Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 24, 1 (1994), 341-346 Review of Research Faculty of Science Mathematics Series

SOME DIFFERENCE SCHEMES DERIVED VIA FINITE ELEMENT METHOD

Katarina Surla

Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

The family of difference schemes via finite element method is derived. The El Mistikawy and Werle scheme is a member of the family. The scheme having the forth order of the classical convergence and second order of uniform convergence derived in [8] is a member of the family, also.

AMS Mathematics Subject Classifications (1991): 65L10 Key words and phrases: Finite element, difference scheme, singular perturbation problem, uniform convergence.

1. Introduction

Let us consider the following singularly perturbed problem

(1)
$$\begin{cases} Ly = -\varepsilon y'' + p(x)y' = f(x), & x \in I = [0, 1], \\ y(0) = 0, & y(1) = 0, \end{cases}$$

where ε is a small positive parameter, p and f are sufficiently smooth functions and $p(x) \geq p > 0$. By using exponential spline e(x) from [4], $e(x) \in C^1(I)$, as a collocation function, a family of difference schemes is

342 K. Surla

derived in [4]. The well known Allan-Southwel- Il'in and El Mistikawy-Werle (EMW) schemes are members of this family. The new scheme colled Improved EMW scheme is analysed in [6]. The linear combination of the schemes IEMW and EMW is considered in [8]. In this paper the mentioned schemes are derived via finite element method by using suitable test functions.

2. The weak form

The weak form of the problem (1) is: Find $y \in H^1(0,1)$ so that

$$B(y,v) = -\varepsilon(y',v') + (py',v) = (f,v),$$

for all $v \in H^1(0,1)$, where $H^1[0,1]$ is Sobolev's space with norm $||u||_1 = ((u,u) + (u',u'))^{1/2}$, (\cdot,\cdot) denotes inner product in $L_2(0,1)$. If we choose subspaces S^h (trial space) and T^h (test space) from $H^1(0,1)$ we can define the problem: Find $u^h \in S^h$ such that

(2)
$$B(y^h, v^h) = (f, v^h),$$

for all $v^h \in T^h$ such that $v^h(0) = v^h(1) = 0$. Let $\{\phi_j\}_1^{n-1}$ and $\{\psi_j\}_1^{n-1}$ be a set of basis functions for S^h and T^h , respectively. Let xj = h * j, j = 0(1)n, h = 1/n. Then

$$y^h = \sum_{j=1}^{n-1} y_j \phi_j, \quad v^h = \sum_{j=1}^{n-1} v_j \psi_j.$$

Since

$$supp(\phi_j) = [x_{j-1}, x_{j+1}]; \phi(x_j) = 1; \sum_{j=1}^{n-1} \phi_j(x) = 1, x \in [x_1, x_{n-1}]$$

and the same relations are valid for function ψ , we have $u^h(x_j) = u_j$. With this, (2) reduces to

(3)
$$\sum_{k=j-1}^{j+1} (\phi'_j, -\varepsilon \psi'_j + p(x)\psi_j) u_k = (f, \psi_j), j = 1(1)n - 1,$$

$$u_0=u_n=0.$$

3. Choice of Trial and Test function

The test function we choose is of the form

$$\psi(x) = \lambda \tilde{\psi}(x) + (1 - \lambda)\dot{\psi}(x),$$

where

$$\tilde{\psi}(x) = \begin{cases} \tilde{e}_j(x - x_{j-1}) & \text{for } x \in I_j \\ 1 - \tilde{e}_{j+1}(x - x_j) & \text{for } x \in I_{j+1}, \end{cases}$$

$$\tilde{e}_j(x) = (\exp(\tilde{p}x/\varepsilon) - 1)/(\exp(\tilde{\rho_j}) - 1), \, \tilde{\rho_j} = \tilde{p}_j h/\varepsilon, \, \text{and}$$

$$\dot{\psi}(x) = \begin{cases} \dot{e}_j(x - x_{j-1}) & \text{for } x \in I_j \\ 1 - \dot{e}_{j+1}(x - x_j) & \text{for } x \in I_{j+1}, \end{cases}$$

and $\dot{e}_j(x) = (\exp(\dot{p}x/\varepsilon) - 1)/(\exp(\dot{\rho}_j) - 1)$ $\dot{\rho}_j = \dot{p}_j h/\varepsilon$, $\tilde{p}_j = (p_{j-1} + p_j)/2$, $\dot{p}_j = p(x_j - h/2)$, $I_j = [x_{j-1}, x_j]$ and λ is a real number. Note that the function $\tilde{e}_j(x)$ is the solution of the adjoint problem

$$-\varepsilon \tilde{e}_j'' + \tilde{p}_j \tilde{e}_j' = 0$$

$$\tilde{e}_j(0) = 0, \quad \tilde{e}_j(h) = 1.$$

The similarly is for \dot{e}_j .

