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Abstract

In this paper we construct the numerical solution for a class of dif-
ferential equations in the field of Mikusinski operators, ¥, which cor-
responds to a class of partial differential equations with nonconstant
coefficients. This solution is obtained from the discrete analoques,
for special classes of the considered problem, using the good algebraic
properties (see [1]), of the field F.
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1. Introduction

In this paper we consider the following linear partial differential equation

(1) - at:;szt) + ZA (/\)a (,;t’fg}\ 3) -+ ZB (/\)a'"a(t’: .t) = fi(\ 1),

with the appropriate conditions
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au+uu /\,0 B = O;V = 0,.1,...,7‘ - 1,
(2) WIO; uw=Lr=0,1,...,m-1,
#:2;1’:0,1)'"71)_17

(3) z(0,1) = C(1), z(1,t) = D(t),

where 1 2> 07 A€ [071]7 p,m,T € N7 D > m,p > 3 A;(/\),l = 0,...,771,
B;(A),i=0,...,n, are real valued continuous functions of one variable, while
fi(A,t) is a continuous real valued function of two variables. C(t) and D(t)
are continuous functions for ¢ > 0.

The ring of continuous functions C ( or locally integrable functions £ )
with usual addition and multiplication given by the convolution

F(t)+ g(t) = / f(r)a(t - )dr,

where f and ¢ are from C (or from L), has no divisors of zero, hence its
quotient field can be defined. The elements of this field, called the field of .
Mikusinski operators F, are of the form

f

y

9

where this division is observed in the sense of convolution. The most im-
portant operators are the integral operator ! and its inverse operator, the
differential operator s, while I is the identical operator. It holds

a—1

o t
ls=1, l —{—F(a)}’a>0

{2 (1)} = s"z — 5" 12(0) — ... — 2" D(0)I.

8

In the field of Mikusinski operators F equation (1) with canditions (2)
and (3) corresponds to the problem

(4) = LA+ > AN YN + Y Bi(V)s'u(A) = f(A)

1=0 1=0

(5) w0)=C,  w(l)=D,
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where s is the differential operator, A;(A), Bi()), fa(A) = {f1(A,t)} are con-
tinuous operator functions, while C' = {C(t)} and D = {D(t)} are operators.

Multiplying equation (4) with /” we obtain the following equation

(6) = w”(A) + PA)u'(A) + Q(M)u(A) = £(A)
with o .

(7) PO) =3 AP, Q)= B
and

fN) =P fa(A)

It is obvious that if p > m and p > 7, then P()) and Q(A) represent
continuous functions of two variables.

If p=m = r, then one can write

(8) P(\) = A (M + mi: A; (WP = A (NI + Pi())

and i

(9) Q(A) = B:(MI+ > Bi(A\P™ = B.(\I + Q1()),
1=0

where P;()), and () are operator functions representing continuous func-

. tions of two variables.

Let us suppose that P()),Q()), (or Pi(A),@1())) and f()) are opera-
tor functions which have continuous its second derivatives and the solution
u(A) has a continuous fourth derivative (see[2]). Let us use the following
notations:

h =

P ne€N, A=jh, j=12,.n+1,

Q; = Q(X;), P;j=P(}j), u; = u(A;), fi = f(Xj)-

As is usual in numerical analysis, we shall use the following difference
quotients

—u(A—h)+2u(A) —u(A+h) h2u(&)
B2 TR

(10) —u"(\) =
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u(A+h)—u(A=h) R*u"(&)

(11) u'(A) =

2h 6
(12) W) = 2= Z(z\ —h) hu”2(§3),
' u(A+h) —u(d) hu(és)
(13) u (/\) = 5 _ > 4 ,

where & € (A= hyA+ )& € (A= kA +h),& € (A —h,A+h) and
€4 € (A — h, A+ h), in order to obtain an appropriate discrete analogues.

2. Discrete anlogoue 1

Taking the expressions given by relations (10), (11) instead of the »” and v’
(without reminder) we obtain the following discrete analogue

. — v i v; — V45— :
(14)— Vi+1 h’l;1 +v.7 1 +PJ .7+12h =1 +Q_1v.7 = f]’ 1= 1,---:)'":7

(15) Vo = C, V41 = D.

Remark. In the system (14) and (15) we take the approximations of the
solution u denoted by v (as is usual in numerical analysis).

