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Abstract

The problem of the existence and uniqueness of a common fixed
point for a family of selfmappings in Menger spaces is investigated.
That family is supposed to satisfy a generalization of the contraction
condition.

AMS Mathematics Subject Classification (1991): 54H10, 4TH10
Key words and phrases: probabilistic spaces, fixed point, contraction.

1. Introduction

The theory of probabilistic spaces started to develop rapidly after the pub-
lication of the paper of B. Schweizer and A. Sklar [7]. A.T. Bharucha—Raid
and V.M. Sehgal [1] initiated the investigation of the fixed point problem
in probabilistic metric spaces T. Hicks [5] introduced a very convinient def-
inition of contraction which has properties quite similar to the properties of
the classical contraction in metric spaces. Different generalizations of this
type of contraction were given in (3], [6], V. Radu in [6] investigated a family
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of deterministic metrics in Menger spaces and some aspects related to the
fixed point theory.

In § 2 we give some definition and concepts which are used in this article.
For a detailed discussion of probabilistic spaces and their properties we refer
to [8]. In § 3, which is the main section of this paper, we present a new
generalization of Hicks—type contraction. Finally, in § 4, we discuss briefly
a connection of this theorems with metric spaces.

2. Preliminaries

A mapping F : R - R*(R* = {z € R,z > 0}) is a distribution function if
it is nondecreasing, leftcontinuous and inf;eg F'(t) = 0, sup,cp F(t) = 1.
In the sequel, we always denote by H the distribution function defined by
He) = { 0 e<0
1 e>0.
A commutative, associative and nondecreasing mapping ¢ : [0, 1] x [0, 1] —
[0,1] is a T-norm if #(a,1) = @ for all a € {0,1] and #(0,0) = 0.
A Menger space is a triplet (X, F,t), where X is an abstract set of
elements. F is a mapping from XxX into the set of all distribution functions
and t is a T-norm. We shall denote the distribution function F(z,y) by

F;, and F; () will represent the value of F,, at ¢ € R. The functions
Fry,z,y € X are assumed to satisfy the following conditions:

1. Fpy(e) = H(e) iff 2=y,

2. Fp4(0)=0, forall z,y€ X,

3. Fpy=Fy,, forall z,y€ X,

4. Fpy(e+8) = t(Fy (e), Foy(6)), forall z,y,z€ X and all ¢,6 € Rt.

The concept of neighbourhoods in Menger space was introduced by
Schweizer and Sklar [7]. If z € X,e > 0 and X € (0,1), then (g,)-

neighbourhood of = denoted by U,(e, ) is defined by Uy(e,)) = {y € X :
Fry(e) > 1 =A% '

If sup,q t(a,a) = 1, then (X, F, t) is a Hausdorff space in the topology
induced by the family {U,(e,A) : z € X,e > 0, X € (0,1)} of neighbourhoods
and that (g, A)-topology is uniformly metrisable.
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Let M be the family of continuous mappings m : Rt — R* such that

1. m(e 4 8) > m(e) + m(§), for all ¢,8 € RT,

2. m(e)=0 & ¢=0.

Let ¢ be an Archimedean T-norm with additive generator g [8], that is,
g-Foy(e+8) < g-Foa(e) +9- Foy(8)

for all z,y,z € X and all ¢,6 € R*.

According results from [6], we know that if m;,mz € M, then the func-
tion dyny m, : 5 X § — R defined by

mymy(2,9) = sup {mi(e) < g Fry(ma(e))}
e>0

is a metric on § which generates the (¢, A)-uniformity. Also, the next equiv-
alency holds

Ay ma(2,9)< €9 ¢ Fpy(ma(€)) < my(e).

3. Fixed point in probabilistic metric spaces

Throughout this section we allways assume that (X,F,t) is a complete
Menger space with T-norm ¢ such that sup, ., t(a,a) = 1.

