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Abstract

In this paper a generalization of a common fixed point theorem
from [1] for quasi - gauges spaces is proved. Some further common
fixed point theorems are obtained.
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In this paper we discuss some common fixed point theorems on quasi-
gauge space.

The concept of quasi-gauge space is due to Reilly [4]. As in P. V. Sub-
rahmanyam [5] we define the left (right) Cauchy sequences and sequential
completeness of quasi-gauge space.

A quasi-pseudometric on a set X is non-negative real valued function on
X x X such that for any z,y, zin X p(z,z) = 0 and p(z,y) < p(=,y)+2(z, y).

A quasi-gauge structure for a topological space (X,T) is a family P of
quasi-pseudometrics on X such that T has as a subspace the family

{B(z,p,e): zin X, pin P, ¢ > 0}

where B(z,p,¢) is the set {yin X : p(z,y) < €}. If a topological space
(X, T) has a quasi-gauge structure P is called a quasi-gauge space.
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32 J. Antony, P. V. Subrahmanyam

Definition 1. If (X, P) is a quasi-gauge space then the sequence {z,} in
X is called left P-Cauchy sequence if for each p in P and each € > 0 there
is a point z in X and an integer k such that p(z,z,) < ¢ for allm > k (z
and k may depend upon ¢ and p).

Similarly {z,} is a right P-Cauchy sequence if for each p in P and each
€ > 0 there is an element x in X and an integer k such that p(z,,z) < €
for all m > k.

In paper [5] examples are given to show that right P-Cauchy sequence
need not to be left P-Cauchy sequence.

A quasi-gauge space (X,T) is left (right) sequentially complete if every
left (right) P-Cauchy sequence in X converge to some element of X.

In paper [1] the following theorem was proved.

Theorem 1. Let S and T be two continuous mappings of a complete metric
space (X, d) into itself satisfying the following inequality
d(STYP,(TSPy) < cmax{d((STYz,(TS)y), d(S(TS) s, (TS)y),
d((ST) 2, T(ST) z),d(S(T8)" y, T(ST) ' z)
0<rs<p 0<r',s <p}

for all z,y in X where 0 < ¢ < 1 and p is a fized positive integer. Then S
and T have a unique common fized point.

We now prove a theorem in quasi-gauge space which will be a general-
ization of Theorem 1.

Theorem 2. Let S and T be two continuous mappings defined on a left
(right) sequentially complete quasi-gauge Hausdorff space (X, P) into itself
satisfying the inequality for each p in P

(1) max{p((ST)%=z, (TS)%y), p((T'S)"y, (ST)'z)}
< cmax{p((ST) z,(TS)*y),p(S(TS)"'y,(TS)y),
p((ST) 2, T(ST) z),p(S(TS)"y, T(ST) )
0<rs<q 0<7,s <q}

for all z,y in X where 0 < ¢ < 1 and q is fized positive integer. Then S and
T have a unique common fized point.
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Proof. Chose ¢ such that ¢/(1 — ¢) > 1. Let z be an arbitrary point and
define the points inductively by zo = =, Zony1 = TZon, Tany2 = SZ2n41 for
n = 0,1,2,.... The sequence of points {z, : n = 1,2,...} is bounded. If
not either the set of real numbers

{p(z2n+17 "E2q)ap($2n> m2q+1) . n= 0> 1> . }
or

{p(z2g, Tont1), P(T2g41,T2n) : m=0,1,...}
is unbounded for at least one p in P.

Suppose that

{p($2n+1,(l}2q),p(zzn,$2q+1) :n=0,1,.. }

is unbounded. Then there exists an integer n such that

(2) (1 = ) max{p(x2n+1,T2q), P(T2m, T2g4+1)}
> emax{p(T,, Tag), P(Ts, T2g41), P(T24, Ts ), P(T2g+1,T5) : 0 < 8 < 2¢).
Let n be the smallest such n so that

(3) InaX{P($2n+1,$2q),p($2m $2q+1)} > maX{p(zzq, $2r+1),
P(T2g41, %27 ), P(T2r, T2941),
P(T2r41,T24) 1 0 < 7 < 1}

Since ¢/(1 — ¢) > 1 from (2) it is clear that n > ¢. From (2) and (3)

max{p(T2nt1,T2q) P(T2ms T2941)} > cmax{p(T2s,T2q),

(25415 T29+1), P(T2g, T25),
P(Z2g41,T2541) 1 0 < s < g}
emax{p(Z3s41,%2r) — P($2q+1, Tor)s
P(zzs, 172r+1) - P(zzq, z2r+1)

