Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 24, 1 (1994), 23-30 Review of Research Faculty of Science Mathematics Series

FOUR MAPPINGS WITH A COMMON FIXED POINT

M. Imdad, Aquel Ahmad Department of Mathematics, Aligarh Muslim University Aligarh 212 001 (U. P.), India

Abstract

A common fixed point theorem satisfying a symmetric rational expression has been proved which, in turn, unifies some fixed point theorems of Fisher and Khan. An example for illustration is also included.

AMS Mathematics Subject Classification (1991): 54H25, 47H10 Key words and phrases: common fixed point, coincidence point, weakly commuting pair.

1. Introduction

Fisher [1] has extended the Banach contraction principle through a symmetric rational expression and obtained the following result which in turn modifies the theorem of Khan [3].

Theorem 1. Let (X,d) be a complete metric space and T a self-mapping on X such that for all x, y in X either

$$d(Tx,Ty) \leq k\{\frac{d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)}{d(x,Ty) + d(y,Tx)}\}$$

if
$$d(x,Ty) + d(y,Tx) \neq 0$$
, where $0 \leq k < 1$ or

$$d(Tx, Ty) = 0$$

if d(x,Ty) + d(y,Tx) = 0. Then T has a unique fixed point.

Quiet recently Khan-Swaleh-Imdad [4] has unified BanachContraction Principle and Theorem 1. The purpose of this paper is to unify the theorem of Fisher [2] and Theorem 1. Our unification is two fold: Firstly it extends Theorem 1 to a common fixed point theorem for four mappings; secondly, it generalizes the theorem of Fisher [2].

While proving our theorem, we employ a notion of weak commutativity due to Sessa [5] which runs as follows:

Definition 1. A pair of self-mappings $\{S,I\}$ of a metric space (X,d) is said to be weakly commuting if $d(SIx,ISx) \leq d(Ix,Sx)$ for all x in X.

It is obvious that two commuting mappings are weakly commuting but the opposite is not true as shown in Example 1 of Sessa [5].

2. Result

We prove the following:

Theorem 2. Let $\{S,I\}$ and $\{T,J\}$ be weakly commuting pair of mappings of a complete metric space (X,d) into itself such that

(1)
$$T(X) \subset I(X)$$
, $S(X) \subset J(X)$. And for all x , y in X ;

Either

(2)
$$d(Sx,Ty) \leq \alpha \{ \frac{d(Ix,Sx)d(Ix,Ty) + d(Jy,Ty)d(Jy,Sx)}{d(Ix,Ty) + d(Jy,Sx)} \} + \beta d(Ix,Jy)$$
 if $d(Ix,Ty) + d(Jy,Sx) \neq 0$, where $\alpha, \beta > 0$, $\alpha + \beta < 1$, or

(2')
$$d(Sx,Ty) = 0 \text{ if } d(Ix,Ty) + d(Jy,Sx) = 0.$$

If one of S, T, I or J is continuous then S, T, I and J have an unique common fixed point z. Further z is the unique common fixed point of S and I as well as of T and J.

Proof. Let x_0 be an arbitrary point of X. Since $S(X) \subset J(X)$ we can find a point x_1 in X such that $Sx_0 = Jx_1$. Also, since $T(X) \subset I(X)$ we can further choose a point x_2 with $Tx_1 = Ix_2$. In general for the point x_{2n} we can pick up a point x_{2n+1} such that $Sx_{2n} = Jx_{2n+1}$ and then a point x_{2n+2} with $Tx_{2n+1} = Ix_{2n+2}$ for n = 0, 1, 2, ...

Let us put $U_{2n} = d(Sx_{2n}, Tx_{2n+1})$ and $U_{2n+1} = d(Tx_{2n+1}, Sx_{2n+2})$. Now we distinguish the two cases:

- (i) Suppose $U_{2n} \neq 0$, $U_{2n+1} \neq 0$ for n = 0, 1, 2, ...Then on using inequality (2), we have
- (3) $U_{2n+1} \leq (\alpha + \beta)^{2n+1}U_0$, for n = 0, 1, 2, ... It follows that the sequence
- (4) $\{Sx_0, Tx_1, Sx_2, ..., Tx_{2n-1}, Sx_{2n}, Tx_{2n+1}, ...\}$ is a Cauchy sequence in the complete metric space (X, d) and so gets a limit point z in X. Hence the sequences $\{Sx_{2n}\} = \{Jx_{2n+1}\}$ and $\{Tx_{2n-1}\} = \{Ix_{2n}\}$ which are subsequences of (4) also converge to the same point z.