If the function ¢ : Rt — R?% is a nondecreasing, semicontinuous from
the right and ¢(¢) < ¢ for all € > 0, then

(1) Jim_ ¢™(e)=0 forall ¢>0
Let f; : X — X, i € N be the family of mappings, {n;}icn the sequence
of natural numbers and let the next implication holds

max _ g-F,,(m2(e)) < mi(e) =
“1"E{$,y1f?'-"7,.fj"!l}

&) = g+ Fpme, s, (ma(0(e))) < ma(9(e))
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for all z,y € X. If z; is any element of X we can form the sequence

(3) zi-l-l:f;mzi ’ 1€ N.

Lemma 1. If the family of selfmappings { f;}ien satisfies (2) then for every
z1 € X the sequence {z;}ien (3) is a Cauchy sequence.

Proof. Let z; be an element from X and z;41 = f"z;,4 € N. In order
to prove that {z;};en is a Cauchy sequence we proceed as follows. Since
g(0) < oo and lim,_,o my(€) = oo , there exists ¢ > 0 such that ¢g(0) <
my(e). Then, after identification of z and y from (2) with elements of
sequence {z;}, we get

max - g-Fuu(ma(e)) < g(0) < my(e)

n; n
U,UE{I.‘,Ij,f.- ‘Ii)fj 1Ij}

for all 4,5 € {1,2,...} and all £ > 0. Since the family {f;}ien satisfies (1)
we obtain that

9+ Fyy o, (ma(9(0) < ma(9(6))

ie.
(4) 9 Frppr o0 m2(0(€)) < ma(p(e)) forall 4,5 €{1,2,...}.

This means that

max }_t] : Fu.v(mZ(‘P(e))) < m1(¢p(€))

wWE{Ti, T, Ti41,T541
for all ¢,j € {2,3,...}, which implies the inequality
g- Fa:.‘+1,:c,'+1 (mZ(‘PZ(E)) < ml(‘PZ(E))

for all 4,7 € {2,3,...}.

Continuing that procedure we get
g- Fz.‘,zij(‘Pk(e)) < m1‘(<pk(£))

forall i, € {k+1,k+2,...}.
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Since the mapping ¢ satisfies the condition (1), for all ¢ > 0 and \ ¢

(0,1), there exists ko(t, A) such that ma(¢*(¢)) < t and my(p*(e)) < g(1-A)
for all k£ > kog. Now, we obtain

g- F:t_i,:rj(m2(‘/’k(5))) < ml(‘Pk(E)) < g(1-A),
that is
in,:rj(m2(‘f°k(5))) >1-A,
and
er,:tj(t) > Fa:.',:vj(m2(‘Pk(5))) >1-A
for all 2,5 € {ko+ 1,ko+2,...}.

So, we have proved that {z;};cn is a Cauchy sequence.

Theorem 1. Let (X, F,t) be a complete Menger space with T-norm t such
that sup, ., t(a,a) = 1 and let the family {f;}icn of selfmappings of X be
such that the implication (2) holds. Then the family {f;}icn has e unique
common fized point which s the limit of the sequence (3).

Proof. From Lemma 1 we have that the sequence {z;};cn formed by
Zipr = f2z; , 1€N

is a Cauchy sequence and from the completness of X it follows lim;_,, 2; =
z € X. Now we shall prove that z is a common periodic point of {f;}:en,
that is, that

2=z , i€N.

Let Ao be the set of all discontinuity points of F, ;n: (). Since ¢* and my are

strictly increasing, we know that ¢~=¥(m5"(A)) is the set of all discontinuity
points of F, ni _(ma(¢*(€))). Moreover, Ao, %(m;'(Ao)), k = 1,2,...
are all cauntable, therefore

