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Abstract

A fixed point theorem for multivalued C-contraction in 2-Menger
spaces is proved.
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1. Introduction

The theory of probabilistic metric spaces is an important part of Stochastic
Analysis, and so it is of interest to develop the fixed point theory in such
spaces [16].

The first result from the fixed point theory in probabilistic metric spaces
is obtained by Sehgal and Bharucha-Reid in [18]. Since then many fixed
point theorems for singlevalued and multivalued mappings in probabilistic
metric spaces have been proved [5]-[8], [12]. The study of 2-metric spaces
was initiated by S.Gahler [2] and some fixed point theorems in 2-metric
spaces were proved in [1], [3], [4], [9])-[11], [13], [14].
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Some fixed point theorems in probabilistic 2-metric spaces [19] were
proved in [1] and [15].

In this paper a fixed point theorem for multivalued C'— contractions in
2-Menger spaces will be proved. For singlevalued mappings the notion of a
C —contraction in probabilistic metric spaces was introduced by Hicks [3].

2. Preliminaries

Let AT be the set of all the distribution functions F such that F(0) = 0
(F : R — [0,1] is a nondecreasing and leftcontinuous mapping such that
]imt_,oo F(t) = 0)

Let H € At be defined by :H(t) =1, fort > 0 and H(t) =0, for ¢t < 0.

The notion of a Menger space is a generalization of the notion of a
metric space [16]. In a similar way, the notion of a 2-Menger space is a
generalization of the notion of a 2-metric space [19].

Let S A#0,F: 5 x85x85 — A% and T be a t— norm [16]. The triple
(5,F,T) is a 2-Menger space if the following conditions are satisfied:

1. For all z,y € S such that z # y there exists z € § such that
Fx’yYZ # H.
2. F, . =M if at least two of z,y,2 € § are equal.

3. Forall z,y,2€ S, Fpy.=Fp,y = Fy 0.
4, For all z,y,z,u € S and for all t;,%5,23 > 0

Foys(ti +ta +13) > T (Foyu(tr), Frz(t2), Fuy:(13))-
Remark. In this paper we shall use the following notation:
TY(z,y) = T(z,y), T*(z,y,2) = T(z,T'(y, z)) and for every n > 3,
T™(21, 22, ey Tny1) = T(21, T 22,23y 0oy Tnt1))-
A sequence {z,},cn from § converges to z € § if for every a € §

F:c,:z:.,,,a — H
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in the topology of the weak convergence in A*. This means that for every
a € §,every € > 0 and every A € (0,1) there exists n(e, A\,a) € N such that

Frznal€) > 1= A, forall n > n(e, A, a).

A sequence {z,} N from S is a Cauchy sequence if for every a € S, ¢ >
0 and A € (0,1) there exists n(e, A,a) € N such that

Fl‘n@'n«}pyﬂ(e) > ]' - A

for every n > n(e, A,a) and every p € N.

A 2-Menger space is complete if every Cauchy sequence {z,},cN in S
converges in 5.

3. A fixed point theorem

In the Theorem we shall denote by P the set of all functions ¥ : Rt — R*
which are nondecreasing and such that for every s > 0 the series 37 | ¥"(s)
converges. By 2M we shall denote the family of all nonempty subsets of

M C 5.

A t—norm T is of the h—type if the family of functions {T%.(z)}.eN
is equicontinuous at the point z = 1, where Ti(z) = T(z,z),T,(z) =
T(z,Tn-1(z)), for every n > 2. In [5], such an example of a t— norm T
is given.

Theorem 1. Let (S,F,T) be a complete 2-Menger space such that
sup,1 T(z,2) = 1, M be a nonempty and closed subset of S, f: M — oM g
closed multivalued mapping, v € P and the following conditions are satisfied:

(1) t— norm T is of the h—type. :
(i) For every p,q € S and every x > 0 the following implication holds:

Fyqa(z)> 11—z, for every a € § = for every u € fp there exists v € fq
such that F,,.(¢(z)) > 1 — (z), for everya € S.

Then there exists x € M such that z € fz.
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Proof. Let g € M and =y € fzg. Let s > 1. Then for every a € §

(1) | FII,IOaa(s) > 1 - 3.

From (i7) and (1) follows that there exists 2 € fz; such that for every
a€s: ’
(2) Foaor,a($(8)) > 1= 9(s).

Similarly from (2) it follows that there exists z3 € fz2 such that for
every a € §

Frsquya(¢2(3)) >1- 1>Z)2(5)'

Hence, in the same way, we can obtain z, € M,n > 3 such that z, €
fz,—1 and that for every a € §

(3) Frnonoy,a(¥77(8)) > 1= 9" 1(s).
Since lim,, o 9¥™(s) = 0, (3) implies that for every a € 5 and every € > 0

(4) lim Fr o ia(€) = 1.

n—co

Suppose that T is of the h—type. We shall prove that the sequence
{zn}nen is a Cauchy sequence i.e. that for every @ € 5,¢ > 0 and A € (0,1)
there exists ng(€, A) € N such that

Frpipzna(€) >1—2A

for every n > ng(€, ) and every p € N. Let n’(¢, s) € N be such that

2 Z PH(s) < €

i>n'(e,s)

Then for every n > n/(¢, s) we have

Frmzn.{.p,a(e) Z T2(F$ny$n+1y$n+p(¢n(3))7

n+p—2

In,l'n+1,a(¢ (3)) In+1,$n+p,a(2 E ¢1.(8

i>n+1
> T3 Frp g 1,0mtp (U7(8))s Fonzngn,a($7(5)),
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Fz'n.-{-l 7Tnt2:Tntp (/l/)n-l-l(s))’ an+1yzn+2 7“(/17Z)n+1(8))’ oot

Fonipztntptonts (07 (8))s Forppozionipr o (P77 7%(5)))-

If n > max{n(s),n'(¢,s)}, where ¥"(s) < 1, for every n > n(s), then we
have that

F:L'n,a:n+p,a(€) Z Tz?_B(l - 1/1n(5), 1- WL(S), 1- ¢n+1(5)7~’1 - ¢n+1(5),

1 — ™P72(5),1 — ™ tP72(s)).

- Since v is a nondecreasing function it follows that
(5) Fxn,zn+p,a(€) > T2p—3(1 - 1/”n('g))

Using limp .o, %"(s) = 0 and the fact that T is of the h—type from (5)
we conclude that {z,},cN is a Cauchy sequence.

Since S is complete there exists limn,,_, , = . Using the relation z,, €
fxn-1 , for every » > 1 and the assumption that f is closed, we conclude
that z is a fixed point of the mapping f.
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