Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 24, 2 (1994), 1-7 Review of Research Faculty of Science Mathematics Series

A FIXED POINT THEOREM FOR MULTIVALUED MAPPINGS IN 2-MENGER SPACES

Olga Hadžić¹

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

A fixed point theorem for multivalued C-contraction in 2-Menger spaces is proved.

AMS Mathematics Subject Classification (1991): 47H10. Key words and phrases: 2-Menger spaces, multivalued mappings, fixed points.

1. Introduction

The theory of probabilistic metric spaces is an important part of Stochastic Analysis, and so it is of interest to develop the fixed point theory in such spaces [16].

The first result from the fixed point theory in probabilistic metric spaces is obtained by Sehgal and Bharucha-Reid in [18]. Since then many fixed point theorems for singlevalued and multivalued mappings in probabilistic metric spaces have been proved [5]-[8], [12]. The study of 2-metric spaces was initiated by S.Gähler [2] and some fixed point theorems in 2-metric spaces were proved in [1], [3], [4], [9]-[11], [13], [14].

¹Work supported by Fund for Science of Serbia.

2 O. Hadžić

Some fixed point theorems in probabilistic 2-metric spaces [19] were proved in [1] and [15].

In this paper a fixed point theorem for multivalued C— contractions in 2-Menger spaces will be proved. For singlevalued mappings the notion of a C—contraction in probabilistic metric spaces was introduced by Hicks [3].

2. Preliminaries

Let Δ^+ be the set of all the distribution functions F such that F(0) = 0 $(F: \mathbf{R} \to [0,1])$ is a nondecreasing and leftcontinuous mapping such that $\lim_{t\to\infty} F(t) = 0$.

Let $H \in \Delta^+$ be defined by : H(t) = 1, for t > 0 and H(t) = 0, for $t \le 0$.

The notion of a Menger space is a generalization of the notion of a metric space [16]. In a similar way, the notion of a 2-Menger space is a generalization of the notion of a 2-metric space [19].

Let $S \neq \emptyset, \mathcal{F}: S \times S \times S \to \Delta^+$ and T be a t- norm [16]. The triple (S, \mathcal{F}, T) is a **2-Menger space** if the following conditions are satisfied:

1. For all $x, y \in S$ such that $x \neq y$ there exists $z \in S$ such that

$$F_{x,y,z} \neq H$$
.

- 2. $F_{x,y,z} = H$ if at least two of $x, y, z \in S$ are equal.
- 3. For all $x, y, z \in S$, $F_{x,y,z} = F_{x,z,y} = F_{y,z,x}$.
- 4. For all $x, y, z, u \in S$ and for all $t_1, t_2, t_3 \geq 0$

$$F_{x,y,z}(t_1+t_2+t_3) \ge T^2(F_{x,y,u}(t_1), F_{x,u,z}(t_2), F_{u,y,z}(t_3)).$$

Remark. In this paper we shall use the following notation:

$$T^1(x,y)=T(x,y), T^2(x,y,z)=T(x,T^1(y,z)) \text{ and for every } n\geq 3,$$

$$T^n(x_1,x_2,...,x_{n+1})=T(x_1,T^{n-1}(x_2,x_3,...,x_{n+1})).$$

A sequence $\{x_n\}_{n\in\mathbb{N}}$ from S converges to $x\in S$ if for every $a\in S$

$$F_{x,x_n,a} \to H$$

in the topology of the weak convergence in Δ^+ . This means that for every $a \in S$, every $\epsilon > 0$ and every $\lambda \in (0,1)$ there exists $n(\epsilon, \lambda, a) \in \mathbb{N}$ such that

$$F_{x,x_n,a}(\epsilon) > 1 - \lambda$$
, for all $n \ge n(\epsilon, \lambda, a)$.

A sequence $\{x_n\}_{n\in\mathbb{N}}$ from S is a Cauchy sequence if for every $a\in S, \epsilon>0$ and $\lambda\in(0,1)$ there exists $n(\epsilon,\lambda,a)\in\mathbb{N}$ such that

$$F_{x_n,x_{n+p},a}(\epsilon) > 1 - \lambda$$

for every $n \geq n(\epsilon, \lambda, a)$ and every $p \in \mathbf{N}$.

