Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 24, 1 (1994), 73-80 Review of Research Faculty of Science Mathematics Series

THE LEAST UPPER BOUND OF THE ADDITIVE MEASURES AND INTEGRALS

Pavel Černak

Faculty of Mathematics and Physics, Mlinska dolina 84515 Bratislava, Slovakia

Abstract

In this paper m integral, i.e., monotone, positive, homogenous, sub-additive functional defined on step functions, with respect to p - sub-measure m, is characterized as least upper bound of a collection of additive integrals.

AMS Mathematics Subject Classification (1991): 28A10, 28A25 Key words and phrases: p - submeasure, m - integral.

1. Introduction

Let T be a ring of subsets of a set $X \neq \emptyset$ and m a submeasure on T. Any monotone positively homogeneous and subadditive functional J defined on $F^+(T) = \{\sum_{i=1}^n a_i \chi_{A_i}; \ a_i > 0, \ A_i \in T, \ n \in \mathbb{N}\}$ satisfying $J(\chi_A) = m(A)$ for every $A \in T$, is said to be an m-integral.

Paper [3] shows that such an m-integral exists if and only if m is a p-submeasure.

The present paper characterizes m-integrals by means od additive integrals. It shows that each m-integral is the least upper bound of collection of additive integrals.

It also shows that in general a submeasure posseses more integrals while among them in the sense of maximal and minimal need not exist.

2.

Let T be a ring of subsets of a nonempty set X. Let m be a set function $m: T \to [0, \infty), m(\emptyset) = 0$. Then m is called

a) submeasure, if for every $A, B, C \in T$, $A \cup B \supset C$ we have

$$m(A) + m(B) \ge m(C)$$

b) p-submeasure, if for every two positive integers n, k and the sets $A, A_i \in T$ such that $\sum_{i=1}^n \chi_{A_i} \geq k \chi_A$ there is

$$\sum_{i=1}^n m(A_i) \geq km(A)$$

It is evident that each p-submeasure is a submeasure and that they are both monotone (i.e. if $A, B \in T$, $A \subset B$ then $m(A) \leq m(B)$).

Let T be a ring of subsets of the set $X \neq \emptyset$. Denote

$$F^{+}(T) = \{ \sum_{i=1}^{n} a_{i} \chi_{A_{i}}; \ a_{i} > 0, \ A_{i} \in T, \ n \in \mathbb{N} \}$$

$$F(T) = \{ \sum_{i=1}^{n} a_i \chi_{A_i}; A_i \in T, n \in \mathbb{N}, a_i \text{ real} \}.$$

A function $J: F^+(T) \to [0,\infty)$ is said to be an integral if

- a) J is monotone, i.e. $J(f) \geq J(g)$ if $f, g \in F^+(T)$, $f \geq g$
- b) J is positivelty homogenuous, i.e. $J(c \cdot f) = c \cdot J(f)$, if c > 0, $f \in F^+(T)$
- c) J is subadditive, i.e. $J(f) + J(g) \ge J(f+g)$ if $f, g \in F^+(T)$.

Let m be a submeasure on T. An integral $J: F^+(T) \to [0,\infty)$ is said to be an integral with respect to a submeasure m (m-integral) if

$$J(\chi_A) = m(A)$$
 for $A \in T$.

A submeasure m is said to be integrable provided that there exists an mintegral

The following theorem is proved in [3].

Theorem 1. Let m be a submeasure on a ring T. Then the following assertions are equivalent

- a) m is p-measure
- b) m is an integrable submeasure.

3.

Theorem 2. Let m_i , $i \in I$ be a collection of additive measures on a ring T. Let $\int f dm_i$ be an additive integral with respect to m_i . The following holds.

a) The function $m: T \to [0, \infty)$ defined by

$$m(A) = \sup \{m_i(A); i \in I\} \text{ for } A \in T$$

is a p-submeasure.

b) The function $J: F^+(T) \to [0, \infty)$ defined by

$$J(f) = \sup\{\int fdm_i; \ i \in I\} \ for \ f \in F^+(T)$$

is an m-integral.