Let us now suppose that I is continuous so that the sequences $\{I^2x_{2n}\}$ and $\{ISx_{2n}\}$ converge to the same point Iz. Since S and I are weakly commuting, we have

$$d(SIx_{2n}, ISx_{2n}) \le d(Ix_{2n}, Sx_{2n})$$

and so the sequence $\{SIx_{2n}\}$ also converges to the point Iz.

We now have

$$\begin{array}{ll} d(SIx_{2n},Tx_{2n+1}) & \leq & \alpha\{\frac{d(I^2x_{2n},SIx_{2n})d(I^2x_{2n},Tx_{2n+1})}{d(I^2x_{2n},Tx_{2n+1})+d(Jx_{2n+1},SIx_{2n})} \\ & + \frac{d(Jx_{2n+1},Tx_{2n+1})d(Jx_{2n+1},SIx_{2n})}{d(I^2x_{2n},Tx_{2n+1})+d(Jx_{2n+1},SIx_{2n})}\} \\ & + \beta d(I^2x_{2n},Jx_{2n+1}) \end{array}$$

which on letting $n \to \infty$ reduces to

$$d(Iz,z) \leq \beta d(Iz,z),$$

giving thereby Iz = z. Further,

$$d(Sz, Tx_{2n+1}) \leq \alpha \{ \frac{d(Iz, Sz)d(Iz, Tx_{2n+1}) + d(Jx_{2n+1}, Tx_{2n+1})d(Jx_{2n+1}, Sz)}{d(Iz, Tx_{2n+1}) + d(Jx_{2n+1}, Sz)} \} + \beta d(Iz, Jx_{2n+1}),$$

which on making n tend to infinity gives d(Sz, z) = 0 and hence Sz = z.

Since Sz=z and $S(X)\subset J(X)$ there always exists a point z' such that Jz'=z. Thus

$$\begin{array}{lcl} d(z,Tz') & = & d(Sz,Tz') \\ & \leq & \alpha \{ \frac{d(Iz,Sz)d(Iz,Tz') + d(Jz',Tz')d(Jz',Sz)}{d(Iz,Tz') + d(Jz',Sz)} \} + \beta d(Iz,Jz') \\ & = & 0, \end{array}$$

giving thereby Tz'=z.

Since T and J weakly commute

$$d(Tz, Jz) = d(TJz', JTz') \le d(Jz', Tz') = d(z, z) = 0,$$

which yields Tz = Jz and so

$$\begin{array}{lcl} d(z,Tz) & = & d(Sz,Tz) \\ & \leq & \alpha \{ \frac{d(Iz,Sz)d(Iz,Tz) + d(Jz,Tz)d(Jz,Sz)}{d(Iz,Tz) + d(Jz,Sz)} \} + \beta d(Iz,Jz) \\ & = & \beta d(z,Tz), \end{array}$$

which implies that z = Tz = Jz.

Thus we have proved that z is a common fixed point of S, T, I and J.

Now suppose that S is continuous, so that the sequences $\{S^2x_{2n}\}$ $\{SIx_{2n}\}$ converge to the point Sz. Since S and I weakly commute, it follows as earlier that the sequence $\{ISx_{2n}\}$ also converges to the Sz. Thus

$$\begin{split} d(S^2x_{2n},Tx_{2n+1}) & \leq & \alpha\{\frac{d(ISx_{2n},S^2x_{2n})d(ISx_{2n},Tx_{2n+1})}{d(ISx_{2n},Tx_{2n+1})+d(Jx_{2n+1},S^2x_{2n})} \\ & + \frac{d(Jx_{2n+1},Tx_{2n+1})d(Jx_{2n+1},S^2x_{2n})}{d(ISx_{2n},Tx_{2n+1})+d(Jx_{2n+1},S^2x_{2n})}\} \\ & + \beta d(ISx_{2n},Jx_{2n+1}), \end{split}$$

which on letting $n \to \infty$ gives

$$d(Sz,z) \leq \beta d(Sz,z),$$

implying thereby Sz = z.