The system (14) and (15) can be expressed as
(16) a;vi-1 + ijj + ¢;v541 = fj v9 = C, Upt1 = D,

where a;,b;,¢;,7 = 1,..,n are operators having the form

1, hP
(17) oj = —= (I + %)
(18) by = (21 + 12Q;)
1, hP
(19) ¢ =—(I-—=%)

The field of Mikusinski operators has very good algebraic properties
(see[2]), so for obtaining operators v;, j = 1,2,...n, one can use the same
methods from numerical analysis which are applicable in similar situations
(see [3]), when a;, b;, and ¢; are numerical constants.
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The system (16) can be written in the form
(20) Av=d

where A, v,d are corresponding matrices in the field F

by o . . 0 0
N az by cy . 0 0
(21) ’ A= ,
. | bn—l Cn—~1
an b,
[ v 1 ( fi—a,C ]
) f2
(22) v = , d=
Un-1 fn—l
L Un i | frn—cnD |
L First, we shall consider such classes of equation (1) with condi-

tions (2) and (3) where p > m and p > r.

Theorem 1. If matriz A and vector d have the forms given by relations
(21), and (22), respectively, then the system Av = d (given by relation(16))
has unique solution given by

T T — C;V; )
(23) v, = =, vj=—1——1—1t1—, j=n—-1n~-2,..1,
an a;

where
a; .

(24) a1=bi, B;= a~11’ a; =b; — fic;_1, J=2,3,..n,
i

and

(25) ry = dy, ri=d; — firi_1, 31=2,..n
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Proof. 1t is obvious that there exist matrices L and U such that A =
LU ,where

1 0
B 1 0
L=10 p3 1 0ij,
0 . Bn 1
a 0
0 Qg €2 0
U=
0 . . e . Qn_1 €p_1
0 . ... a,

where o;,j = 1,..., and f;,j = 2,...,n, has the forms which are given in
relation (17).

From relation (20) in the field F it follows

o] = bl = h—2(21+ thl) = ’)’II + (25 93

I+ 48 hP. h?
e e (L O) y Ay
1=0

Since, for p > m,p > r operators Py, Ps, ..., P, Q1,@2, ..., @, represent
continuous functions, then the infinite series in the previous relation is an
operationally convergent series (see [1], pp 180), so we can write

B2 = b21 + B,

where 6, is a numerical constant and ;. is an operator representing con-
tinuous function. Also, it holds

hP1

ay = by — Paer = h73((21 + h2Q2) + (821 + B2, )T — —=))

ag = h_2(721 + az )
ag _ IT+p

N -

=031+ B3,



The numerical solution of differential equation . .. 97

and finally

(26) a; = (v + aj.), Bi=6;1+pj,c j=3,.n.

where 7,7 = 1,...n and §;,j = 2, ...n, are numerical constants and o .,j =
1,..m, B, 7 =2,..n,are operators which represent continuous functions.

It is clear that in this case y4 = 2h72 # 050 §; = —1/2 # 0, and using
the mathematical induction it can be proved easily, that

k+1, _ k-1
Vi = Th O = k=2,..n

This means that y; # 0,7 = 1,...n and consequently from relation (26) it
follows a; # 0,5 = 1,...n.

As in linear algebra, in this case we can say that the matrix A is a regular
matrix. Using the trivial algebraic operations one can easily prove that the
unique solution of this system has the form given in relations (23),(24) and
(25).

Now, we can prove the following
Corollary 1. The numerical solution of the differential equation (4) with
conditions (5), with p > m,p > r denoted by v,k = 1,...n, obtained as the

solutions of the algebraic system given by relation (16) are operators from
F representing continuous functions.

Proof. Since the operators C, D, Py, Pa, ..., P, Q1,Q2, ...,Qn and IPf;, 5 =
1,...n, are operators representing continuous functions, then r; = d; repre-
sents a continuous function, too. If we suppose that each operator r;,7 =
2,..,k — 1, represents a continuous function, then from the relation

7k = dg — (61 + Brc)rk-1
it follows that ry is also an operator which represents a continuous function.

So, we can write

vy = —rn Z(al,n

i=o

and also

a . -
= —(r] - c]vH.I)Z( Liy  j=w-1,.,l
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Therefore we can conclude that v;, j=1,2,...n are operators from F are
representing continuous functions.

The functions v;(t) such that v; = {v;(¢)},j = 1, ...n, we call the numer-
- ical solutions of the partial differential equation (1) with conditions (2) and

(3) (in the plains A\x = nl—_ﬁk)

Remark. In the case when p > m, p > r we do not need any more supposi-
tion about the functions A;,j = 1,2,...,mand B;,j = 1,2, ..., 7 except those
that make operator functions A(A) and B()) continuous operator functions.

IL. Now, let us consider differential equations of the form (4) with
conditions (5) where in P(A) and Q(2) it holds that p = m,p = r. In that
case the coefficients in the system (16) a;j,b; and ¢; can be written as

1 hA,(Af)
1
(27) a; = a}l + P}, 0} = — 5 (1+ 5,
1
(28) bj=bil+Qf, b= 35(2+hB.()))
1 hAn(X;)
(29) G=dl-Fl,  d=-50-2Am))
where a},b} and c} are numerical factors and P} and Q; are operators

representing continuous functions.

