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Abstract

The family of difference schemes via finite element method is de-
rived. The El Mistikawy and Werle scheme is a member of the family.
The scheme having the forth order of the classical convergence and
second order of uniform convergence derived in [8] is a memeber of the
family, also. !
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1. Introduction

Let us consider the following singularly perturbed problem

" Ly = —ey” + p(z)y' = f(z), ze€l=][0,1),
¥(0) =0, y(1)=0,

where ¢ is a small positive parameter, p and f are sufficiently smooth
functions and p(z) > p > 0. By using exponential spline e(z) from [4],
e(z) € CY(I), as a collocation function, a family of difference schemes is
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derived in [4]. The well known Allan-Southwel- I'in and El Mistikawy-
Werle ( EMW ) schemes are members of this family. The new scheme colled
Improved EMW scheme is analysed in [6]. The linear combination of the
schemes IEMW and EMW is considered in [8]. In this paper the mentioned
schemes are derived via finite element method by using suitable test func-
tions.

2. The weak form

The weak form of the problem (1) is: Find y € H(0,1) so that

B(y,v) = —¢(y',v") + (py', v) = (f,v),

for all v € H'(0,1), where H1[0,1] is Sobolev’s space with norm  ||ul{y =
((u,w) + (v, u))1/%, (-,-) denotes inner product in L;(0,1). If we choose
subspaces §" (trial space) and 7" (test space) from H'(0,1) we can define
the problem: Find u" € S* such that

(2) B(yh’vh) = (f’ vh)’

for all v* € T" such that v*(0) = v*(1) = 0. Let {¢;}77" and {%;}7~" be
a set of basis functions for S* and T*, respectively. Let zj = h+j,j =
0(1)n,h = 1/n. Then

n—1 n—1
h . h _ afy -
Yy :E yj¢_1’ v —E 'UJ"J)J-
j=1 j=1

Since
n—1
supp(¢;) = [2j-1, zj41); $(z5) = 1, Y ¢ie) = 1,2 € [21, 2n—1]
i=1

and the same relations are valid for function %, we have u"(x_,-) = u; . With
this, (2) reduces to

i
(3) Z (¢.11’ _5¢_; +p($)¢j)uk = (fa 1/’1‘),1 = l(l)n_ 1,

k=j—-1

ug = uy, = 0.
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3. Choice of Trial and Test function

The test function we choose is of the form

P(z) = AP(2) + (1 - A)i(z),

where (
- | &z —1z;) for z€;
V()= { 1—&41(z —z;) for z €Iy,

&(z) = (exp(pz/e) — 1)/(exp(f) — 1), 4 = Fyh/e, and

o éi(z—z;0q) for z €1
1/)(2:) - { 1-— éj+1(17 - IZJJ') for z € Ij+1,
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and ¢é;(z) = (exp(pz/e) — 1)/(exp(p;) — 1) p; = Pih/e, p; = (Pj-1 + ;)/2,
p; = p(z; — h/2), I; = [z;-1,z;] and A is a real number. Note that the

function &;(z) is the solution of the adjoint problem

—eé;-' + ﬁjé; =0
€j(0) =0, &(h)=1.
The similarly is for €;.

For same details about test functions see [3] or [5].

4. Discretization of the Problem

The quadrature rules in (3) we determine in the following way

(p(z)b, )5 =~ Api (¢, 9); + (1 — N)pi(¢, ¥);

where index j denotes the integral on the interval [z;_y,z;] and integrals
(¢ ,'JJ) and (¢’ ,'JJ) are evaluted exactly. Namely, we choose test and trial
function such that these terms will be easy to evaluate. In this case, the
choice of the test functions gives that (—E'JJ;- +p5'j'¢;j) = const. and (—51/};' +
;)jq/}j) = const. Because of that, we obtain that independetly of the choice of
trial function we can evaluate the integrals exactly. After some elementary

calculations we obtain the family:

Ru; =Qf;, j=11)n
@ { j=1(1)

U(]:O, ’Url:O,
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where
Ruj = riuj 1 4 riu; + 1l ujp
Qfi = AG; fica + (1= NqF fizapp + 2GS + (L= Mg fipz + (1= Ngt fim
r> = AT+ (1= Xy, =X f+(1- )],
r§ = Arf+ (1= M5, rf =eR™(u7)/h?, 1y =eR™(ny)/h?,
R*(a) = a/(1 —exp(—a)), R (a)=aeczp(-a)/(1 - ezp(-a)),
+

c — c o__ —_ +
"N =-Ty =Ty, To=—Ty —Ty

pi = hpi/e, pf = hpina/e,p; = hpsfe, pg = hpiia/e,

_ _1-R(g) = RY(uf) -1

;g = ——=, ¢} y =q7 +qf
J Zlu'l J 2#1 J J J

o LoRG) L R -
! py ? py

Thus, when A = 1 we obtain the EMW scheme. When A = 0 we obtain
IEMW scheme analysed in [6]. In order to obtain the scheme with greater
accuracy , we analyse the truncation error ;(y).

m(v) = Ry; — Q(Ly;) = Tjoy; + Tin¥; + Ty + O(h*/e)
where Tjo = T;; = 0 and
h? _ + - Lt = o= - ot
Tin= 5 (ry +17) — Melgg + 45+ ) — h(Biq; = pinrgi™))
—e(1 = N)(¢f + ¢F) — M4 ¥ + g piv) /2.
£( q] q; Pj + 45 Pi+1
After some Taylor’s expansions we obtain

Tjp = )\—(p (B1) + 7' (B2)) + (1 - /\) (p (B3) + p'(Ba)) + 0(—)

where
zj-1 < P <zj <Py <Tjp1.
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Ti_1/2 < P3 < x5 < Pg < Tjqq/g-

Since, p(z) is smooth function we can put A = 4/3 and then we have

In that case the scheme (4) becomes the scheme derived in [8]. The following
theorems holds. '

Theorem 1. Let y(z) € C*(I) . Let u; be approzimation of y(z;) obtained
ustng scheme (4) for A =0 or for A =1. Then

ly(z;) — uj| < M h?
where M is constant independent of € and h.

Proof. For A = 1 we obtain the EMW scheme and the proof is given in
[1]. For A = 0 the scheme reduces to IEMW scheme from [6] and the proof
is given there.

Theorem 2. Let y(x) € C8(I). Let u; be approzimation of y(z;) obtained
using scheme (4) for A = 4/3. Then

h4
l9(z5) —ujl € Myzm—3

where M 1is constant independent of ¢ and h.

Proof. For A = 4/3 the scheme reduces to one derived in [8] and the proof
is given there.

Nurmerical results presented in'[6] and [8] suggest that for very smal ¢
should be use A = ¢. In that case some advantages of IEMW scheme become
important ( see [6]).
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REZIME

'NEKE DIFERENCNE SEME IZVEDENE POMOCU METODE
KONACNIH ELEMENATA

Primenom metode konacnih elemenata izvedena je familija diferencnih sema
za singularno perturbovane probleme. Kao ¢lanovi familije pojavljuju se
Seme izvedene u ranijim radovima autora kao i poznata El Mistikawy Werle
Sema.
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