A= AU (| ¢7H(mz"(40))
k=1

is also cauntable. Let B = R\ A. Since g(0) < oo and lim,,«, my(e) = oo,
by the density of real numbers there exists ¢ > 0 such that ¢ € R and

max 9 - Fuu(ma(e)) < 9(0) < ma(e)

n:
uve{z;,z,xj41.f; 'z .
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for all j € N, and this implies that
9y, s (ma((e))) < ma(e(e)).
From the last inequality and Lemma 1. we have
ij+l,f:-az(m2(<p(5))) > g~ (mai(p(g)) forall jeN
and when j — oo
Fz,f'."-‘z(mw@)) > g7 (my((e))
which implies
g+ F, i (ma((e)) < ma(6(e)).
Further, as it was shown in (4) where ¢ was choosen analogously, we get
g- Fa:j,:z:j.,.] (m2(¢(€))) < ml((P(E))

for all j € {2,3...}. So, we can write

max g-Fuu(ma(ple))) < miele)) , j€{2,3,...}

uvE{z;,2,3541.; 2
which implies that
9+ F,, i (ma(92(€))) < mi(9%(e))) < ma(p*(e)) » j€{2,3,..}
and when j — oo we have
g+ F, gri(ma(#(€))) < ma(*(e))-
Continuing this procedure we get that
g- Fz,f'_n.-z(m2(<p’°(e)) < my(¢*(e)) , k€ N,e€R.

Since limg_, o ¢*(¢) = 0 for all t > 0 and A € (0,1) there exists ko(Z, A)
such that my(p*(e)) < t and my(¢*(€)) < g(1 — X) for all £ > ko. Then we
obtain

g-F, ini (ma(9*(e))) < m(p™(e)) <9(1-2) =

F, i (ma(pf(€) > 1-X =
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Fz,f:'iz(t) > Fz’ :’.‘z(ngak(E))) >1— A,
which means that z = f*z.

So we have proved that z is a common periodic point for the family
{fi}ien- To prove that z is the unique fixed point of f/* we suppose that
y € X is another fixed point of same f]*,i € N, that is, y = f*y. Then

max g Fy,(ma(e)) <mi(e) =
u,vE{z,y,f; 'zrf,' 'y}

g+ Foy(ma(p(e)) < mi(p(e))  and sinee z = fz,y = [Py
we have ' ’
9+ Fry(mag®(€)) < ma(¢"(e))
and for k > ko(t, A)

Fou(t) > 1A,

that is, z = .

Since f;fi"z = f" fiz = fiz and z is the unique fixed point of f]*, we
get that fiz = zforall t € N.

4. A connection with metric spaces

Theorem 2. Let (X,F,t) be a complete Menger space and {f;}icn the
sequence which satisfies (2). If t < ty, where g is aditive generator of tg,
then {f;}:en has a unique fized point which is the limit of the sequence (3)
for every zq € X.

Proof. We know that the function d : X x X — R defined by

dmlm2(z7 y) = Sllp{& e 07‘m1(6) <g- F—’B,y(m2(5))}

is a metric on X which generates the (g, A)—uniformity. It is obvious that
the next equivalency holds

dinymy (2,y) <€ & g Fpy(ma(e)) < my(e).
Further, from the inequality

(5) max  dpym,(u,7) <6,
uve{zy. oSy}
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we get that

max g+ Fuy(ma(e)) < m(e),
uvue{zvyrf.' ‘zvfj Jy}

which implies that
9 Fyrvp o, (ma(0(6)) < ma((e)),

that is,
dm1m2(f£nim7 f_;nj y) < ‘P(“:)
Combining the last inequality with (5), we obtain

Max iy (,9) < Plmama (£, £779)
u,uE{z,y,f‘. ‘I,fj Jy}

and from (2), the sequence {f;" }icn has a unique common fixed point which
is the limit of the sequence (3) for every z; € X.
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REZIME

NEKE GENERALIZACIJE KONTRAKCIJE U VEROVATNOSNIM
PROSTORIMA

Posmatran je problem egzistencije i jedinstvenosti zajednicke nepokretne
tacke za familiju samopreslikavanja u Mengerovim prostorima. Za tu famil-
iju se pretpostavlja da zadovoljava uopstenje uslova kontrakcije.
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