Proof.

a) Evidently $m(\emptyset) = 0$. Let $k, n \in \mathbb{N}$, $A, A_j \in T$ and $k \cdot \chi_A \leq \sum_{j=1}^n \chi_{A_j}$. Since m_i are additive measures, we have

$$k \cdot m_i(A) \leq \sum_{j=1}^n m_i(A_j) \leq \sum_{j=1}^n m(A_j)$$
 for each $i \in I$.

By the definition of m we have

$$k \cdot m(A) = k \cdot \sup\{m_i(A); i \in I\} \leq \sum_{j=1}^n m(A_j).$$

Hence m is a p-submeasure.

b) It follows directly from the definition of J that J is monotone and that J(0) = 0. Let c > 0. $f, g \in F^+(T)$. Then

$$J(c \cdot f) = \sup\{\int c \cdot f dm_i; \ i \in I\} = \sup\{c \cdot \int f dm_i; i \in I\}$$

$$= c \cdot \sup\{\int f dm_i; \ i \in I\} = c \cdot J(f).$$

$$J(f) + J(g) = \sup\{\int f dm_i; \ i \in I\} + \sup\{\int g dm_i; \ i \in I\}$$

$$\geq \sup\{\int f dm_i + \int g dm_i; \ i \in I\}$$

$$= \sup\{\int (f+g) dm_i; \ i \in I\} = J(f+g).$$

So J is an integral.

Let $A \in T$. Then

$$J(\chi_A) = \sup\{\int \chi_A dm_i; \ i \in I\} = \sup\{m_i(A); \ i \in I\} = m(A).$$

So J is an m-integral. \square

Let T be a ring and J an integral on $F^+(T)$. Let $f \in F(T)$. Then evidently there are $f^+, f^- \in F^+(T)$ such that $f = f^+ - f^-$. Define the function J^* on F(T) as follows

$$J^*(f) = J(f^+) - J(f^-)$$
 if $f \in F(T)$.

Theorem 3. Let T be a ring and J an integral on $F^+(T)$. Then

- a) J* is positively homogenuous
 - b) J^* is monotone.

Proof.

a) Let $c>0, f\in F(T)$. If $g=c\cdot f$, then $g^+=c\cdot f^+, g^-=c\cdot f^-$. Consequently

$$J^*(c \cdot f) = J^*(g) = J^*(g^+) - J^*(g^-)$$
$$= J^*(c \cdot f^+) - J^*(c \cdot f^-) = c \cdot J^*(f^+) - c \cdot J^*(f^-) = c \cdot J^*(f).$$

So J^* is positively homogenuous.

b) Let $f, g \in F(T)$, $f \ge g$. Then $f^+ \ge g^+$ and $f^- \le g^-$. Hence

$$J^*(f) = J^*(f^+) - J^*(f^-) \ge J^*(g^+) - J^*(g^-) = J^*(g).$$

So J^* is monotone. \square

Let T be a ring of subsets of the set $X \neq \emptyset$. The function $J :\to [0, \infty)$ is said to be an integral if J is monotone, positively homogenuous and subadditive of $F^+(T)$.

The following theorem is proved in [12] in a more general form ([12], Theorem 5.)

Theorem 4. Let T be a ring of subsets of the set $X \neq \emptyset$. Let E be a linear space, $E \subset F(T)$. Let J be an integral on F(T) and J_0 be an additive integral on E. Then there exists an additive integral J_1 on F(T) such that

- a) J_1 is an extension of J_0
- b) $J_1 \leq J$ on $F^+(T)$.

Theorem 5. Let m be a p-submeasure on a ring T. Let J be an m-integral on $F^+(T)$ and $f \in F^+(T)$. Then there exists an additive measure w on T, such that

- a) $\int f dw = J(f)$
- b) $\int gdw \leq J(g)$ for every $g \in F^+(T)$.

Proof. Let $E = \{c \cdot f; c \text{ is real}\}$. Theorem 3 implies that J^* is an integral on F(T). Then J^* is the additive integral on E. It is obtained from Theorem 4 that there exists the additive integral J_1 on F(T) such that

- 1) $J_1 = J^*$ on E
- 2) $J_1 \leq J$ on $F^+(T)$.

Define the function w on T as follows

$$w(A) = J_1(\chi_A)$$
 if $A \in T$.