A 2-Menger space is complete if every Cauchy sequence $\{x_n\}_{n\in\mathbb{N}}$ in S converges in S.

3. A fixed point theorem

In the Theorem we shall denote by \mathcal{P} the set of all functions $\psi: \mathbf{R}^+ \to \mathbf{R}^+$ which are nondecreasing and such that for every s > 0 the series $\sum_{n=1}^{\infty} \psi^n(s)$ converges. By 2^M we shall denote the family of all nonempty subsets of $M \subset S$.

A t-norm T is of the h-type if the family of functions $\{T_n(x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1, where $T_1(x)=T(x,x),T_n(x)=T(x,T_{n-1}(x))$, for every $n\geq 2$. In [5], such an example of a t-norm T is given.

Theorem 1. Let (S, \mathcal{F}, T) be a complete 2-Menger space such that $\sup_{x < 1} T(x, x) = 1$, M be a nonempty and closed subset of $S, f : M \to 2^M$ a closed multivalued mapping, $\psi \in \mathcal{P}$ and the following conditions are satisfied:

- (i) t- norm T is of the h-type.
- (ii) For every $p, q \in S$ and every x > 0 the following implication holds:

 $F_{p,q,a}(x) > 1 - x$, for every $a \in S \Rightarrow$ for every $u \in fp$ there exists $v \in fq$

such that
$$F_{u,v,a}(\psi(x)) > 1 - \psi(x)$$
, for every $a \in S$.

Then there exists $x \in M$ such that $x \in fx$.

Proof. Let $x_0 \in M$ and $x_1 \in fx_0$. Let s > 1. Then for every $a \in S$

(1)
$$F_{x_1,x_0,a}(s) > 1 - s.$$

From (ii) and (1) follows that there exists $x_2 \in fx_1$ such that for every $a \in S$:

(2)
$$F_{x_2,x_1,a}(\psi(s)) > 1 - \psi(s).$$

Similarly from (2) it follows that there exists $x_3 \in fx_2$ such that for every $a \in S$

$$F_{x_3,x_2,a}(\psi^2(s)) > 1 - \psi^2(s).$$

Hence, in the same way, we can obtain $x_n \in M, n \geq 3$ such that $x_n \in fx_{n-1}$ and that for every $a \in S$

(3)
$$F_{x_n,x_{n-1},a}(\psi^{n-1}(s)) > 1 - \psi^{n-1}(s).$$

Since $\lim_{n\to\infty} \psi^n(s) = 0$, (3) implies that for every $a \in S$ and every $\epsilon > 0$

$$\lim_{n \to \infty} F_{x_n, x_{n+1}, a}(\epsilon) = 1.$$

Suppose that T is of the h-type. We shall prove that the sequence $\{x_n\}_{n\in N}$ is a Cauchy sequence i.e. that for every $a\in S, \epsilon>0$ and $\lambda\in(0,1)$ there exists $n_0(\epsilon,\lambda)\in \mathbf{N}$ such that

$$F_{x_{n+n},x_n,a}(\epsilon) > 1 - \lambda$$

for every $n \geq n_0(\epsilon, \lambda)$ and every $p \in \mathbf{N}$. Let $n'(\epsilon, s) \in \mathbf{N}$ be such that

$$2\sum_{i\geq n'(\epsilon,s)}\psi^i(s)<\epsilon.$$

Then for every $n \geq n'(\epsilon, s)$ we have

$$\begin{split} F_{x_n,x_{n+p},a}(\epsilon) &\geq T^2(F_{x_n,x_{n+1},x_{n+p}}(\psi^n(s)), \\ F_{x_n,x_{n+1},a}(\psi^n(s)), F_{x_{n+1},x_{n+p},a}(2\sum_{i\geq n+1}^{n+p-2}\psi^i(s))) \\ &\geq T^{2p-3}(F_{x_n,x_{n+1},x_{n+p}}(\psi^n(s)), F_{x_n,x_{n+1},a}(\psi^n(s)), \end{split}$$

$$\begin{split} F_{x_{n+1},x_{n+2},x_{n+p}}(\psi^{n+1}(s)), F_{x_{n+1},x_{n+2},a}(\psi^{n+1}(s)), \dots \\ F_{x_{n+p-2},x_{n+p-1},x_{n+p}}(\psi^{n+p-2}(s)), F_{x_{n+p-2},x_{n+p-1},a}(\psi^{n+p-2}(s))). \end{split}$$