As $S(X) \subset J(X)$ and Sz = z, once again we can find a point z' in X such that Jz' = z. Thus

$$d(S^{2}x_{2n}, Tz') \leq \alpha \left\{ \frac{d(ISx_{2n}, S^{2}x_{2n})d(ISx_{2n}, Tz') + d(Jz', Tz')d(Jz', S^{2}x_{2n})}{d(ISx_{2n}, Tz') + d(Jz', S^{2}x_{2n})} + \beta d(ISx_{2n}, Jz'). \right\}$$

Making $n \to \infty$, we get d(z, Tz') = 0 so that Tz' = z.

Since T and J are weakly commuting, it again follows as above that Tz = Jz. Further

$$d(Sx_{2n}, Tz) \leq \alpha \left\{ \frac{d(Ix_{2n}, Sx_{2n})d(Ix_{2n}, Tz) + d(Jz, Tz)d(Jz, Sx_{2n})}{d(Ix_{2n}, Tz) + d(Jz, Sx_{2n})} \right\} + \beta d(Ix_{2n}, Jz),$$

which on making $n \to \infty$, gives Tz = z.

Thus the point z is in the range of T and since the range of I contains the range of T, there always exists a point z'' in X such that Iz'' = z. Thus

$$d(Sz'',z) = d(Sz'',Tz) \leq \alpha \{ \frac{d(Iz'',Sz'')d(Iz'',Tz) + d(Jz,Tz)d(Jz,Sz'')}{d(Iz'',Tz) + d(Jz,Sz'')} \} + \beta d(Iz'',Jz) = 0,$$

yielding thereby Sz'' = z.

Again since S and I weakly commute, we have

$$d(Sz, Iz) = d(SIz'', ISz'') \le d(Iz'', Sz'') = d(z, z) = 0.$$

Thus Sz = Iz = z.

We have thus proved again that z is a common fixed point of S, T, I and J.

If the mapping T or J is continuous instead of S or I, then the proof that z is a common fixed point of S, T, I and J is similar.

To show that z is unique, let w be a second common fixed point of S and I, then

$$\begin{array}{lcl} d(w,z) & = & d(Sw,Tz) \\ & \leq & \alpha \{ \frac{d(Iw,Sw)d(Iw,Tz) + d(Jz,Tz)d(Jz,Sw)}{d(Iw,Tz) + d(Jz,Sw)} \} + \beta d(Iw,Jz) \\ & \leq & \beta d(w,z), \end{array}$$

giving thereby w=z.

Similarly, it can be proved that z is a unique common fixed point of T and J.

(ii) If $U_{2n} = 0$ for some n, then the inequality (3) gives $U_{2n+1} = 0$ which implies that

$$Sx_{2n} = Jx_{2n+1} = Tx_{2n+1} = Ix_{2n+2} = Sx_{2n+2} = \dots = z.$$

Now we assert that there exists a point w such that Sw = Iw = Tw = z, otherwise if $Sw = Tw \neq z$, then

$$\begin{array}{lcl} 0 < d(Iw,z) & = & d(Sw,Tx_{2n+1}) \\ & \leq & \alpha \{ \frac{d(Iw,Sw)d(Iw,Tx_{2n+1})}{d(Iw,Tx_{2n+1}) + d(Jx_{2n+1},Sw)} \\ & & + \frac{d(Jx_{2n+1},Tx_{2n+1})d(Jx_{2n+1},Sw)}{d(Iw,Tx_{2n+1}) + d(Jx_{2n+1},Sw)} \} + \beta d(Iw,Jx_{2n+1}) \\ & = & \beta d(Iz,z), \end{array}$$

which yields that Iw = Sw = z. Similarly, one can argue that Tw = Jw = z.

Now, suppose I or S is continuous, then proceeding in the similar way, it can be shown that Iw = z is a unique common fixed point of S, T, I and J. Similarly if J or T is continuous, the proof that z is a unique common fixed point of S, T, I and J is similar. This completes the proof.