P(zzr, z2s+1) - p(zzr, z2q+1)7
p(T2r41,T2s) — P(zzr+1,$2q) :
0<s5<g¢q,0<r<n}

c ma-X{P(zst ’ z2r), P(zzs, z2r+1),
p(T2r, T2541), P(T2r41,T2s) :

v

v
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0<s<q,0<r<n}
- cma.x{p(zzq.,.l, zZT)aP(zzqa $2r+1)7

P(zzr, 932q+1) - P(z2r+1, 932q) :
0<r<n}

(4) max{p(Zzn+1, T29), P(Z2n, T2041)}
> cmax{p(T2st+1, T2r) ~ P(Z2s, T2r41),
p(z2r, T2s+1) — P(T2r41, Ts) :
0<s<q 0<r<n}.

By applying the inequality

max{p(Z2n, T2¢+1), P(ZT2n+1, T29), P(T2gs Tan41), P(T2+41, T2m)}

< cmax{p(z2r, T2s+1), P(T2s'42, T2rr41)s P(T 2, Tori41), P(T25425 T25741)
P(Z25, T2r41), P(T2r142, T2041), P(T 285 T25r41)s P(T2r 42, T2r1) -
0<g+r—n,s<q;0<q+r" ~n,s < q}

< cmax{p(zs,,T2s41): 0 < 1,5 < n}

and so

(5) ma‘x{p(zZna z24+1)’p(z2n+la z2q)a
p(z2q7$2n+l)ap($2q+la z2n)}
< cF max{p(zar, Zas+1) : 0 < 1,8 < n}

when k£ = 1. Now assume that the inequality holds for some positive integer
k. Because on inequality (4)

max{p(zzn, -Tzq+1), P(Z2n+t1, $2q),
p(zm}’z2n+1)ap(z2'1+1’z2n)}
< cF max{p(z2r, z2541) : ¢ < 7y 8 < m}

After applying inequality (1) to the right side of this inequality it follows
that

ma'x{p(z%n z2q+1)7p(z2n+l ’ $2q)7

P(%2g: T2n+1), P(T20+1, T2n)}
< max{p(zar, T2541): 0 < 1,8 < n}.
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Inequality (5) now follows by induction. On letting k tend to infinity in
inequality (5) we have

max{p(Z2n, T2g+1), P(T2n+1, T2) P(T2g, T2n41), P(T2941, T20)} = 0,
contradicting the definition of n. Hence {z,} is bounded and so for each p
in P

sup{p(z,,z5): r,s=1,2,...} = M, < .
For arbitrary € > 0 choose N, so that
MM, < e

It follows that for » > 2N, and on using inequality (1) N, times

ma‘x{p(m2Np’ zn)’p(xn)x2Np)} S chMp <Eg
if n is odd and
ma.x{p(zsz, $n),P($m $2N,,)} < Cma-X{P($2N,,+1,$n) + P($2N,,, 932NP+1),
P(Zn, $2N,,+1) + P($2N,,+1, $2N,,) <2

if n is even.

Thus {z,} is left and right P-Cauchy sequence in a left (right) sequen-
tially complete quasi-gauge Hausdorff space. So {z,} converges to some z
in X and since .S and T are continuous and X is Hausdorff

Sz2=Tz= 2.
Let 2’ be another common fixed point of § and T. Then by applying the
inequality
max{p(z, '), p(2', 2)} < emax{p(z,2'), p(#, )}

Since ¢ < 1, p(z,2’) = p(2/,2) = 0 for all p in P and X is a Hausdorff space,
S0

z =Z.

Thus § and T have a unique common fixed point. O
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Corollary 1. Let S and T be two continuous mappings of a left (right)
sequentially complete quasi-gauge Hausdorff space satisfying the inequality

(6) max{p(($T)%z,(TS)*y),p((TS)"y,(ST)%)}
< cwax{p((ST)"z,(TS)'y),p((ST) z, T(ST) =),
p(S(TS)”y, T(ST) z), p(S(TS)*y,(TS)*)
0<r<q, 0<r<gq,
0<s<u, 0<s <u}

Jor all z,y in X, where 0 < ¢ < 1, q and u are fized positive integers then S
and T have a unique fized point.

Proof. Suppose ¢ > u then

max{p((ST)%z,(TS)%y), p(T S)'y, (ST)'z)}
emax{p((ST) z,(TS)’y),p((ST) z, T(ST) =),
p(S(TS)"y, T(STY z), p(S(TS)"y,(TS)*y)
0<r<gq, 0<7 <q,

g-u<s<u, qg-—u<s <u}

IA

for all z,y in X for each p in P. Then the result follows from the theorem.
The same result holds if u > ¢q. O

For a more generalized inequality the result also hold.