Since J_1 is the additive integral on F(T), the function w is the additive measure on T. Evidently ig $g \in F(T)$ then $\int g dw = J_1(g)$. So we obtain

a)
$$\int f dw = J_1(f) = J^*(f) = J(f)$$

b) If $g \in F^+(T)$ then

$$\int g dw = J_1(g) \leq J^*(g) = J(g).$$

The theorem is proved. \Box

Theorem 6. Let m be a p-submeasure on a ring T and J be an m-integral. Then there exists a collection of additive measures m_i , $i \in I$ which are defined on T and the following is satisfied

a)
$$m(A) = \max\{m_i(A); i \in I\}$$
 for $A \in T$

b)
$$J = \max\{\int f dm_i; i \in I\}$$
 for $f \in F^+(T)$.

Proof. Choosing the collection of additive measures w, which correspond to the functions $f \in F^+(T)$ according to Theorem 5, we obtain the proof. \Box

Corollary 1. Let m be a p-submeasure on a ring T. Then

- a) $m(A) = \max\{w(A); \ w \leq m, \ w \ \text{is an additive measure on } T\}, \ A \in T$
- b) m-integral J defined as

$$J(f) = \max\{\int f dw; \ w \leq m, \ w \ \text{is an additive measure on } T\},$$
 $f \in F^+(T).$

The following example shows that p-submeasure may have more than one m-integral and that in general a pointwise smallest m-integral does not exist.

Example 1. Let $T = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$. Let m, a, b, c, d be defined on T in the following way

Evidently m is a p-submeasure and a, b, c, d are additive measures on T. Because

$$m(A) = \max\{a(A), b(A)\} = \max\{c(A), d(A)\} \text{ for } A \in T,$$

then the integrals I, J defined as

$$I(f) = \max\{\int f da, \int f db\}, \ J(f) = \max\{\int f dc, \int f dd\} \ \text{for} \ f \in F^+(T)$$

are m-integrals.

Put $f = \chi_{\{1\}} + 2 \cdot \chi_{\{2\}}, g = 2 \cdot \chi_{\{1\}} + \chi_{\{2\}}$. Then the following holds

So two different integrals may exist.

If there exists a pointwise smallest m-integral K, then

$$K(f) \leq J(f) = 4$$
, $K(g) \leq I(g) = 4$, and $K(f+g) = K(3 \cdot \chi_{\{1,2\}}) = 9$.

So K would not be subadditive.

Thus in general there does not exist pointwise smallest integral with respect to m.

References

- [1] Aleksiak, V. N., Bernosikov, F. D., An extension of continuous outer measure on a Boolean algebra (in Russian), Izv. VUZ, 4(119), 1972, 3-9.
- [2] Černek, P., About product of submeasures, Acta math. Univ. Comem., to appear.
- [3] Černek, P., Product of p-submeasures, Math. Slovaca, to appear.
- [4] Dobrakov, I., On submeasures I, Dissertationes Mathematical, 112, 1973.

- [5] Dobrakov, I., Farková, J., On submeasures II, Math. Slovaca 30, 1980, 65-82.
- [6] Drewnowski, L., Topological rings of sets, continuous functions, integration, I - III, Bull. Acad. Pol. Sci., 20, 1972, 269-286.
- [7] Kalas, J., A construction of a subadditive measure from a set function defined on a semiring (in Russian), Mat. časop. SAV, 24, 1974, 263-273.
- [8] Kalas, J., Limit theorems concerning an integral with respect to a sub-additive measure (in Russian), Acta Math. Univ. Comen., to appear.
- [9] Neubrunn, T. Riečan, B.: Measure and integral (in Slovak), Bratislava 1981.
- [10] Riečan, B., An extension of Daniell integration scheme, Mat. časop. SAV, 25, 1975, 211-219.
- [11] Šipoš, J., Integral with respect to a pre-measure, Math. Slovaca, 29, 1979, 141-156.
- [12] Sipoš, J, A note on Hahn-Banach extension theorem, Czech. math. J.

REZIME

SUPREMUM ADITIVNIH MERA I INTEGRALA

U radu se karakteriše m - integral, kao monotona, pozitivno homogena i subaditivna funkcionela definisana na jednostavnim funkcijama, u odnosu na p - submeru, kao supremum familije aditivnih integrala.

Received by the editors March 12, 1992