Previous three relations are giving the form of the elements of matrix A
given by (21). In order to obtain the solution of the system (14) and (15)
in this case we need some suppositions about P(\) and Q(A).

Theorem 2. If.in relations (8) and (9) (p = m. p = r) the numerical
factors A, and B, satisfy the following inequalities

hAm()
——-——2 <

B,-(/\) >0, 1, A€ [0, 1],

Then the system Av = d (given by (20), where the elements of matriz A
satisfy the conditions (27), (28), and (29), and vector d has the form given
in relation (22), has a unique solution given by

Tn Ti = €jVin

(30) Uy = a:, v; = T", _’] =T - 1,n.-— 2, reny ].,
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where
a; .
(31) o =by, Bi= .‘7 , a; =b; - Bici1, j=2,3,..n,
a;_q
and
(32) 7 = dy, ri=d; —Biri—1, j=2,..n

Proof. Let us remark that in this case the solution of the system given by
relation (20) has the same form as in Theorem 1. So ,again we have to prove
that a; # 0. Using that

Ap(A
B.(A) >0, and 2( <1
we have
61| > e |>0
(33) 65| > |ay|>0

|6} | > |a|+]el], j=2,.n—1

Since a; and §; for 7 = 1,...,n, are operators from F, let us decompose
them as
ap = b}I+ Q} = a}I+ a{’c,

1

1 ] 1
a; axl—55%  a
=2__2th - 274 g0 =B+,

P T UTT e A
and
az = b1+ Q3 — (B3 + Bz )l — i) =

= (03— Bre) +og =yl + oy,
and ﬁha]ly
(34) aj=al +aj, Bi=p1+0;,
where

a;

(35) $) J 1751 J a}_1

where o, o, ...,a%, and 8}, 83, ..., B2, are numerical constants and o] , 03 , ..., @},
and B8] _, B2 ,..., B2, are operators representing continuous functions.
k 9 v
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For o}, 3} we can prove that it holds
1 .
C-
al # 0; L < 1.
o
f]
In the proof we use the inequalities from (33) and it is analogous as the same
one, for the matrix where a;,b;, and c; in matrix A are numerical constants

(see[3]).

If £()\) on the right hand side of the equation (4) and the operators C' and
D which are conditions given by relation(5) represent continuous functions
then as in Corollary 1. we can prove that the solutions of the considered
system are operators vj,j = 1,2,..,n representing continuous functions.

3. Discrete analogue II

Let us consider the case when u” and u’ can be approximated by relations
(10) and (12) (without remainder). Then we obtain the following discrete
analogue

(36) ajvi_1 +bjv;+evipa=f; vw=C, vpp1 =D,
where a;,b;,¢;,7 = 1,..,n are operators having the form

(37) 0 = —35(I + hP),

(38) b= 5 @I +hP) +Q;

(39) cj = —-h—2[

The system Av = d corresponds to the system given by relation (36), with
matrix A, which has form (21) with elements a;,b;,¢;,7 = 1, ..., n satisfying
the relations (37), (38) and (39) and vector d has the form given in relation
(22).

In this case, also we can have

Theorem 3. If in relations (8) and (9) we have A,,(A) > 0 and B,()) > 0,
for XA € [0,1] then the system Av = d corresponding to the system given by
(36) has unique solution and can be ezpressed as in relation (30), (31), and

(32)-
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Proof. Since in this case also, we can express a; as in relation (27) and

Pl
bj = b}I + == + Q;

where .
b= (24 hAw(\) + hB, ()

we have the same inequalities as in (33) , so we can similarly obtain that
a; #0,for j=1,...,n.

4. Discrete anologue 111

If we consider the case when u” and %' can be approximated by relations
(10) and (13) (without remainder). Then we obtain the following discrete
analogue

(40) a;v; -1 + bJ’UJ + C;Vi41 = fJ Vo = C, Un+1 = D,

-where a;,b;,¢;,7 = 1,..,n are operators having the form

1
(41) a; = _ﬁl,
1
(42) bj = ﬁ(QI — hPJ) + Qj,
1
(43) ¢j = =751 = hE)).

Also,we have

Theorem 4. If in relations (8) and (9) we have A, () > 0 and B,()) > 0,
for X € [0,1] then the system Av = d corresponding to the system given by
(40) has unique solution and can be ezpressed as in relations (30), (31), and

(32).
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REZIME

PRIBLIZNO RESENJE DIFERENCIJALNE JEDNACINE
U POLJU OPERATORA MIKUSINSKOG

U radu se konstrui3e priblizno resenje klase diferencijalnih jednaéina u polju
operatora Mikusinskog, F koje odgovaraju klasi parcijalnih diferencijalnih
jednatina. Numericko reienje se dobija kao reSenje diferentnih jednalina
(diskretnog analogona) u polju F.
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