For same details about test functions see [3] or [5].

4. Discretization of the Problem

The quadrature rules in (3) we determine in the following way

$$(p(x)\phi,\psi)_j \simeq \lambda \tilde{p}_j(\phi',\tilde{\psi})_j + (1-\lambda)\dot{p}_j(\phi',\dot{\psi})_j$$

where index j denotes the integral on the interval $[x_{j-1}, x_j]$ and integrals $(\phi', \tilde{\psi})$ and $(\phi', \tilde{\psi})$ are evaluated exactly. Namely, we choose test and trial function such that these terms will be easy to evaluate. In this case, the choice of the test functions gives that $(-\varepsilon \tilde{\psi}'_j + \tilde{p}_j \tilde{\psi}_j) = const.$ and $(-\varepsilon \dot{\psi}'_j + \dot{p}_j \dot{\psi}_j) = const.$ Because of that, we obtain that independently of the choice of trial function we can evaluate the integrals exactly. After some elementary calculations we obtain the family:

(4)
$$\begin{cases} Ru_j = Qf_j, & j = 1(1)n \\ u_0 = 0, & u_1 = 0, \end{cases}$$

344 K. Surla

where

$$Ru_{j} = r_{j}^{-}u_{j-1} + r_{j}^{c}u_{j} + r_{j}^{+}u_{j+1}$$

$$Qf_{j} = \lambda q_{j}^{-}f_{j-1} + (1-\lambda)q_{j}^{\mp}f_{j-1/2} + \lambda q_{j}^{c}f_{j} + (1-\lambda)q_{j}^{\pm}f_{j+1/2} + (1-\lambda)q_{j}^{+}f_{j+1}$$

$$r_{j}^{-} = \lambda r_{1}^{-} + (1-\lambda)r_{2}^{-}, \quad r_{j}^{+} = \lambda r_{1}^{+} + (1-\lambda)r_{2}^{+},$$

$$r_{j}^{c} = \lambda r_{1}^{c} + (1-\lambda)r_{2}^{c}, \quad r_{1}^{-} = \varepsilon R^{-}(\mu_{1}^{-})/h^{2}, \quad r_{2}^{-} = \varepsilon R^{-}(\mu_{2}^{-})/h^{2},$$

$$R^{+}(a) = a/(1-\exp(-a)), \quad R^{-}(a) = a \exp(-a)/(1-\exp(-a)),$$

$$r_{1}^{c} = -r_{1}^{-} - r_{1}^{+}, \quad r_{2}^{c} = -r_{2}^{-} - r_{2}^{+}$$

$$\mu_{1}^{-} = h\tilde{p}_{j}/\varepsilon, \quad \mu_{1}^{+} = h\tilde{p}_{j+1}/\varepsilon, \mu_{2}^{-} = h\tilde{p}_{j}/\varepsilon, \quad \mu_{2}^{+} = h\tilde{p}_{j+1}/\varepsilon,$$

$$q_{j}^{-} = \frac{1-R^{-}(\mu_{1}^{-})}{2\mu_{1}^{-}}, \quad q_{j}^{+} = \frac{R^{+}(\mu_{1}^{+}) - 1}{2\mu_{1}^{+}}, \quad q_{j}^{c} = q_{j}^{-} + q_{j}^{+}$$

$$q_{j}^{\mp} = \frac{1-R^{-}(\mu_{2}^{-})}{\mu_{2}^{-}}, \quad q_{j}^{\pm} = \frac{R^{+}(\mu_{2}^{+}) - 1}{\mu_{2}^{+}},$$

Thus, when $\lambda = 1$ we obtain the EMW scheme. When $\lambda = 0$ we obtain IEMW scheme analysed in [6]. In order to obtain the scheme with greater accuracy, we analyse the truncation error $\tau_i(y)$.