If $n \ge \max\{n(s), n'(\epsilon, s)\}$, where $\psi^n(s) < 1$, for every $n \ge n(s)$, then we have that

$$F_{x_n,x_{n+p},a}(\epsilon) \ge T^{2p-3}(1-\psi^n(s),1-\psi^n(s),1-\psi^{n+1}(s),1-\psi^{n+1}(s),\dots$$
$$1-\psi^{n+p-2}(s),1-\psi^{n+p-2}(s)).$$

· Since ψ is a nondecreasing function it follows that

(5)
$$F_{x_n, x_{n+p,a}}(\epsilon) \ge T_{2p-3}(1 - \psi^n(s)).$$

Using $\lim_{n\to\infty} \psi^n(s) = 0$ and the fact that T is of the h-type from (5) we conclude that $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence.

Since S is complete there exists $\lim_{n\to\infty} x_n = x$. Using the relation $x_n \in fx_{n-1}$, for every $n \geq 1$ and the assumption that f is closed, we conclude that x is a fixed point of the mapping f.

References

- [1] Shi-sen Chang, Nan-jing Huan, On the generalized 2-metric spaces and probabilistic 2-metric spaces with applications to fixed point theory, Math. Japon. 34 (1989), 885-900.
- [2] Gähler, S., 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963/1964), 115-148.
- [3] Gupta, V. K., Common fixed point of commuting mappings in 2-metric spaces and applications, Math. Nachr. 95 (1980), 293-297.
- [4] Hadžić, O., On common fixed point theorems in 2-metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 12 (1982), 7-18.
- [5] Hadžić, O., Some theorems on the fixed point in probabilistic metric and random normed spaces, Bull. Unione Mat. Ital. (6), 1-B (1982), 381-391.

- [6] Hadžić, O., Fixed point theorems for multivalued mappings in some classes of fuzzy metric spaces, Fuzzy Sets and Systems 29 (1989), 115-124.
- [7] Hadžić, O., Fixed point theorems for multivalued mappings in probabilistic metric spaces, Proceedings of the International Workshop in Analysis and its Applications, The Fourth Annual Meeting, Univerzitet u Novom Sadu, Institut za matematiku, Novi Sad, 1991.
- [8] Hicks, T. L., Fixed point theory in probabilistic metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 13 (1983), 63-72.
- [9] Iseki, K., Fixed point theorems in 2-metric spaces, Math. Sem. Notes, Kobe Univ. 3 (1975), 133-136.
- [10] Iseki, K., Sharma, P. L., Sharma, B. K., Contraction type mapping on 2-metric spaces, Math. Japon. 21 (1976), 67-70.
- [11] Pachpatte, B. G., Fixed point theorems for contraction type mappings on 2-metric space, Proc. Nat. Acad. Sci. India, Sect. A 48 (1978), 94-102.
- [12] Radu, V., Some fixed point theorems in probabilistic metric spaces, Lecture Notes in Math. 1233, 125-133.
- [13] Rhoades, B. E., Contraction type mapping on 2-metric spaces, Math. Nachr. 91 (1979), 151-155.
- [14] Singh, S. L., Tivari, B. M. L., Gupta, V. K., Common fixed point of commuting mappings in 2-metric spaces and applications, Math. Nachr. 95 (1980), 293-297.
- [15] Shyam Lal Singh, Rekha Talvar, Coincidences and fixed points in probabilistic analysis, Bull. Malasian Math. Soc. (Second Series) 17 (1994), 29-43.
- [16] Schweizer, B., Sklar, A., Probabilistic Metric Spaces, Elsevier North-Holland, 1983.
- [17] Schweizer, B., Sherwood, H., Tardif, R. M., Contractions on probabilistic metric spaces, Examples and counter examples, Stochastica XII-1 (1988), 5-17.

- [18] Sehgal, V. M., Bharucha-Reid, A. T., Fixed points of contraction mappings in probabilistic metric spaces, Math. Systems Theory 6 (1972), 97-102.
- [19] Zeng Wenzhi, Probabilistic 2-metric spaces, J. Math. Research Expo. 2 (1987), 241-245.

Received by the editors May 27, 1993.