1(1986),27-35.
- [3] Horvath, Ch., Point fixes et coincidences pour les applications multivoques sans convexite, C.R. Acad. Sc. Paris, 2296. Série I (1983), 403-406.
- [4] Sehgal, V.M., Singh, S.P., A theorem on the minimization of a condensing multifunction and fixed points, J.Math.Anal.Appl.,107(1985),96-102.
- [5] Sehgal, V.M., Singh, S.P., A generalization to multifunction of Fan's approximation theorem, Proc. Amer. Math. Soc., 102, 3(1988), 534best 537.

12 O.Hadžić

[6] Takahashi, W., A convexity in metric spaces and nonexpansive mappings, I, Kodai Math. Sem. Rep., 29(1977), 62-70.

[7] Talman, L., Fixed points for condensing multifunctions in metric spaces with convex structure, Kodai Math. Sem. Rep., 29(1977), 62-70.

REZIME

O NAJBOLJIM APROKSIMACIJAMA ZA VIŠEZNAČNA PRESLIKAVANJA U PSEUDOKONVEKSNIM METRIČKIM PROSTORIMA

Dokazano je uopštenje Ky Fanove [1] teoreme o najboljim aproksimacijama za višeznačna preslikavanja u pseudokonveksnim metričkim prostorima.

Received by the editors December 14, 1993