$$\tau_j(y) = Ry_j - Q(Ly_j) = T_{j0}y_j + T_{j1}y'_j + T_{j2}y''_j + O(h^3/\varepsilon)$$

where $T_{j0} = T_{j1} = 0$ and

$$T_{j2} = \frac{h^2}{2} (r_j^- + r_j^+) - \lambda (\varepsilon (q_j^- + q_j^c + q_j^+) - h(\tilde{p}_j q_j^- - \tilde{p}_{j+1} q_j^+))$$
$$-\varepsilon (1 - \lambda) (q_j^+ + q_j^\pm) - h(q_j^+ \dot{p}_j + q_j^\pm p_{j+1}^+)/2.$$

After some Taylor's expansions we obtain

$$T_{j2} = \lambda \frac{-h^2}{6\varepsilon} (p'(\beta_1) + p'(\beta_2)) + (1 - \lambda) \frac{-h^2}{24\varepsilon} (p'(\beta_3) + p'(\beta_4)) + O(\frac{h^3}{\varepsilon})$$

where

$$x_{j-1} < \beta_1 < x_j < \beta_2 < x_{j+1}$$
.

$$x_{j-1/2} < \beta_3 < x_j < \beta_4 < x_{j+1/2}$$
.

Since, p(x) is smooth function we can put $\lambda = 4/3$ and then we have

$$T_{j2} = O(\frac{h^3}{\varepsilon}).$$

In that case the scheme (4) becomes the scheme derived in [8]. The following theorems holds.

Theorem 1. Let $y(x) \in C^4(I)$. Let u_j be approximation of $y(x_j)$ obtained using scheme (4) for $\lambda = 0$ or for $\lambda = 1$. Then

$$|y(x_j) - u_j| \le Mh^2$$

where M is constant independent of ε and h.

Proof. For $\lambda=1$ we obtain the EMW scheme and the proof is given in [1]. For $\lambda=0$ the scheme reduces to IEMW scheme from [6] and the proof is given there.

Theorem 2. Let $y(x) \in C^6(I)$. Let u_j be approximation of $y(x_j)$ obtained using scheme (4) for $\lambda = 4/3$. Then

$$|y(x_j) - u_j| \le M \frac{h^4}{h^2 + \varepsilon^2}$$

where M is constant independent of ε and h.

Proof. For $\lambda = 4/3$ the scheme reduces to one derived in [8] and the proof is given there.

Numerical results presented in [6] and [8] suggest that for very smal ε should be use $\lambda = \varepsilon$. In that case some advantages of IEMW scheme become important (see [6]).

References

 Berger, A., Solomon, J., Ciment, M., An Analysis of a Uniformly Accurate Difference Method for a Singular Perturbation Problem, Math. Comput. 37 (1981) 79-94.

- [2] Doolan, E.P., Miller, J.J.H., Schilders, W.H.A., Uniform numerical methods for problems with initial and boundary layers, Dublin, Boole Press 1980. Press, Dublin 1980, 301-305.
- [3] Heinker, P. W., A Numerical Study of Stiff Two-Point Boundary Problems, Amsterdam, Mathematical Centre 1977.
- [4] Hess, W., Schmidt, W. J., Convexity Preserving Interpolation with Exponential Splines, Computing 36 (1986) 335-342.
- [5] O'Riordan, E., Finite Element Methods for Singularly Perturbed Problems, Dublin, Trinity Collage 1982 (Ph. D. thesis).
- [6] Surla, K., Uzelac, Z., An Analysis and Improvement of El Mistikawy and Werle scheme, Publ. Math. Inst. (1993),
- [7] Surla, k., Uzelac, Z., Some uniformly convergent spline difference schemes for singularly perturbed boundary value problem, IMA J. Numer. Anal. 10 (1990) 209-222.
- [8] Surla, K., Uzelac, Z., A Uniformly Accurate Difference Scheme for Singular Perturbation Problem (submitted)

REZIME

NEKE DIFERENCNE ŠEME IZVEDENE POMOĆU METODE KONAČNIH ELEMENATA

Primenom metode konačnih elemenata izvedena je familija diferencnih šema za singularno perturbovane probleme. Kao članovi familije pojavljuju se šeme izvedene u ranijim radovima autora kao i poznata El Mistikawy Werle šema.

Received by the editors December 22, 1993