Remark 1. If we choose $\beta = 0$ and S = I = J = T, then Theorem 2 reduces to the theorem of Fisher [1] which, in turn, corrects the theorem of Khan [3].

Remark 2. If we set $\alpha = 0$ then Theorem 2 gives a modified form of the theorem of Fisher [2] for two pairs of weakly commuting mappings. Note that the theorem of Fisher [2] involves only a triod of mappings.

Remark 3. By choosing α , β , I, J, S and T suitably, we can derive a multitude of fixed point theorems which already exist in the literature. We omit the details.

Remark 4. Theorem 2 ensures that S, I, T and J have a unique common fixed point. However, either S or I or T or J may have other fixed point. One can note that in our Example 1 S and J have two and three fixed points respectively.

Remark 5. It follows from the proof of Theorem 2 that if condition (2') is omitted from the statement of Theorem 2 then we can say that z is a coincidence of S, I, T and J.

3. An example

Finally, we adapt the following example for the illustration of Theorem 2, which also indicates the degree of generality of our extension.

Example 3. Let $X = \{A, B, C, D\}$ be a finite set of \mathbb{R}^2 with Euclidean metric d, where $A \equiv (0,0), B \equiv (0,2), C \equiv (1,0)$ and $D \equiv (0,1/4)$. Then clearly (X,d) is a complete metric space.

Now define S, I, T and J on X as follows:

$$SA = SB = SD = A$$
, $SC = C$
 $IA = IB = A$, $IC = B$, $ID = C$
 $TA = TB = TC = A$, $TD = C$
 $JA = A$, $JB = JD = B$, $JC = C$

Note that $S(X)=\{A,C\}\subset\{A,B,C\}=J(X)$ and $T(X)=\{A,C\}\subset\{A,B,C\}=I(X)$. Since

$$SIA = A = ISA$$
, $SIB = A = IS$, $2 = d(SIC, ISC) \le d(IC, SC) = \sqrt{5}$, $1 = d(SID, ISD) \le d(ID, SD) = 1$ whereus $JTA = A = TJA$, $JTB = A = TJB$, $JTC = A = TJC$, $2 = d(TJD, JTD) \le d(JD, ID) = \sqrt{5}$, the pairs $\{S, I\}$ and $\{T, J\}$ are weakly commuting.

Further, a routine calculation shows that inequality (2) holds with, for instance, $\alpha = \beta = 40/100$. Therefore all the conditions of Theorem 2 are satisfied and A is the unique common fixed point of S, I, T and J. Also it can be noted that A is the unique common fixed point of S, I and that of T and J.

However, Theorem 2 is a genuine extension of the theorem of Fisher [2] because if we choose $x = B \equiv (0,2), y = C \equiv (1,0)$ then the condition

 $d(Sx,Sy) \leq kd(Ix,Jy)$ implies that $1 \leq k$ which is a contradiction to the fact that $0 \leq k < 1$.

Acknowledgement. The authors are grateful to Mr. A. Rauf Khan for his helpful comments regarding the presentation of the paper.

References

- [1] Fisher, B., On a theorem of Khan, Riv. Mat. Univ. Parma, 4 (1978), 135-137.
- [2] Fisher, B., Mappings with a common fixed point, Math. Sem. Notes, 7 (1979), 81-84.
- [3] Khan, M. S., A fixed point theorem for metric spaces, Rend. Inst. Mat. Univ. Trieste, Vol. VIII, Fasc. 10 (1976), 1-4.
- [4] Khan, M. S., Swaleh, M., Imdad, M., Some fixed point theorems IV, Fac. Sci. Univ. Ankara, 32 (1983), 69-79.
- [5] Sessa, S., On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32 (46) (1982), 149-153.

REZIME

ČETIRI PRESLIKAVANJA SA ZAJEDNIČKOM NEPOKRETNOM TAČKOM

Dokazana je teorema o zajedničkoj nepokretnoj tački, u obliku simetričnog racionalnog izraza, koja objedinjuje neke Fisherove i Khanove teoreme o nepokretnoj tački. Takodje je dat i ilustrativni primer.

Received by the editors October 25, 1990