Corollary 2. Let § and T be two continuous mappings defined on a left
or right sequentially complete quasi-gauge Hausdorff space satisfying the in-
equality for each p in P.

(7) max{p((ST)*z, (TS)*y),p((TS)*y, (ST)%z)}
cmax{p((ST) z,(TS)*y), p((ST)"z, T(ST)" z),
p(S(T$)"y, T(ST) ), p(S(TS)"'y, (TS)y),
p((TS)°y, (ST) z), p(T(ST)"z, S(TS)"'y),
p((TS)y, S(TS)*y), (T(ST) z,(ST)"z)
0<r<gq 0<7r'<gq,

0<s<u,0<s <u}

IA

for all z,y in X, where 0 < ¢ < 1, ¢ and u are fized positive integers. Then
S and T have a unique common fized point.
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Proof. Follows exactly the same steps of Theorem 2.

Corollary 3. If S and T are continuous mappings in a sequentially com-
plete Hausdorff gauge space (X, P) satisfying the following inequality for
each p in P

(8) max{p((T'$)“z,(ST)"y)}

e max{p((ST) y,(T'S)z), p(S(TS) z,(T5)z),
p((STY y, T(ST)" y), W(S(TS)" =, T(ST)"'y) :
0<r<q, 0<r <yg,

0<s<u, 0<s <u}

IA

Jor all z,y in X where 0 < ¢ < 1, and q and u are fized positive integers.
Then S5 and T have a unique common fized point.

Proof. Since p(z,y) = p(y,z) for all pin P, the result follows immediately
from Corollary 1 of Theorem 2. O

We note that in the left (right) sequentially complete quasi-gauge Haus-
dorff space (X, P), if S and T are two continuous functions defined on X
into itself satisfying the inequality (8) may not have a common fixed point.
This is easily seen by an example.

Example 1. Let X = [0,1], (X, P) be a quasi-gauge space. P is defined by

a single quasi-pseudometric p by

Jz-y i z>y
p(.’l:,y)-— { % lf yZ .

(X, P) is a sequentially complete quasi-gauge Hausdorff space. Define the
continuous functions as follows.

S:c:l—:candT:c:%
STz = 2=% and TSz = - —%
14+y—=
P(ST)a,(TS)y) = —2—
14y—=

(TS, (8T)a) = —4
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maX{p((TS)y,(ST)x)} < 1/2max{p((§T)"z,(TS)"y), p(Sy, T<),
p(5y,(ST)’y), p((ST)"z, Tx) :
for s =0,1, r = 0,1}.
But p((5£)(0), (T5)(1)) = 1.
We can not find out a ¢, 0 < ¢ < 1 such that

max{p((T'5)y,(ST)z), p((ST)z,(TS)y)}

< cmax{p((ST)"z,(TS)’y), p(Sy,Tz),
p((5y,(ST)y),p((ST) z,Tz) :
for s =0,1, r=0,1}.

Hence S and T have no common points.

Fisher (1] gives an example to show that for Theorem 1 if p is greater
than 1, then § and T have to be continuous. In the next theorem T need
not to be continuous.

Theorem 3. Let S be a continuous mapping and T be a ,mapping of left
(right) sequentially complete quasi-gauge Hausdorff space satisfying the in-
equality

(9) max{p((T'$)y,(ST)'z), p((ST) 'z, (TS)y)}
< emax{p((ST)z,(TS)’y),p(Sy, T(ST)" z),
p(Sy,(TS5)°y), p((ST) z, T(ST)" z) :
0<r<gq, 0<r' <gq, 5=0,1}.

for all z,y in X, for each p in P, where 0 < ¢ < 1 and q is a fized positive
integer. Then S and T have a unique common fized point z.

Proof. Let z be an arbitrary point in X and define {z, : n = 1,2...} as
in the prof of Theorem 2. Then since inequality (1) holds if inequality (9)
holds, the sequence {z, : = =1,2...} is again P-Cauchy sequence with a
limit point z in a left (right) sequentially complete quasi-gauge Hausdorff
space X . Since 5 is continuous z is a fixed point of S. Further,

p(z,Tz) = p(z,TSz) (2, Zan) + P(22n, TS 2)
p(Z, z2ﬂ) + cma.x{p(z2n, (TS)SZ),p(SZ, $2T'+1))

p(x2r,x2r'+1)’p(sz, (TS)SZ) :
0<g+r-n<q,0<q+r' -n<gq, s=0,1}.

IAIA
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p(Tz,2)=p(TSz,z) < p(xan,2)+p(TSz,x2,)
< p(22n, 2) + emax{p(xs, (T'S)°2), p(Sz, T2r141),
(T2, Torey1), P(52,(T5)%z2) :
0<q+r—-n<q 0<q+r'-—n<gq, s=0,1}.

as n tends to infinity
p(2,T2) < ep(Tz,2)

and
p(Tz,2) < ep(z,Tz)
since ¢ < 1, p(2,Tz) = p(Tz,z) = 0 for all pin P and X is a Hausdorfl

space. S0
z="T=z.

Thus z is a common fixed point of 5 and T. Uniqueness follows as before.
a

Corollary 4. Let § be a continuous mapping and T be a mapping defined
on a complete gauge Hausdorff space (X, P) satisfying the inequality for each
pin P.

(10)p((T'9)y, (ST)z) < cmaX{P((ST)TiE,(TIS)S?/),IJ(S%T(ST)T'JC),
p(((ST) =, T(ST)" =), p(Sy,(TS)°y) :
0<r<q,0<7r" <q,s=0,1}.

for all z,y in X where 0 < ¢ < 1 and q is a fired positive integer. Then S
and T have a unique common fired point.

As in the case of Theorem 2 it can be noted that if S is a continuous
mapping and 7" is a mapping defined on a left (right) sequentially complete
quasi-gauge Hausdorff space satisfying the inequality (10) may not have a
common fixed point by an example.

Example 2. Let (X, P) be a quasi-gauge Hausdorff space as defined in
Example 1. Define the continuous function S and the mapping T as follows:

I I if z>1/2
YTl 12 ff 2<1/2

_f=z/2 if z#0
TI—{I if z=0
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S and T satisfy the inequality (10) for ¢ = 1/2. But

P(ST)'2,(TS)y) £ emax{p((ST)z,(T5)’y), Sy, T(ST) =),
p(((8T) 'z, T(ST)" ), p(Sy,(TS)°y) :
0<r<ygq, 057',<q, 5=O71}'

forz =1/2,1/4 <y < 1/2.
Hence 5 and T have no common fixed point.
The following example shows that it is still necessary for S to be con-

tinuous in the theorem. Let (X, P) be a quasi-gauge space as defined in
Example 1. Define the discontinues mappings 5 and T on X by

Sz:%z,Tz:%zifz#O
S(0)=T(0) =1.

Inequality (9) is satisfied with ¢ = 1/2. But neither S nor T has a fixed
point. In the following theorem it is not necessary for either § or T to be
continuous.

Theorem 4. Let S and T be mappings defined on a left (right) sequen-
tially complete quasi-gauge Hausdorff space (X, P) into itself satisfying the
inequality for each p in P

(11) max{p(Ty, (5T)z),p((ST)=,Ty)}
£ cmax{p(Tz,y),p(z,Ty),
p(y,Tz),p(z,Tz),p(Tz,(5T)z) :}.

for all z,y in X, where 0 < ¢ < 1. Then S and T have a unique common
fized point z. Further z is the unique fized point of T

Proof Let z be an arbitrary point in X and let the sequence {z, : n =
1,2,...} be as defined in the proof of Theorem 2. Then since inequality
(7) holds if inequality (11) holds the sequence {z, : = = 1,2,...} is again
a P-Cauchy sequence with limit z in a left (right) sequentially complete
quasi-gauge space X. Thus

max{p(z,T2),p(Tz,2)} < max{p(z,2sn)+ P(22a,T2)
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p(sz xZn) + p(x2na Z)}
IllaLX{p(Z, x'Zn)v P(-TZna Z)}
cma‘x{p(xZn—b z)vp(x2n—2a Z), P(Za TZ),

p(x2na -’172n—1)72”(1‘2n—1 9 .’an)}

+ IA

and on letting » to tend to infinity we have
max{p(z,Tz)+ p(Tz,2)} < ep(z,Tz).
It follows that z is a fixed point of T also

max{p(52,2),p(z,52)} = max{p(STz,T=z)+p(Tz, 5Tz)}
cmax{p(z,Tz),p(Tz,z),
p(z,T2),p(Tz,5T=2)}

< p(z,52)

IN

Hence z is the common fixed point of S and T. Now suppose that T has a
second fixed point w. Then

max{p(z,w),p(w,2)} = max{p(5Tz,Tw),p(Tw,STz)}
cmax{p(z, Tw),p(Tz,w),
p(w,Tw),p(Tz,5Tz)}

< p(z,w)

IA

and it follows that z is the unique fixed point of T'.
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REZIME

KVAZI RASTOJANJE I NEPOKRETNE TACKE

U ovom radu je dokazana generalizacija teoreme o zajednickoj nepokretnoj
tacki u prostorima sa kvazirastojanjem iz [1].
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